organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1421-o1422

N′-[(E)-4-Benz­yl­oxy-2-hy­dr­oxy­benzyl­­idene]-4-nitro­benzohydrazide monohydrate

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com

(Received 19 March 2012; accepted 9 April 2012; online 18 April 2012)

The title compound, C21H17N3O5·H2O, exists in the keto form with an E conformation with respect to the azomethine double bond. The twist angles between the aromatic rings are in the range 4.67 (10)–17.54 (10)°. A water mol­ecule of solvation is present in the lattice. A conventional intra­molecular O—H⋯N hydrogen bond increases the rigidity of the mol­ecule. Inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen-bonding inter­actions establish a supra­molecular linkage among the mol­ecules in the crystal structure. There are also C—H⋯π inter­actions present.

Related literature

For the biological and other applications of carbohydrazides, see: Lakshmi et al. (2011[Lakshmi, B., Avaji, P. G., Shivananda, K. N., Nagella, P., Manohar, S. H. & Mahendra, K. N. (2011). Polyhedron, 30, 1507-1515.]); Grande et al. (2007[Grande, F., Aiello, F., Grazia, O. D., Brizzi, A., Garofalo, A. & Neamati, N. (2007). Bioorg. Med. Chem. 15, 288-294.]); Naseema et al. (2010[Naseema, K., Sujith, K. V., Manjunatha, K. B., Kalluraya, B., Umesh, G. & Rao, V. (2010). Opt. Laser Technol. 42, 741-748.]). For the synthesis, see: Emmanuel et al. (2011[Emmanuel, J., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3267.]). For related structures of carbohydrazides, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]). For the keto form, see: Bakir & Brown (2002[Bakir, M. & Brown, O. (2002). J. Mol. Struct. 609, 129-136.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17N3O5·H2O

  • Mr = 409.39

  • Monoclinic, P c

  • a = 4.6275 (7) Å

  • b = 6.5332 (11) Å

  • c = 31.856 (5) Å

  • β = 92.417 (4)°

  • V = 962.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.30 × 0.28 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.974

  • 7388 measured reflections

  • 1713 independent reflections

  • 1663 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.088

  • S = 1.05

  • 1713 reflections

  • 288 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O1Si 0.86 (2) 2.57 (4) 3.058 (3) 117 (4)
O4—H4O⋯N3 0.86 (2) 1.93 (3) 2.670 (2) 143 (4)
N2—H2N⋯O1S 0.86 (2) 2.01 (2) 2.855 (3) 166 (3)
O1S—H2S⋯O4ii 0.87 (2) 2.01 (2) 2.860 (3) 165 (4)
O1S—H1S⋯O3iii 0.88 (2) 1.80 (2) 2.676 (3) 175 (5)
C14—H14⋯O1S 0.93 2.37 3.184 (2) 146
C21—H21⋯O1S 0.93 2.43 3.325 (3) 161
C7—H7BCgiv 0.97 2.69 3.472 (2) 138
Symmetry codes: (i) x, y+1, z; (ii) x-1, y-1, z; (iii) x, y-1, z; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

There is growing interest in the structural features of carbohydrazides as they show a wide range of biological activities, with potential uses in antibacterial, antifungal and anticancer studies (Lakshmi et al., 2011; Grande et al., 2007). Hydrazones and their metal complexes have found applications in chemical processes like non linear optics, sensors etc. (Naseema et al., 2010).

The title compound N'-{(E)-[4-(benzyloxy)-2-hydroxyphenyl]methylidene}-4-nitrobenzohydrazide hydrate is found to exist in the E configuration with respect to N3=C14 bond. A perspective view of the molecular structure of the title compound, along with the atom-labeling is shown in Fig. 1. The bond length of C15=O3 [1.229 (2) Å] shows a significant double-bond character (Fun et al.., 2008) indicating that the molecule exists in the keto form in the solid state (Bakir & Brown, 2002) and the dihedral angles between the aromatic rings are in the range of 4.67 (10) -17.54 (10)°.

The lattice water molecule plays an essential role in packing of the molecules forming conventional and non-conventional hydrogen bonds between the carbohydrazide and water molecules (Fig. 2). A C–H···π interaction is also observed in the crystal structure between one of the H atoms attached to the C7 carbon atom and the phenyl ring of the adjacent molecule in the crystal system (Fig. 3). Two types of very weak ππ interactions also present with a shortest centroid-centroid distance of 4.9302 (14) Å. In crystal packing, the parallel arrangement of the molecules along a axis is shown in Fig. 4.

Related literature top

For the biological and other applications of carbohydrazides, see: Lakshmi et al. (2011); Grande et al. (2007); Naseema et al. (2010). For the synthesis, see: Emmanuel et al. (2011). For related structures of carbohydrazides, see: Fun et al. (2008). For the keto form, see: Bakir & Brown (2002).

Experimental top

The title compound was prepared by adapting a reported procedure (Emmanuel et al., 2011) by refluxing a mixture of methanolic solutions of 4-nitrobenzohydrazide (0.181 g, 1 mmol) and 4-(benzyloxy)-2-hydroxybenzaldehyde (0.228 g, 1 mmol) for 4 h. The formed crystals were collected, washed with few drops of methanol and dried over P4O10 in vacuo. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation from its methanolic solution.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.97 Å. H atoms were assigned as Uiso=1.2 Ueq. N2—H2N and O4—H4O (0.86 Å) H atoms were located from difference maps and restrained using DFIX instructions. The O1S—H1S and O1S—H2S (0.86 Å) H atoms of the water molecule is also located from difference maps and restrained using DFIX and DANG instructions.

In the absence of significant anomalous scattering effects Friedel pairs have been merged.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecular structure of the title compound, along with the atom-labelling, drawn with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the conventional and non-conventional hydrogen bonding interactions
[Figure 3] Fig. 3. Graphical representation showing C–H···π interaction in the crystal structure of C21H17N3O5.H2O.
[Figure 4] Fig. 4. Packing arrangement of molecules along a axis.
N'-[(E)-4-Benzyloxy-2-hydroxybenzylidene]-4-nitrobenzohydrazide monohydrate top
Crystal data top
C21H17N3O5·H2OF(000) = 428.0
Mr = 409.39Dx = 1.413 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 4698 reflections
a = 4.6275 (7) Åθ = 3.1–28.2°
b = 6.5332 (11) ŵ = 0.11 mm1
c = 31.856 (5) ÅT = 296 K
β = 92.417 (4)°Block, yellow
V = 962.2 (3) Å30.30 × 0.28 × 0.25 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1713 independent reflections
Radiation source: fine-focus sealed tube1663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and ϕ scanθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 35
Tmin = 0.969, Tmax = 0.974k = 77
7388 measured reflectionsl = 3737
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.0484P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.011
1713 reflectionsΔρmax = 0.14 e Å3
288 parametersΔρmin = 0.16 e Å3
7 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (7)
Crystal data top
C21H17N3O5·H2OV = 962.2 (3) Å3
Mr = 409.39Z = 2
Monoclinic, PcMo Kα radiation
a = 4.6275 (7) ŵ = 0.11 mm1
b = 6.5332 (11) ÅT = 296 K
c = 31.856 (5) Å0.30 × 0.28 × 0.25 mm
β = 92.417 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1713 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1663 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.974Rint = 0.020
7388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0307 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.14 e Å3
1713 reflectionsΔρmin = 0.16 e Å3
288 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5580 (7)0.1667 (5)0.47190 (9)0.0986 (10)
O20.5671 (7)0.4470 (5)0.50699 (9)0.0960 (9)
O30.3371 (5)0.9071 (3)0.37071 (7)0.0673 (6)
O40.8452 (4)1.0067 (3)0.26751 (6)0.0537 (5)
O51.4446 (4)0.8132 (2)0.15654 (5)0.0428 (4)
O1S0.3303 (5)0.1942 (3)0.31076 (7)0.0596 (5)
N10.4868 (6)0.3450 (5)0.47795 (8)0.0623 (7)
N20.3751 (4)0.6173 (3)0.33257 (6)0.0380 (4)
N30.5600 (4)0.7064 (3)0.30472 (6)0.0370 (4)
C11.8112 (6)0.8824 (4)0.09200 (9)0.0507 (6)
H11.75280.75020.09830.061*
C22.0020 (6)0.9151 (5)0.05996 (9)0.0593 (8)
H22.07030.80440.04490.071*
C32.0894 (6)1.1089 (5)0.05048 (9)0.0589 (8)
H32.21861.12920.02930.071*
C41.9873 (6)1.2742 (5)0.07214 (9)0.0600 (7)
H42.04541.40610.06540.072*
C51.7976 (6)1.2430 (4)0.10394 (9)0.0508 (6)
H51.72821.35460.11860.061*
C61.7094 (4)1.0458 (4)0.11423 (7)0.0377 (5)
C71.5050 (5)1.0238 (4)0.14926 (7)0.0391 (5)
H7A1.59011.08460.17470.047*
H7B1.32641.09570.14210.047*
C81.2534 (4)0.7701 (4)0.18637 (7)0.0355 (5)
C91.1417 (5)0.9148 (3)0.21297 (7)0.0371 (5)
H91.19631.05130.21080.044*
C100.9484 (4)0.8566 (4)0.24291 (7)0.0345 (5)
C110.8636 (4)0.6529 (4)0.24699 (7)0.0346 (5)
C120.9782 (5)0.5107 (4)0.21932 (8)0.0430 (5)
H120.92330.37420.22120.052*
C131.1688 (5)0.5665 (4)0.18961 (8)0.0434 (5)
H131.24150.46860.17170.052*
C140.6665 (5)0.5843 (4)0.27812 (7)0.0388 (5)
H140.61560.44670.27880.047*
C150.2747 (5)0.7263 (4)0.36431 (8)0.0405 (5)
C160.0762 (5)0.6172 (4)0.39327 (7)0.0382 (5)
C170.0090 (6)0.7250 (4)0.42798 (8)0.0522 (6)
H170.05830.85760.43260.063*
C180.1943 (6)0.6370 (5)0.45600 (8)0.0567 (7)
H180.25260.70920.47930.068*
C190.2898 (5)0.4403 (4)0.44837 (7)0.0452 (6)
C200.2096 (6)0.3294 (4)0.41418 (9)0.0524 (6)
H200.27690.19670.40980.063*
C210.0266 (6)0.4198 (4)0.38649 (8)0.0494 (6)
H210.02850.34740.36300.059*
H1S0.325 (10)0.105 (6)0.3313 (11)0.096 (14)*
H2S0.169 (6)0.160 (6)0.2975 (12)0.099 (14)*
H2N0.336 (6)0.489 (3)0.3287 (9)0.046 (7)*
H4O0.730 (7)0.958 (7)0.2853 (11)0.090 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.123 (2)0.097 (2)0.0791 (17)0.0492 (18)0.0467 (15)0.0001 (15)
O20.1081 (19)0.108 (2)0.0771 (16)0.0053 (17)0.0631 (14)0.0006 (15)
O30.1030 (17)0.0439 (11)0.0571 (11)0.0205 (10)0.0283 (10)0.0053 (9)
O40.0609 (11)0.0409 (10)0.0623 (11)0.0109 (8)0.0384 (9)0.0097 (8)
O50.0446 (8)0.0385 (9)0.0470 (9)0.0009 (8)0.0217 (7)0.0040 (7)
O1S0.0790 (14)0.0383 (9)0.0638 (12)0.0155 (9)0.0283 (10)0.0050 (9)
N10.0571 (14)0.0820 (19)0.0491 (12)0.0043 (13)0.0172 (11)0.0143 (13)
N20.0434 (10)0.0318 (10)0.0400 (10)0.0066 (8)0.0150 (8)0.0050 (8)
N30.0357 (10)0.0364 (10)0.0398 (10)0.0075 (8)0.0127 (7)0.0060 (8)
C10.0523 (14)0.0453 (14)0.0560 (15)0.0009 (12)0.0202 (12)0.0008 (11)
C20.0609 (17)0.065 (2)0.0547 (15)0.0085 (14)0.0296 (13)0.0029 (13)
C30.0500 (14)0.081 (2)0.0477 (14)0.0040 (14)0.0227 (11)0.0143 (15)
C40.0598 (16)0.0594 (17)0.0624 (17)0.0058 (14)0.0212 (13)0.0237 (15)
C50.0517 (14)0.0444 (14)0.0579 (14)0.0025 (11)0.0195 (11)0.0093 (12)
C60.0303 (10)0.0455 (12)0.0378 (11)0.0008 (10)0.0089 (9)0.0078 (10)
C70.0378 (11)0.0382 (12)0.0420 (12)0.0016 (10)0.0118 (9)0.0024 (10)
C80.0334 (11)0.0391 (12)0.0346 (10)0.0020 (9)0.0097 (8)0.0037 (9)
C90.0390 (11)0.0304 (11)0.0426 (12)0.0034 (9)0.0106 (9)0.0016 (9)
C100.0353 (11)0.0327 (12)0.0362 (11)0.0026 (9)0.0100 (8)0.0011 (9)
C110.0312 (10)0.0356 (12)0.0374 (11)0.0039 (9)0.0066 (9)0.0019 (9)
C120.0457 (12)0.0300 (11)0.0542 (14)0.0021 (10)0.0139 (10)0.0002 (10)
C130.0454 (12)0.0365 (12)0.0497 (12)0.0018 (10)0.0174 (10)0.0052 (10)
C140.0382 (11)0.0338 (12)0.0452 (12)0.0049 (9)0.0102 (10)0.0073 (9)
C150.0459 (12)0.0373 (12)0.0389 (11)0.0050 (10)0.0095 (9)0.0028 (10)
C160.0393 (11)0.0419 (12)0.0341 (11)0.0032 (10)0.0082 (9)0.0054 (9)
C170.0611 (16)0.0511 (15)0.0455 (13)0.0088 (13)0.0140 (11)0.0051 (12)
C180.0648 (16)0.0659 (17)0.0409 (13)0.0006 (14)0.0201 (11)0.0074 (13)
C190.0388 (12)0.0614 (17)0.0362 (12)0.0002 (11)0.0100 (9)0.0102 (11)
C200.0569 (15)0.0443 (14)0.0575 (15)0.0059 (12)0.0198 (12)0.0053 (12)
C210.0580 (15)0.0452 (14)0.0468 (13)0.0061 (12)0.0232 (11)0.0028 (11)
Geometric parameters (Å, º) top
O1—N11.224 (4)C6—C71.500 (3)
O2—N11.211 (4)C7—H7A0.9700
O3—C151.231 (3)C7—H7B0.9700
O4—C101.355 (3)C8—C91.384 (3)
O4—H4O0.86 (2)C8—C131.392 (4)
O5—C81.355 (3)C9—C101.388 (3)
O5—C71.425 (3)C9—H90.9300
O1S—H1S0.88 (2)C10—C111.395 (3)
O1S—H2S0.873 (19)C11—C121.400 (3)
N1—C191.476 (3)C11—C141.446 (3)
N2—C151.336 (3)C12—C131.370 (3)
N2—N31.386 (3)C12—H120.9300
N2—H2N0.863 (19)C13—H130.9300
N3—C141.277 (3)C14—H140.9300
C1—C61.375 (4)C15—C161.508 (3)
C1—C21.394 (4)C16—C171.383 (4)
C1—H10.9300C16—C211.388 (4)
C2—C31.367 (5)C17—C181.388 (4)
C2—H20.9300C17—H170.9300
C3—C41.376 (5)C18—C191.377 (4)
C3—H30.9300C18—H180.9300
C4—C51.383 (4)C19—C201.372 (4)
C4—H40.9300C20—C211.381 (4)
C5—C61.394 (3)C20—H200.9300
C5—H50.9300C21—H210.9300
C10—O4—H4O111 (3)C8—C9—H9119.9
C8—O5—C7116.93 (17)C10—C9—H9119.9
H1S—O1S—H2S98 (3)O4—C10—C9116.9 (2)
O2—N1—O1123.7 (3)O4—C10—C11122.0 (2)
O2—N1—C19118.2 (3)C9—C10—C11121.2 (2)
O1—N1—C19118.0 (3)C10—C11—C12117.30 (19)
C15—N2—N3120.28 (19)C10—C11—C14123.2 (2)
C15—N2—H2N123 (2)C12—C11—C14119.5 (2)
N3—N2—H2N117 (2)C13—C12—C11122.0 (2)
C14—N3—N2115.35 (19)C13—C12—H12119.0
C6—C1—C2120.0 (3)C11—C12—H12119.0
C6—C1—H1120.0C12—C13—C8119.8 (2)
C2—C1—H1120.0C12—C13—H13120.1
C3—C2—C1120.4 (3)C8—C13—H13120.1
C3—C2—H2119.8N3—C14—C11122.3 (2)
C1—C2—H2119.8N3—C14—H14118.9
C2—C3—C4120.3 (2)C11—C14—H14118.9
C2—C3—H3119.8O3—C15—N2123.4 (2)
C4—C3—H3119.8O3—C15—C16119.8 (2)
C3—C4—C5119.6 (3)N2—C15—C16116.8 (2)
C3—C4—H4120.2C17—C16—C21119.4 (2)
C5—C4—H4120.2C17—C16—C15116.8 (2)
C4—C5—C6120.6 (3)C21—C16—C15123.9 (2)
C4—C5—H5119.7C16—C17—C18120.5 (3)
C6—C5—H5119.7C16—C17—H17119.7
C1—C6—C5119.1 (2)C18—C17—H17119.7
C1—C6—C7123.3 (2)C19—C18—C17118.4 (2)
C5—C6—C7117.6 (2)C19—C18—H18120.8
O5—C7—C6110.37 (19)C17—C18—H18120.8
O5—C7—H7A109.6C20—C19—C18122.5 (2)
C6—C7—H7A109.6C20—C19—N1118.6 (2)
O5—C7—H7B109.6C18—C19—N1118.9 (2)
C6—C7—H7B109.6C19—C20—C21118.4 (2)
H7A—C7—H7B108.1C19—C20—H20120.8
O5—C8—C9124.0 (2)C21—C20—H20120.8
O5—C8—C13116.4 (2)C20—C21—C16120.9 (2)
C9—C8—C13119.6 (2)C20—C21—H21119.6
C8—C9—C10120.1 (2)C16—C21—H21119.6
C15—N2—N3—C14173.2 (2)O5—C8—C13—C12179.4 (2)
C6—C1—C2—C30.1 (5)C9—C8—C13—C120.6 (4)
C1—C2—C3—C40.8 (5)N2—N3—C14—C11179.85 (19)
C2—C3—C4—C50.7 (5)C10—C11—C14—N31.3 (3)
C3—C4—C5—C60.1 (4)C12—C11—C14—N3178.5 (2)
C2—C1—C6—C50.6 (4)N3—N2—C15—O30.1 (4)
C2—C1—C6—C7179.7 (3)N3—N2—C15—C16179.66 (19)
C4—C5—C6—C10.7 (4)O3—C15—C16—C174.8 (4)
C4—C5—C6—C7179.6 (2)N2—C15—C16—C17175.0 (2)
C8—O5—C7—C6177.51 (18)O3—C15—C16—C21174.1 (3)
C1—C6—C7—O52.1 (3)N2—C15—C16—C216.2 (3)
C5—C6—C7—O5178.1 (2)C21—C16—C17—C180.3 (4)
C7—O5—C8—C97.7 (3)C15—C16—C17—C18179.2 (2)
C7—O5—C8—C13172.3 (2)C16—C17—C18—C190.2 (4)
O5—C8—C9—C10179.4 (2)C17—C18—C19—C200.3 (4)
C13—C8—C9—C100.5 (3)C17—C18—C19—N1180.0 (2)
C8—C9—C10—O4179.2 (2)O2—N1—C19—C20176.7 (3)
C8—C9—C10—C110.2 (3)O1—N1—C19—C203.9 (4)
O4—C10—C11—C12178.5 (2)O2—N1—C19—C183.0 (4)
C9—C10—C11—C120.9 (3)O1—N1—C19—C18176.4 (3)
O4—C10—C11—C141.6 (3)C18—C19—C20—C210.1 (4)
C9—C10—C11—C14179.0 (2)N1—C19—C20—C21179.6 (2)
C10—C11—C12—C130.8 (3)C19—C20—C21—C160.6 (4)
C14—C11—C12—C13179.1 (2)C17—C16—C21—C200.7 (4)
C11—C12—C13—C80.1 (4)C15—C16—C21—C20179.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1Si0.86 (2)2.57 (4)3.058 (3)117 (4)
O4—H4O···N30.86 (2)1.93 (3)2.670 (2)143 (4)
N2—H2N···O1S0.86 (2)2.01 (2)2.855 (3)166 (3)
O1S—H2S···O4ii0.87 (2)2.01 (2)2.860 (3)165 (4)
O1S—H1S···O3iii0.88 (2)1.80 (2)2.676 (3)175 (5)
C14—H14···O1S0.932.373.184 (2)146
C21—H21···O1S0.932.433.325 (3)161
C7—H7B···Cgiv0.972.693.472 (2)138
Symmetry codes: (i) x, y+1, z; (ii) x1, y1, z; (iii) x, y1, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H17N3O5·H2O
Mr409.39
Crystal system, space groupMonoclinic, Pc
Temperature (K)296
a, b, c (Å)4.6275 (7), 6.5332 (11), 31.856 (5)
β (°) 92.417 (4)
V3)962.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.28 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.969, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
7388, 1713, 1663
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.088, 1.05
No. of reflections1713
No. of parameters288
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.16

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2010), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1Si0.86 (2)2.57 (4)3.058 (3)117 (4)
O4—H4O···N30.86 (2)1.93 (3)2.670 (2)143 (4)
N2—H2N···O1S0.863 (19)2.01 (2)2.855 (3)166 (3)
O1S—H2S···O4ii0.873 (19)2.01 (2)2.860 (3)165 (4)
O1S—H1S···O3iii0.88 (2)1.80 (2)2.676 (3)175 (5)
C14—H14···O1S0.93052.37093.184 (2)146
C21—H21···O1S0.92932.43313.325 (3)161
C7—H7B···Cgiv0.972.693.472 (2)138
Symmetry codes: (i) x, y+1, z; (ii) x1, y1, z; (iii) x, y1, z; (iv) x1, y, z.
 

Acknowledgements

BJ is grateful to the Council for Scientific and Industrial Research, New Delhi, India, for the award of a Senior Research Fellowship. The authors also thank the Sophisticated Analytical Instument Facility, Cochin University of Science & Technology, Kochi-22, for providing the single-crystal X-ray diffraction data.

References

First citationBakir, M. & Brown, O. (2002). J. Mol. Struct. 609, 129-136.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEmmanuel, J., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrande, F., Aiello, F., Grazia, O. D., Brizzi, A., Garofalo, A. & Neamati, N. (2007). Bioorg. Med. Chem. 15, 288–294.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLakshmi, B., Avaji, P. G., Shivananda, K. N., Nagella, P., Manohar, S. H. & Mahendra, K. N. (2011). Polyhedron, 30, 1507–1515.  Web of Science CrossRef CAS Google Scholar
First citationNaseema, K., Sujith, K. V., Manjunatha, K. B., Kalluraya, B., Umesh, G. & Rao, V. (2010). Opt. Laser Technol. 42, 741–748.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1421-o1422
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds