organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1577

(3S)-14,16-Dihy­dr­oxy-3-methyl-3,4,5,6,9,10,11,12-octa­hydro-1H-2-benzoxa­cyclo­tetra­decine-1,7(8H)-dione (zearalanone) monohydrate

aBAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Strasse 11, D-12489 Berlin, Germany
*Correspondence e-mail: sarah.drzymala@bam.de

(Received 11 April 2012; accepted 23 April 2012; online 28 April 2012)

The absolute configuration of the title compound, C18H24O5·H2O, was not been determined by anomalous-dispersion effects, but has been assigned by reference to an unchanging chiral centre in the synthetic procedure. Intra­molecular O—H⋯O hydrogen bonds stabilize the mol­ecular conformation. In the crystal, O—H⋯O hydrogen bonds link the main mol­ecules and the water mol­ecules, forming an infinite three-dimensional network.

Related literature

For the preparation of zearalanone from natural zearalenone, see: Urry et al. (1966[Urry, W. H., Wehrmeister, H. L., Hodge, E. B. & Hidy, P. H. (1966). Tetrahedron Lett. 7, 3109-3114.]). For the crystal structures of zearalenone and its derivatives, see: Panneerselvam et al. (1996[Panneerselvam, K., Rudiño-Piñera, E. & Soriano-García, M. (1996). Acta Cryst. C52, 3095-3097.]); Gelo-Pujić et al. (1994[Gelo-Pujić, M., Antolić, S., Kojić-Prodić, B. & Šunjić, V. (1994). Tetrahedron, 50, 13753-13764.]); Zhao et al. (2008[Zhao, L.-L., Gai, Y., Kobayashi, H., Hu, C.-Q. & Zhang, H.-P. (2008). Acta Cryst. E64, o999.]). For the estrogenic and anabolic effects of zearalenone and its derivatives, see: Mirocha et al. (1968[Mirocha, C. J., Christensen, C. M. & Nelson, G. H. (1968). Cancer Res. 28, 2319-2322.]). For the exploitation of zearalanone as an inter­nal standard, see: Berthiller et al. (2005[Berthiller, F., Schuhmacher, R., Buttinger, G. & Krska, R. (2005). J. Chromatogr. A, 1062, 209-216.]); Maragou et al. (2008[Maragou, N. C., Rosenberg, E., Thomaidis, N. S. & Koupparis, M. A. (2008). J. Chromatogr. A, 1202, 47-57.]); Ren et al. (2007[Ren, Y., Zhang, Y., Shao, S., Cai, Z., Feng, L., Pan, H. & Wang, Z. (2007). J. Chromatogr. A, 1143, 48-64.]); Shin et al. (2009[Shin, B. S., Hong, S. H., Hwang, S. W., Kim, H. J., Lee, J. B., Yoon, H. S., Kim do, J. & Yoo, S. D. (2009). Biomed. Chromatogr. 23, 1014-1021.]).

[Scheme 1]

Experimental

Crystal data
  • C18H24O5·H2O

  • Mr = 338.39

  • Orthorhombic, P 21 21 21

  • a = 8.2727 (11) Å

  • b = 24.579 (3) Å

  • c = 9.3703 (14) Å

  • V = 1905.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.45 × 0.25 × 0.1 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.151, Tmax = 0.477

  • 20473 measured reflections

  • 4626 independent reflections

  • 2870 reflections with I > 2σ(I)

  • Rint = 0.109

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.134

  • S = 0.90

  • 4626 reflections

  • 225 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O6 0.82 1.87 2.693 (2) 176
O5—H5A⋯O2 0.82 1.86 2.581 (2) 147
O6—H6C⋯O3i 0.96 (2) 1.85 (2) 2.810 (3) 178 (3)
O6—H6D⋯O5ii 0.96 (2) 1.95 (2) 2.887 (2) 164 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Zearalanone (ZAN) is a semisynthetic resorcylic acid lactone (RAL) belonging to the group of Zearalenone (ZEN) analoga. ZAN was first prepared by catalytic hydrogenation of the double bond between C11 and C12 of natural ZEN (Urry et al., 1966).

ZEN is a well known crop contaminant produced by a variety of Fusarium fungi. Its crystal structure was elucidated by Panneerselvam and colleagues (1996). Since the first isolation of ZEN from Fungi, a range of structurally closely related analoga have been isolated or prepared from ZEN (Gelo-Pujić et al., 1994, Zhao et al., 2008).

These RALs exhibit interesting estrogenic and anabolic effects due to their coupling with the estrogenic receptors alpha and beta (Mirocha et al., 1968). Hence, ZAN was patented as a growth promoter in cattle as early as 1966 (U. S. P., 3239354). Furthermore, ZAN is not occurring in food, wherefore it was exploited as an internal standard for ZEN and its metabolites (Berthiller et al., 2005, Maragou et al., 2008, Ren et al., 2007, Shin et al., 2009).

The compound crystallizes in the orthorhombic space group P212121. The compound has a macrocyclic structure. The molecular structure of the compound and the atom-labeling scheme are shown in Fig 1. The absolute configuration could not be defined confidently based on the single-crystal diffraction data. The isomeric purity of the title compound was confirmed by 1H-NMR, HPLC-DAD and –MS/MS data. Besides the intramolecular hydrogen bonds between O5—H5A and O2, each molecule is connected to three adjacent water molecules via intermolecular hydrogen bonds (see dashed red bonds in Fig. 2). As a result a three dimensional network is formed.

Related literature top

For the preparation of zearalanone [systematic name (3S,11E)-14,16-dihydroxy-3-methyl-3,4,5,6,9,10-hexahydro-1H-2-benzoxacyclotetradecine-1,7(8H)-dione] from natural zearalenone, see: Urry et al. (1966). For the crystal structures of zearalenone and its derivatives, see: Panneerselvam et al. (1996); Gelo-Pujić et al. (1994); Zhao et al. (2008). For the estrogenic and anabolic effects of zearalenone and its derivatives, see: Mirocha et al. (1968). For the exploitation of zearalanone as an internal standard, see: Berthiller et al. (2005); Maragou et al. (2008); Ren et al. (2007); Shin et al. (2009).

Experimental top

Zearalanone was obtained from Toronto Research Chemicals (Canada, purity 98.0%). 5 mg (15.6 µmol) were weighed in a 1.5 ml HPLC glass vial and solved in 0.5 ml DCM. Subsequently, 0.3 ml of n-Hexane were added. Colorless crystals of the title compound were formed after 7 days of slow solvent evaporation at room temperature.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.98 Å, Uiso = 1.2Ueq (C) for CH, 0.97 Å, Uiso = 1.2Ueq (C) for CH2, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms, and 0.82 Å, Uiso = 1.5Ueq (C) for hydroxyl groups. The water hydrogen atoms were treated independently. In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : ORTEP representation of the title compound with atomic labeling shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. : View of the unit cell of the title compound, showing the hydrogen-bonded network. Hydrogen bonds are drawn as dashed red lines.
(3S)-14,16-Dihydroxy-3-methyl-3,4,5,6,9,10,11,12-octahydro-1H-2- benzoxacyclotetradecine-1,7(8H)-dione monohydrate top
Crystal data top
C18H24O5·H2OF(000) = 728
Mr = 338.39Dx = 1.180 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5584 reflections
a = 8.2727 (11) Åθ = 2.3–25.7°
b = 24.579 (3) ŵ = 0.09 mm1
c = 9.3703 (14) ÅT = 296 K
V = 1905.3 (5) Å3Block, colourless
Z = 40.45 × 0.25 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
4626 independent reflections
Radiation source: fine-focus sealed tube2870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.109
ϕ and ω scansθmax = 28.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.151, Tmax = 0.477k = 3223
20473 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 0.90 w = 1/[σ2(Fo2) + (0.0708P)2]
where P = (Fo2 + 2Fc2)/3
4626 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.18 e Å3
3 restraintsΔρmin = 0.15 e Å3
Crystal data top
C18H24O5·H2OV = 1905.3 (5) Å3
Mr = 338.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.2727 (11) ŵ = 0.09 mm1
b = 24.579 (3) ÅT = 296 K
c = 9.3703 (14) Å0.45 × 0.25 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
4626 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2870 reflections with I > 2σ(I)
Tmin = 0.151, Tmax = 0.477Rint = 0.109
20473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0513 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.18 e Å3
4626 reflectionsΔρmin = 0.15 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02619 (16)0.98111 (5)0.36315 (17)0.0478 (4)
O20.16664 (17)1.05917 (5)0.35375 (17)0.0554 (4)
O30.1136 (3)0.77977 (7)0.4127 (2)0.0839 (6)
O40.5417 (2)1.15308 (6)0.4798 (2)0.0680 (5)
H4A0.52211.18050.52640.102*
O50.03447 (19)1.14487 (6)0.46197 (19)0.0616 (4)
H5A0.10841.12530.43450.092*
C10.0353 (2)1.03555 (8)0.3654 (2)0.0425 (5)
C20.2267 (3)0.95504 (10)0.1831 (2)0.0589 (6)
H2A0.24940.99240.16100.088*
H2B0.32180.93350.16670.088*
H2C0.14060.94220.12320.088*
C30.1771 (2)0.95029 (8)0.3378 (2)0.0455 (5)
H3A0.26320.96470.39880.055*
C40.1378 (3)0.89190 (8)0.3826 (2)0.0505 (5)
H4B0.22740.86870.35530.061*
H4C0.04350.87990.32990.061*
C50.1054 (3)0.88393 (8)0.5415 (2)0.0552 (5)
H5B0.20210.89350.59450.066*
H5C0.02010.90860.57080.066*
C60.0556 (3)0.82491 (9)0.5808 (3)0.0654 (7)
H6A0.04910.82150.68370.078*
H6B0.13770.79980.54700.078*
C70.1051 (3)0.80991 (8)0.5160 (3)0.0589 (6)
C80.2570 (3)0.83280 (9)0.5834 (3)0.0615 (6)
H8A0.29250.80810.65780.074*
H8B0.23050.86720.62840.074*
C90.3968 (3)0.84196 (8)0.4802 (3)0.0694 (7)
H9A0.42140.80790.43280.083*
H9B0.49160.85260.53440.083*
C100.3630 (3)0.88553 (8)0.3663 (3)0.0606 (6)
H10A0.45300.88610.30000.073*
H10B0.26750.87490.31320.073*
C110.3374 (3)0.94306 (7)0.4230 (2)0.0507 (5)
H11A0.43130.95360.47860.061*
H11B0.24470.94310.48630.061*
C120.3099 (3)0.98564 (7)0.3038 (2)0.0464 (5)
H12A0.40460.98680.24280.056*
H12B0.21870.97440.24580.056*
C130.4138 (3)1.07391 (8)0.3932 (2)0.0477 (5)
H13A0.51591.05990.37370.057*
C140.4003 (3)1.12590 (8)0.4520 (2)0.0510 (5)
C150.2481 (3)1.14844 (8)0.4758 (2)0.0516 (5)
H15A0.23871.18310.51440.062*
C160.1105 (3)1.11881 (8)0.4414 (2)0.0463 (5)
C170.1200 (2)1.06443 (7)0.3887 (2)0.0410 (5)
C180.2776 (2)1.04239 (7)0.3628 (2)0.0415 (4)
O60.4912 (3)1.24388 (7)0.6343 (2)0.1064 (8)
H6C0.458 (5)1.2351 (13)0.730 (2)0.162 (17)*
H6D0.484 (5)1.2781 (8)0.585 (3)0.142 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0409 (7)0.0411 (7)0.0614 (9)0.0008 (6)0.0041 (7)0.0008 (7)
O20.0449 (8)0.0494 (7)0.0720 (10)0.0083 (6)0.0012 (8)0.0019 (7)
O30.1077 (16)0.0612 (10)0.0827 (13)0.0028 (10)0.0138 (12)0.0180 (10)
O40.0628 (10)0.0552 (9)0.0859 (13)0.0091 (8)0.0132 (9)0.0058 (9)
O50.0568 (9)0.0424 (7)0.0856 (12)0.0099 (7)0.0087 (9)0.0011 (8)
C10.0454 (11)0.0442 (10)0.0379 (10)0.0057 (9)0.0052 (10)0.0050 (9)
C20.0575 (14)0.0706 (14)0.0487 (12)0.0015 (11)0.0035 (11)0.0040 (11)
C30.0379 (10)0.0493 (10)0.0493 (12)0.0020 (9)0.0003 (10)0.0056 (9)
C40.0491 (13)0.0473 (11)0.0551 (13)0.0063 (9)0.0022 (11)0.0060 (9)
C50.0613 (14)0.0511 (11)0.0531 (13)0.0053 (11)0.0037 (13)0.0009 (10)
C60.0741 (16)0.0544 (13)0.0676 (16)0.0143 (12)0.0036 (14)0.0111 (11)
C70.0837 (17)0.0355 (9)0.0574 (14)0.0020 (11)0.0090 (14)0.0074 (10)
C80.0753 (16)0.0467 (11)0.0627 (15)0.0016 (11)0.0158 (14)0.0093 (11)
C90.0693 (16)0.0412 (11)0.098 (2)0.0113 (11)0.0005 (16)0.0084 (12)
C100.0639 (15)0.0454 (11)0.0725 (16)0.0075 (10)0.0122 (14)0.0020 (11)
C110.0510 (12)0.0391 (10)0.0622 (13)0.0030 (9)0.0041 (11)0.0017 (9)
C120.0448 (11)0.0426 (10)0.0517 (12)0.0038 (9)0.0053 (10)0.0010 (9)
C130.0441 (11)0.0449 (10)0.0541 (13)0.0032 (9)0.0006 (10)0.0044 (9)
C140.0553 (13)0.0465 (10)0.0511 (13)0.0085 (10)0.0081 (12)0.0078 (10)
C150.0659 (14)0.0341 (9)0.0548 (13)0.0002 (10)0.0007 (12)0.0004 (9)
C160.0535 (12)0.0386 (9)0.0469 (12)0.0071 (9)0.0053 (11)0.0091 (9)
C170.0452 (11)0.0381 (9)0.0398 (11)0.0024 (8)0.0015 (10)0.0070 (8)
C180.0476 (11)0.0379 (9)0.0391 (10)0.0032 (8)0.0003 (10)0.0078 (8)
O60.187 (3)0.0491 (10)0.0833 (15)0.0237 (12)0.0217 (17)0.0017 (10)
Geometric parameters (Å, º) top
O1—C11.340 (2)C8—C91.524 (4)
O1—C31.479 (2)C8—H8A0.9700
O2—C11.237 (2)C8—H8B0.9700
O3—C71.221 (3)C9—C101.538 (3)
O4—C141.372 (3)C9—H9A0.9700
O4—H4A0.8200C9—H9B0.9700
O5—C161.373 (3)C10—C111.525 (3)
O5—H5A0.8200C10—H10A0.9700
C1—C171.484 (3)C10—H10B0.9700
C2—C31.511 (3)C11—C121.548 (3)
C2—H2A0.9600C11—H11A0.9700
C2—H2B0.9600C11—H11B0.9700
C2—H2C0.9600C12—C181.524 (3)
C3—C41.531 (3)C12—H12A0.9700
C3—H3A0.9800C12—H12B0.9700
C4—C51.525 (3)C13—C181.396 (3)
C4—H4B0.9700C13—C141.396 (3)
C4—H4C0.9700C13—H13A0.9300
C5—C61.552 (3)C14—C151.394 (3)
C5—H5B0.9700C15—C161.389 (3)
C5—H5C0.9700C15—H15A0.9300
C6—C71.507 (4)C16—C171.427 (3)
C6—H6A0.9700C17—C181.433 (3)
C6—H6B0.9700O6—H6C0.960 (10)
C7—C81.515 (3)O6—H6D0.961 (10)
C1—O1—C3117.78 (15)H8A—C8—H8B107.5
C14—O4—H4A109.5C8—C9—C10113.91 (19)
C16—O5—H5A109.5C8—C9—H9A108.8
O2—C1—O1121.12 (18)C10—C9—H9A108.8
O2—C1—C17123.31 (17)C8—C9—H9B108.8
O1—C1—C17115.53 (16)C10—C9—H9B108.8
C3—C2—H2A109.5H9A—C9—H9B107.7
C3—C2—H2B109.5C11—C10—C9115.4 (2)
H2A—C2—H2B109.5C11—C10—H10A108.4
C3—C2—H2C109.5C9—C10—H10A108.4
H2A—C2—H2C109.5C11—C10—H10B108.4
H2B—C2—H2C109.5C9—C10—H10B108.4
O1—C3—C2110.14 (18)H10A—C10—H10B107.5
O1—C3—C4104.88 (15)C10—C11—C12113.32 (19)
C2—C3—C4113.18 (18)C10—C11—H11A108.9
O1—C3—H3A109.5C12—C11—H11A108.9
C2—C3—H3A109.5C10—C11—H11B108.9
C4—C3—H3A109.5C12—C11—H11B108.9
C5—C4—C3115.21 (17)H11A—C11—H11B107.7
C5—C4—H4B108.5C18—C12—C11112.51 (17)
C3—C4—H4B108.5C18—C12—H12A109.1
C5—C4—H4C108.5C11—C12—H12A109.1
C3—C4—H4C108.5C18—C12—H12B109.1
H4B—C4—H4C107.5C11—C12—H12B109.1
C4—C5—C6113.45 (18)H12A—C12—H12B107.8
C4—C5—H5B108.9C18—C13—C14121.60 (19)
C6—C5—H5B108.9C18—C13—H13A119.2
C4—C5—H5C108.9C14—C13—H13A119.2
C6—C5—H5C108.9O4—C14—C15123.12 (18)
H5B—C5—H5C107.7O4—C14—C13116.9 (2)
C7—C6—C5111.56 (19)C15—C14—C13119.94 (19)
C7—C6—H6A109.3C16—C15—C14119.67 (18)
C5—C6—H6A109.3C16—C15—H15A120.2
C7—C6—H6B109.3C14—C15—H15A120.2
C5—C6—H6B109.3O5—C16—C15116.03 (17)
H6A—C6—H6B108.0O5—C16—C17122.26 (19)
O3—C7—C6121.3 (2)C15—C16—C17121.71 (19)
O3—C7—C8120.5 (3)C16—C17—C18117.60 (18)
C6—C7—C8118.2 (2)C16—C17—C1116.80 (17)
C7—C8—C9114.8 (2)C18—C17—C1125.60 (16)
C7—C8—H8A108.6C13—C18—C17119.32 (17)
C9—C8—H8A108.6C13—C18—C12116.14 (17)
C7—C8—H8B108.6C17—C18—C12124.54 (17)
C9—C8—H8B108.6H6C—O6—H6D128.6 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O60.821.872.693 (2)176
O5—H5A···O20.821.862.581 (2)147
O6—H6C···O3i0.96 (2)1.85 (2)2.810 (3)178 (3)
O6—H6D···O5ii0.96 (2)1.95 (2)2.887 (2)164 (2)
Symmetry codes: (i) x+1/2, y+2, z+1/2; (ii) x+1/2, y+5/2, z+1.

Experimental details

Crystal data
Chemical formulaC18H24O5·H2O
Mr338.39
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.2727 (11), 24.579 (3), 9.3703 (14)
V3)1905.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.25 × 0.1
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.151, 0.477
No. of measured, independent and
observed [I > 2σ(I)] reflections
20473, 4626, 2870
Rint0.109
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.134, 0.90
No. of reflections4626
No. of parameters225
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O60.821.872.693 (2)176
O5—H5A···O20.821.862.581 (2)147
O6—H6C···O3i0.96 (2)1.85 (2)2.810 (3)178 (3)
O6—H6D···O5ii0.96 (2)1.95 (2)2.887 (2)164 (2)
Symmetry codes: (i) x+1/2, y+2, z+1/2; (ii) x+1/2, y+5/2, z+1.
 

Acknowledgements

The authors thank Dr Robert Köppen from the Federal Institute for Materials Research and Testing (BAM) for his assistance in obtaining zearalanone crystals.

References

First citationBerthiller, F., Schuhmacher, R., Buttinger, G. & Krska, R. (2005). J. Chromatogr. A, 1062, 209–216.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGelo-Pujić, M., Antolić, S., Kojić-Prodić, B. & Šunjić, V. (1994). Tetrahedron, 50, 13753–13764.  CSD CrossRef Web of Science Google Scholar
First citationMaragou, N. C., Rosenberg, E., Thomaidis, N. S. & Koupparis, M. A. (2008). J. Chromatogr. A, 1202, 47–57.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMirocha, C. J., Christensen, C. M. & Nelson, G. H. (1968). Cancer Res. 28, 2319–2322.  CAS PubMed Web of Science Google Scholar
First citationPanneerselvam, K., Rudiño-Piñera, E. & Soriano-García, M. (1996). Acta Cryst. C52, 3095–3097.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRen, Y., Zhang, Y., Shao, S., Cai, Z., Feng, L., Pan, H. & Wang, Z. (2007). J. Chromatogr. A, 1143, 48–64.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, B. S., Hong, S. H., Hwang, S. W., Kim, H. J., Lee, J. B., Yoon, H. S., Kim do, J. & Yoo, S. D. (2009). Biomed. Chromatogr. 23, 1014–1021.  Web of Science CrossRef PubMed CAS Google Scholar
First citationUrry, W. H., Wehrmeister, H. L., Hodge, E. B. & Hidy, P. H. (1966). Tetrahedron Lett. 7, 3109–3114.  CrossRef Google Scholar
First citationZhao, L.-L., Gai, Y., Kobayashi, H., Hu, C.-Q. & Zhang, H.-P. (2008). Acta Cryst. E64, o999.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1577
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds