organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1333-o1334

Bis(5-amino-3-carb­­oxy-1H-1,2,4-triazol-4-ium) di­hydrogenphosphate nitrate 5-amino-1H-1,2,4-triazol-4-ium-3-carboxyl­ate

aLaboratoire de Chimie Appliquée et Technologie des Matériaux, LCATM, Université Larbi Ben M'Hidi, 04000 Oum El Bouaghi, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria, and cLaboratoire de Chimie de Coodination, UPR–CNRS 8241, 205, Route de Narbonne, 31077 Toulouse cedex 04, France
*Correspondence e-mail: fadilaber@yahoo.fr

(Received 22 March 2012; accepted 3 April 2012; online 6 April 2012)

In the title compound, 2C3H5N4O2+·H2PO4·NO3·C3H4N4O2, three independent 5-amino-1H-1,2,4-triazol-3-carb­oxy­lic acid moieties are observed. Two are in the form of cations, while the third is in the zwitterionic form. The triazole rings in the two cations are almost coplanar, making an angle of 4.11 (7)°. Layers parallel to the (20-1) plane, resulting from hydrogen bonding of the organic mol­ecules and the nitrate anions, are linked via H2PO4 infinite zigzag chains running parallel to the c axis. The crystal studied was an inversion twin, with refined components of 0.33 (7) and 0.67 (7).

Related literature

For structural studies of related compounds, see: Berrah et al. (2011[Berrah, F., Bouacida, S. & Roisnel, T. (2011). Acta Cryst. E67, o1409-o1410.], 2012[Berrah, F., Bouchene, R., Bouacida, S. & Roisnel, T. (2012). Acta Cryst. E68, o1116.]); Fernandes et al. (2011[Fernandes, J. A., Liu, B., Tomé, J. C., Cunha-Silva, L. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o2073-o2074.]); Ouakkaf et al. (2011[Ouakkaf, A., Berrah, F., Bouacida, S. & Roisnel, T. (2011). Acta Cryst. E67, o1171-o1172.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Grell et al. (1999[Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.]).

[Scheme 1]

Experimental

Crystal data
  • 2C3H5N4O2+·NO3·H2PO4·C3H4N4O2

  • Mr = 545.32

  • Monoclinic, C c

  • a = 19.2249 (13) Å

  • b = 13.2036 (7) Å

  • c = 7.7468 (5) Å

  • β = 101.079 (7)°

  • V = 1929.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 180 K

  • 0.45 × 0.43 × 0.16 mm

Data collection
  • Agilent Xcalibur Sapphire1 long-nozzle diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.832, Tmax = 1.000

  • 10050 measured reflections

  • 3836 independent reflections

  • 3735 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.067

  • S = 1.05

  • 3836 reflections

  • 330 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1858 Friedel pairs

  • Flack parameter: 0.33 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H3B⋯O7 0.86 2.24 3.030 (2) 152
N4C—H4C⋯O5 0.86 1.92 2.765 (2) 169
N4B—H4B⋯O6 0.86 1.92 2.780 (2) 177
O2—H2⋯O1Ci 0.82 1.77 2.5563 (19) 160
N4A—H4A⋯O7 0.86 1.93 2.784 (2) 172
O1B—H1B⋯O3 0.82 1.65 2.4648 (19) 175
O4—H4⋯O3ii 0.82 1.92 2.671 (2) 151
O1A—H1A⋯O1iii 0.82 1.62 2.423 (2) 166
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+2, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+1].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Synthesis we have undertaken using 1,2,4-triazol derivatives and various inorganic acids (nitric, sulfuric, phosphoric acids and their mixtures) have permitted obtaining hybrids involving sulfate and nitrate anions (Berrah et al., 2012; Ouakkaf et al., 2011) and the title compound which involves a mixture of dihydrgenphosphate and nitrate anions. The comparison between networks observed in these structures make clear the influence of the anion upon the hydrogen bonds patterns encountered.

The asymmetric unit in this compound consists of two cations (A and B), one zwitterium (C), one dihydrogenphosphate anion and one nitrate anion (Fig.1). Bond distances and angles observed in the different entities, present no unusual features and are consistent with those reported previously (Berrah et al., 2011, 2012; Fernandes et al., 2011; Ouakkaf et al., 2011). The triazol rings in (A) and (B) are almost coplanar making an angle of 4.11 (7)°; while they form with the ring in (C) dihedral angles of 8.64 (5)° and 9.62 (6)° respectively.

The title compound shows a three-dimensional packing where organic molecules and nitrate anions, linked by means of O—H···O and N—H···O contacts, lie in layers stacked parallel to (20–1) plane and in which R66 (18) rings (Etter et al., 1990; Grell et al., 1999) are observed (Fig. 2) (Table 1). H2PO4- anions form infinite zigzag chains running parallel to the c axis; which pass through the R66 (18) rings to connect the layers together (Fig. 3).

Related literature top

For structural studies of related compounds, see: Berrah et al. (2011, 2012); Fernandes et al. (2011); Ouakkaf et al. (2011). For hydrogen-bond motifs, see: Etter et al. (1990); Grell et al. (1999).

Experimental top

Colourless crystals of compound (I) were obtained by the slow evaporation of a water-methanol (1:1)solution of 5-amino-1,2,4 triazol-1H- 3-carboxylic acid hydrate and a mixture of nitric and phosphoric acids in a 1:1 stoichiometric ratio.

Refinement top

All H atoms attached to N atoms and O atom were fixed geometrically and treated as riding with N—H = 0.86 Å and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(N) or Uiso(H) = 1.5Ueq(O).

The value of the Flack parameter, 0.33 (7), suggests the occurrence of a twin by inversion.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Partial packing view showing layers parallel to (20–1) plane and R66 (18) rings. Only one H2PO4- is represented to show how it fills the rings. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Partial packing view showing H2PO4- infinite zigzag chain running parallel to [001]direction and how it links the layers together. Hydrogen bonds are shown as dashed lines.
Bis(5-amino-3-carboxy-1H-1,2,4-triazol-4-ium) dihydrogenphosphate nitrate 5-amino-1H-1,2,4-triazol-4-ium-3-carboxylate top
Crystal data top
2C3H5N4O2+·NO3·H2PO4·C3H4N4O2F(000) = 1120
Mr = 545.32Dx = 1.877 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 19.2249 (13) ÅCell parameters from 8428 reflections
b = 13.2036 (7) Åθ = 3.1–28.3°
c = 7.7468 (5) ŵ = 0.25 mm1
β = 101.079 (7)°T = 180 K
V = 1929.8 (2) Å3Box, colourless
Z = 40.45 × 0.43 × 0.16 mm
Data collection top
Agilent Xcalibur Sapphire1 long-nozzle
diffractometer
3836 independent reflections
Radiation source: fine-focus sealed tube3735 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.2632 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 2423
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1616
Tmin = 0.832, Tmax = 1.000l = 99
10050 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.9492P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.008
3836 reflectionsΔρmax = 0.23 e Å3
330 parametersΔρmin = 0.27 e Å3
2 restraintsAbsolute structure: Flack (1983), 1858 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.33 (7)
Crystal data top
2C3H5N4O2+·NO3·H2PO4·C3H4N4O2V = 1929.8 (2) Å3
Mr = 545.32Z = 4
Monoclinic, CcMo Kα radiation
a = 19.2249 (13) ŵ = 0.25 mm1
b = 13.2036 (7) ÅT = 180 K
c = 7.7468 (5) Å0.45 × 0.43 × 0.16 mm
β = 101.079 (7)°
Data collection top
Agilent Xcalibur Sapphire1 long-nozzle
diffractometer
3836 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3735 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 1.000Rint = 0.023
10050 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.23 e Å3
S = 1.05Δρmin = 0.27 e Å3
3836 reflectionsAbsolute structure: Flack (1983), 1858 Friedel pairs
330 parametersAbsolute structure parameter: 0.33 (7)
2 restraints
Special details top

Experimental. Absorption correction: empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies, 2011)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O60.41566 (8)1.31611 (10)0.5894 (2)0.0222 (3)
N3C0.18588 (9)1.43700 (13)0.1472 (2)0.0236 (4)
O1C0.30311 (8)1.62763 (11)0.3449 (2)0.0272 (3)
N1B0.58554 (9)1.25858 (12)0.9762 (2)0.0217 (4)
H5B0.62161.25551.0610.026*
H3B0.56771.31640.94050.026*
N4C0.28426 (9)1.41292 (12)0.3399 (2)0.0201 (4)
H4C0.32331.42650.41110.024*
N10.43355 (9)1.40196 (12)0.6489 (2)0.0184 (3)
C3C0.25660 (10)1.32115 (15)0.3022 (3)0.0187 (4)
O2C0.19992 (9)1.64211 (12)0.1575 (2)0.0349 (4)
N2C0.19719 (9)1.33628 (12)0.1833 (2)0.0219 (4)
H2C0.16951.28860.13560.026*
O70.48583 (8)1.41235 (11)0.7696 (2)0.0276 (3)
C1C0.24818 (11)1.59375 (15)0.2508 (3)0.0215 (4)
O50.39976 (9)1.47811 (11)0.5845 (2)0.0313 (4)
N1C0.28090 (10)1.23307 (13)0.3647 (2)0.0266 (4)
H5C0.31981.22970.44080.032*
H3C0.25791.17860.32960.032*
C2C0.23928 (11)1.48136 (15)0.2447 (3)0.0202 (4)
P10.27249 (3)0.89899 (3)0.30351 (6)0.01592 (11)
O2B0.43278 (7)0.92432 (10)0.59606 (18)0.0210 (3)
N2B0.57956 (9)1.08016 (13)0.9423 (2)0.0198 (3)
H2B0.61521.06541.02380.024*
N4B0.50067 (9)1.16518 (12)0.7706 (2)0.0167 (3)
H4B0.4751.21350.71820.02*
N3B0.53912 (9)1.01015 (12)0.8405 (2)0.0194 (3)
C2B0.49164 (10)1.06425 (14)0.7377 (2)0.0167 (4)
C3B0.55750 (10)1.17458 (15)0.9007 (2)0.0159 (4)
O30.30722 (7)0.99921 (10)0.27601 (17)0.0198 (3)
C3A0.47957 (10)1.70083 (15)0.7432 (3)0.0186 (4)
O20.32459 (7)0.81370 (10)0.2805 (2)0.0247 (3)
H20.3090.75930.30720.037*
O10.20396 (9)0.88190 (12)0.1753 (3)0.0359 (4)
N3A0.56813 (9)1.75022 (12)0.9580 (2)0.0189 (3)
N2A0.51436 (9)1.78030 (13)0.8257 (2)0.0202 (3)
H2A0.50421.84250.79880.024*
O2A0.65270 (7)1.62929 (11)1.20239 (19)0.0233 (3)
N1A0.42476 (10)1.70396 (14)0.6126 (2)0.0266 (4)
H5A0.40791.76140.5720.032*
H3A0.40581.64860.56770.032*
C1B0.43737 (10)1.01611 (14)0.6006 (3)0.0164 (4)
N4A0.51196 (9)1.61845 (12)0.8229 (2)0.0181 (3)
H4A0.50141.55630.79660.022*
O1B0.40060 (7)1.08030 (10)0.49496 (18)0.0185 (3)
H1B0.37091.050.42340.028*
O40.25679 (10)0.89062 (14)0.4902 (2)0.0431 (5)
H40.27660.93690.5510.065*
O1A0.60814 (8)1.49336 (11)1.0444 (2)0.0267 (3)
H1A0.64261.46311.09940.04*
C1A0.61377 (10)1.58682 (15)1.0807 (3)0.0180 (4)
C2A0.56512 (10)1.65246 (15)0.9543 (3)0.0174 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.0208 (7)0.0113 (6)0.0303 (7)0.0030 (5)0.0055 (6)0.0021 (6)
N3C0.0210 (9)0.0151 (8)0.0305 (10)0.0020 (7)0.0057 (8)0.0017 (7)
O1C0.0224 (8)0.0126 (7)0.0398 (9)0.0015 (6)0.0109 (7)0.0016 (6)
N1B0.0206 (9)0.0172 (8)0.0232 (8)0.0014 (7)0.0061 (7)0.0008 (7)
N4C0.0175 (9)0.0147 (8)0.0243 (9)0.0010 (6)0.0059 (7)0.0012 (6)
N10.0166 (8)0.0133 (8)0.0235 (8)0.0012 (6)0.0006 (7)0.0016 (6)
C3C0.0191 (10)0.0172 (9)0.0193 (9)0.0020 (7)0.0020 (8)0.0008 (7)
O2C0.0277 (8)0.0176 (8)0.0494 (10)0.0007 (7)0.0172 (7)0.0056 (7)
N2C0.0192 (9)0.0122 (8)0.0302 (9)0.0038 (6)0.0056 (7)0.0013 (7)
O70.0244 (8)0.0181 (7)0.0326 (8)0.0005 (6)0.0138 (7)0.0017 (6)
C1C0.0196 (10)0.0153 (10)0.0273 (11)0.0014 (8)0.0012 (8)0.0028 (8)
O50.0286 (8)0.0129 (7)0.0439 (9)0.0020 (6)0.0145 (7)0.0045 (6)
N1C0.0271 (10)0.0136 (8)0.0333 (10)0.0019 (7)0.0091 (8)0.0001 (7)
C2C0.0171 (9)0.0180 (10)0.0230 (10)0.0005 (8)0.0024 (8)0.0012 (8)
P10.0149 (2)0.0125 (2)0.0184 (2)0.0002 (2)0.00181 (17)0.00174 (19)
O2B0.0221 (7)0.0141 (7)0.0247 (7)0.0016 (5)0.0009 (6)0.0013 (6)
N2B0.0176 (8)0.0166 (8)0.0211 (8)0.0007 (6)0.0062 (7)0.0024 (6)
N4B0.0166 (8)0.0137 (8)0.0174 (8)0.0017 (6)0.0024 (6)0.0021 (6)
N3B0.0182 (8)0.0160 (8)0.0216 (8)0.0006 (7)0.0019 (7)0.0008 (6)
C2B0.0171 (9)0.0157 (9)0.0169 (9)0.0012 (7)0.0027 (8)0.0018 (7)
C3B0.0124 (8)0.0189 (9)0.0155 (9)0.0011 (7)0.0007 (7)0.0011 (7)
O30.0214 (7)0.0151 (6)0.0197 (7)0.0021 (5)0.0041 (6)0.0010 (5)
C3A0.0188 (9)0.0161 (10)0.0199 (10)0.0015 (7)0.0014 (8)0.0001 (7)
O20.0193 (7)0.0136 (6)0.0412 (9)0.0006 (5)0.0063 (6)0.0013 (6)
O10.0266 (8)0.0177 (8)0.0519 (10)0.0006 (6)0.0217 (8)0.0017 (7)
N3A0.0194 (8)0.0145 (8)0.0215 (8)0.0002 (6)0.0006 (7)0.0010 (6)
N2A0.0226 (9)0.0121 (7)0.0239 (8)0.0019 (6)0.0006 (7)0.0013 (6)
O2A0.0202 (7)0.0217 (7)0.0249 (7)0.0009 (6)0.0033 (6)0.0024 (6)
N1A0.0279 (10)0.0158 (9)0.0311 (10)0.0014 (7)0.0072 (8)0.0009 (7)
C1B0.0161 (9)0.0146 (9)0.0191 (9)0.0012 (7)0.0047 (7)0.0001 (7)
N4A0.0184 (9)0.0107 (8)0.0232 (8)0.0004 (6)0.0009 (7)0.0019 (6)
O1B0.0181 (7)0.0147 (6)0.0194 (7)0.0009 (5)0.0042 (5)0.0000 (5)
O40.0594 (12)0.0425 (11)0.0327 (9)0.0305 (9)0.0219 (9)0.0148 (7)
O1A0.0214 (7)0.0154 (7)0.0358 (8)0.0041 (6)0.0132 (7)0.0001 (6)
C1A0.0134 (9)0.0166 (9)0.0228 (10)0.0001 (7)0.0003 (8)0.0010 (7)
C2A0.0149 (9)0.0168 (9)0.0201 (9)0.0003 (7)0.0020 (7)0.0022 (7)
Geometric parameters (Å, º) top
O6—N11.247 (2)N2B—N3B1.358 (2)
N3C—C2C1.292 (3)N2B—H2B0.86
N3C—N2C1.368 (2)N4B—C3B1.342 (3)
O1C—C1C1.245 (3)N4B—C2B1.362 (3)
N1B—C3B1.320 (3)N4B—H4B0.86
N1B—H5B0.86N3B—C2B1.303 (3)
N1B—H3B0.86C2B—C1B1.482 (3)
N4C—C3C1.333 (3)C3A—N1A1.314 (3)
N4C—C2C1.365 (3)C3A—N2A1.339 (3)
N4C—H4C0.86C3A—N4A1.343 (2)
N1—O71.241 (2)O2—H20.82
N1—O51.248 (2)N3A—C2A1.292 (3)
C3C—N1C1.311 (3)N3A—N2A1.367 (2)
C3C—N2C1.337 (3)N2A—H2A0.86
O2C—C1C1.238 (3)O2A—C1A1.222 (2)
N2C—H2C0.86N1A—H5A0.86
C1C—C2C1.493 (3)N1A—H3A0.86
N1C—H5C0.86C1B—O1B1.290 (2)
N1C—H3C0.86N4A—C2A1.372 (3)
P1—O11.5068 (16)N4A—H4A0.86
P1—O31.5156 (14)O1B—H1B0.82
P1—O41.5371 (16)O4—H40.82
P1—O21.5402 (14)O1A—C1A1.266 (2)
O2B—C1B1.215 (2)O1A—H1A0.82
N2B—C3B1.336 (3)C1A—C2A1.494 (3)
C2C—N3C—N2C104.11 (16)C3B—N4B—H4B126.7
C3B—N1B—H5B120C2B—N4B—H4B126.7
C3B—N1B—H3B120C2B—N3B—N2B103.72 (16)
H5B—N1B—H3B120N3B—C2B—N4B111.91 (17)
C3C—N4C—C2C107.38 (17)N3B—C2B—C1B121.13 (17)
C3C—N4C—H4C126.3N4B—C2B—C1B126.94 (17)
C2C—N4C—H4C126.3N1B—C3B—N2B126.42 (18)
O7—N1—O6120.32 (16)N1B—C3B—N4B127.92 (18)
O7—N1—O5119.72 (16)N2B—C3B—N4B105.64 (17)
O6—N1—O5119.94 (18)N1A—C3A—N2A126.59 (19)
N1C—C3C—N4C128.80 (19)N1A—C3A—N4A127.73 (19)
N1C—C3C—N2C125.70 (18)N2A—C3A—N4A105.69 (17)
N4C—C3C—N2C105.49 (17)P1—O2—H2109.5
C3C—N2C—N3C111.56 (16)C2A—N3A—N2A104.42 (16)
C3C—N2C—H2C124.2C3A—N2A—N3A111.50 (16)
N3C—N2C—H2C124.2C3A—N2A—H2A124.3
O2C—C1C—O1C127.77 (19)N3A—N2A—H2A124.3
O2C—C1C—C2C115.2 (2)C3A—N1A—H5A120
O1C—C1C—C2C117.04 (18)C3A—N1A—H3A120
C3C—N1C—H5C120H5A—N1A—H3A120
C3C—N1C—H3C120O2B—C1B—O1B127.51 (19)
H5C—N1C—H3C120O2B—C1B—C2B119.06 (18)
N3C—C2C—N4C111.43 (17)O1B—C1B—C2B113.41 (16)
N3C—C2C—C1C122.84 (19)C3A—N4A—C2A106.82 (16)
N4C—C2C—C1C125.72 (19)C3A—N4A—H4A126.6
O1—P1—O3113.02 (9)C2A—N4A—H4A126.6
O1—P1—O4107.73 (11)C1B—O1B—H1B109.5
O3—P1—O4111.50 (8)P1—O4—H4109.5
O1—P1—O2108.65 (9)C1A—O1A—H1A109.5
O3—P1—O2107.95 (8)O2A—C1A—O1A129.23 (19)
O4—P1—O2107.83 (10)O2A—C1A—C2A116.94 (17)
C3B—N2B—N3B112.03 (16)O1A—C1A—C2A113.83 (17)
C3B—N2B—H2B124N3A—C2A—N4A111.56 (18)
N3B—N2B—H2B124N3A—C2A—C1A123.02 (18)
C3B—N4B—C2B106.68 (16)N4A—C2A—C1A125.42 (17)
C2C—N4C—C3C—N1C178.8 (2)C2B—N4B—C3B—N1B179.47 (19)
C2C—N4C—C3C—N2C1.5 (2)C2B—N4B—C3B—N2B0.86 (19)
N1C—C3C—N2C—N3C179.1 (2)N1A—C3A—N2A—N3A178.89 (19)
N4C—C3C—N2C—N3C1.2 (2)N4A—C3A—N2A—N3A0.6 (2)
C2C—N3C—N2C—C3C0.4 (2)C2A—N3A—N2A—C3A0.1 (2)
N2C—N3C—C2C—N4C0.6 (2)N3B—C2B—C1B—O2B7.5 (3)
N2C—N3C—C2C—C1C178.60 (19)N4B—C2B—C1B—O2B174.60 (18)
C3C—N4C—C2C—N3C1.3 (2)N3B—C2B—C1B—O1B171.11 (17)
C3C—N4C—C2C—C1C177.8 (2)N4B—C2B—C1B—O1B6.8 (3)
O2C—C1C—C2C—N3C1.2 (3)N1A—C3A—N4A—C2A178.5 (2)
O1C—C1C—C2C—N3C177.4 (2)N2A—C3A—N4A—C2A1.0 (2)
O2C—C1C—C2C—N4C177.9 (2)N2A—N3A—C2A—N4A0.8 (2)
O1C—C1C—C2C—N4C3.5 (3)N2A—N3A—C2A—C1A178.54 (16)
C3B—N2B—N3B—C2B0.7 (2)C3A—N4A—C2A—N3A1.1 (2)
N2B—N3B—C2B—N4B0.1 (2)C3A—N4A—C2A—C1A178.15 (18)
N2B—N3B—C2B—C1B178.28 (17)O2A—C1A—C2A—N3A7.6 (3)
C3B—N4B—C2B—N3B0.5 (2)O1A—C1A—C2A—N3A172.49 (19)
C3B—N4B—C2B—C1B177.57 (19)O2A—C1A—C2A—N4A171.63 (18)
N3B—N2B—C3B—N1B179.60 (19)O1A—C1A—C2A—N4A8.3 (3)
N3B—N2B—C3B—N4B1.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H5B···O2Ci0.862.152.826 (2)135
N1B—H5B···O1ii0.862.352.977 (2)130
N1B—H3B···O70.862.243.030 (2)152
N1B—H3B···O1A0.862.543.161 (2)129
N4C—H4C···O50.861.922.765 (2)169
N4C—H4C···O60.862.53.142 (2)132
N4C—H4C···N10.862.553.369 (2)160
N2C—H2C···O2Aiii0.862.212.876 (2)135
N2C—H2C···N3Aiii0.862.222.971 (2)146
N1C—H5C···O60.862.283.035 (2)146
N1C—H5C···O1B0.862.53.081 (2)126
N1C—H3C···O2Aiii0.862.172.888 (2)140
N1C—H3C···O30.862.613.224 (2)129
N2B—H2B···O2Ci0.862.032.706 (2)135
N2B—H2B···N3Ci0.862.273.004 (2)144
N4B—H4B···O60.861.922.780 (2)177
N4B—H4B···O70.862.663.276 (2)130
N4B—H4B···N10.862.643.444 (2)157
O2—H2···O1Civ0.821.772.5563 (19)160
N2A—H2A···O2Bv0.862.172.858 (2)137
N2A—H2A···N3Bv0.862.323.071 (2)146
N1A—H5A···O2Bv0.862.22.918 (2)140
N1A—H5A···O2v0.862.63.244 (2)133
N1A—H3A···O50.862.263.022 (2)148
N1A—H3A···O1C0.862.382.987 (2)129
N4A—H4A···O70.861.932.784 (2)172
N4A—H4A···O50.862.523.157 (2)132
N4A—H4A···N10.862.573.388 (2)160
O1B—H1B···O30.821.652.4648 (19)175
O4—H4···O3vi0.821.922.671 (2)151
O1A—H1A···O1ii0.821.622.423 (2)166
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y1/2, z1; (iv) x, y1, z; (v) x, y+1, z; (vi) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formula2C3H5N4O2+·NO3·H2PO4·C3H4N4O2
Mr545.32
Crystal system, space groupMonoclinic, Cc
Temperature (K)180
a, b, c (Å)19.2249 (13), 13.2036 (7), 7.7468 (5)
β (°) 101.079 (7)
V3)1929.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.45 × 0.43 × 0.16
Data collection
DiffractometerAgilent Xcalibur Sapphire1 long-nozzle
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.832, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10050, 3836, 3735
Rint0.023
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.067, 1.05
No. of reflections3836
No. of parameters330
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.27
Absolute structureFlack (1983), 1858 Friedel pairs
Absolute structure parameter0.33 (7)

Computer programs: CrysAlis PRO (Agilent, 2011), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H3B···O70.862.243.030 (2)152
N4C—H4C···O50.861.922.765 (2)169
N4B—H4B···O60.861.922.780 (2)177
O2—H2···O1Ci0.821.772.5563 (19)160
N4A—H4A···O70.861.932.784 (2)172
O1B—H1B···O30.821.652.4648 (19)175
O4—H4···O3ii0.821.922.671 (2)151
O1A—H1A···O1iii0.821.622.423 (2)166
Symmetry codes: (i) x, y1, z; (ii) x, y+2, z+1/2; (iii) x+1/2, y+1/2, z+1.
 

Footnotes

Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria.

Acknowledgements

We are grateful to the LCATM Laboratory, Université Larbi Ben M'Hidi, Oum El Bouaghi, Algeria, for financial support.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBerrah, F., Bouacida, S. & Roisnel, T. (2011). Acta Cryst. E67, o1409–o1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Bouchene, R., Bouacida, S. & Roisnel, T. (2012). Acta Cryst. E68, o1116.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFernandes, J. A., Liu, B., Tomé, J. C., Cunha-Silva, L. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o2073–o2074.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOuakkaf, A., Berrah, F., Bouacida, S. & Roisnel, T. (2011). Acta Cryst. E67, o1171–o1172.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1333-o1334
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds