organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1548

2-Chloro-3-[(E)-(hydrazin-1-yl­­idene)meth­yl]-6-meth­­oxy­quinoline

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri-Constantine, 25000 Algeria, bLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 12 April 2012; accepted 22 April 2012; online 28 April 2012)

In the title compound, C11H10ClN3O, the quinoline ring system is essentially planar, the r.m.s. deviation for the non-H atoms being 0.014 (2) Å with a maximum deviation from the mean plane of 0.0206 (14) Å for the C atom bonded to the –CH—N=NH2 group. In the crystal, molecules are linked via N—H⋯O and N—H⋯N hydrogen bonds, forming zigzag layers parallel to (010).

Related literature

For previous work on mol­ecules with a quinolyl moiety, see: Benzerka et al. (2011[Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o2084-o2085.]); Belfaitah et al. (2006[Belfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355-o1357.]) Bouraiou et al. (2008[Bouraiou, A., Debbache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329-333.], 2011[Bouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474-477.]); Ladraa et al. (2009[Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2009). Acta Cryst. C65, o475-o478.]). For applications of pyrazole and its derivatives, see: Mali et al. (2010[Mali, J. R., Pratap, U. R., Jawale, D. V. & Mane, R. A. (2010). Tetrahedron Lett. 51, 3980-3982.]); Paul et al. (2001[Paul, S., Gupta, M., Gupta, R. & Loupy, A. (2001). Tetrahedron Lett. 42, 3827-3829.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10ClN3O

  • Mr = 235.67

  • Orthorhombic, P 21 21 21

  • a = 3.8949 (2) Å

  • b = 12.0510 (5) Å

  • c = 21.9910 (9) Å

  • V = 1032.20 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 150 K

  • 0.28 × 0.15 × 0.14 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.898, Tmax = 0.952

  • 15777 measured reflections

  • 2352 independent reflections

  • 2044 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.073

  • S = 1.06

  • 2352 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 922 Friedel pairs

  • Flack parameter: 0.00 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13A⋯O14i 0.88 2.34 3.219 (2) 178
N13—H13B⋯N13ii 0.88 2.19 3.058 (2) 169
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyrazole and its derivatives are gaining importance in medicinal and organic chemistry. They have displayed broad spectrum of pharmacological and biological activities such as anti-bacterial, anti-depressant, and anti-hyperglycemic (Mali et al., 2010). Pyrazolo[3,4-b]quinolines have displayed bioactivities such as antiviral, antimalarial, lowering of serum cholesterol (Paul et al., 2001), but no metal complexes of such drugs have been reported in the past which might possibly have better pharmaceutical effect. Therefore, studies of the metal complexes are important in the search for new drugs. In previous works, we were interested in the design and synthesis of new molecules that contain a quinolyl moiety (Belfaitah et al., 2006; Bouraiou et al., 2008, 2011; Ladraa et al., 2009 and Benzerka et al., 2011). In this paper, we report the structure determination of compound resulting from an unwanted reaction of the 6-methoxy-1H-pyrazolo[3,4-b]quinoline with RuCl3 in acidic conditions. Our attempt to synthesis the pyrazolo[3,4-b]quinoline/Ruthenium complex was failed and led to (E)-1-((2-chloro-6-methylquinolin-3-yl)methylene)hydrazine (I).

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. In the asymetric unit of title molecule, (C11 H10 Cl N3 O), the chloro-quinolyl unit is linked to methoxy and methylenehydrazine group. The quinoline ring system is essentially planar; the r.m.s. deviation for the non-H atoms is 0.014 (2) Å with a maximum deviation from the mean plane of 0.0206 (14) Å for the C atom bonded to the –CH—NNH2 group. The crystal packing can be described as layers in zigzag parallel to the (010) plane (Fig. 2). It is stabilized by N—H···O and N—H···N intermolecular hydrogen bonds (Fig. 2). These interaction bonds link the molecules within the layers and also link the layers together, reinforcing the cohesion of the structure. Hydrogen-bonding parameters are listed in table 1.

Related literature top

For previous work on molecules with a quinolyl moiety, see: Benzerka et al. (2011); Belfaitah et al. (2006) Bouraiou et al. (2008, 2011); Ladraa et al. (2009). For applications of pyrazole and its derivatives, see: Mali et al. (2010); Paul et al. (2001).

Experimental top

First, 6-methoxy-1H-pyrazolo[3,4-b]quinoline was prepared from 2-chloro-6-methoxyquinoline-3-carbaldehyde and hydrazine hydrate in refluxing ethanol in a one-pot synthesis. Next, a mixture of 6-methoxy-1H-pyrazolo[3,4-b]quinoline(5 mmol)and RuCl3(5 mmol) in aqueous HCl(10 ml) was stirred at 50°C for 1 h. Under these conditions, compound I was successfully obtained. Single crystals suitable for X-ray diffraction analysis were obtained by dissolving the corresponding compound in methanol solution and letting it for slow evaporation at room temperature.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C or N atom. (with C—H = 0.95 and 0.98 Å, N—H = 0.88 Å and Uiso(H) =1.5 or 1.2(carrier atom)).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. (Farrugia, 1997) the structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the a axis and showing hydrogen bond [N—H···O and N—H···N] as dashed line.
2-Chloro-3-[(E)-(hydrazin-1-ylidene)methyl]-6-methoxyquinoline top
Crystal data top
C11H10ClN3ODx = 1.517 Mg m3
Mr = 235.67Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 26476 reflections
a = 3.8949 (2) Åθ = 2.9–27.5°
b = 12.0510 (5) ŵ = 0.35 mm1
c = 21.9910 (9) ÅT = 150 K
V = 1032.20 (8) Å3Prism, colourless
Z = 40.28 × 0.15 × 0.14 mm
F(000) = 488
Data collection top
Bruker APEXII
diffractometer
2352 independent reflections
Radiation source: Enraf–Nonius FR5902044 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD rotation images, thin slices scansh = 55
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
k = 1515
Tmin = 0.898, Tmax = 0.952l = 2828
15777 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.2196P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2352 reflectionsΔρmax = 0.31 e Å3
147 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), 922 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (6)
Crystal data top
C11H10ClN3OV = 1032.20 (8) Å3
Mr = 235.67Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.8949 (2) ŵ = 0.35 mm1
b = 12.0510 (5) ÅT = 150 K
c = 21.9910 (9) Å0.28 × 0.15 × 0.14 mm
Data collection top
Bruker APEXII
diffractometer
2352 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2044 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.952Rint = 0.044
15777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.073Δρmax = 0.31 e Å3
S = 1.06Δρmin = 0.26 e Å3
2352 reflectionsAbsolute structure: Flack (1983), 922 Friedel pairs
147 parametersAbsolute structure parameter: 0.00 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4493 (5)0.15128 (15)0.87535 (8)0.0170 (4)
C30.3425 (5)0.16948 (14)0.77399 (8)0.0168 (4)
C40.3615 (5)0.23375 (14)0.72037 (8)0.0187 (4)
H40.46340.30530.72160.022*
C50.2342 (5)0.19378 (14)0.66667 (8)0.0201 (4)
H50.24680.23780.63090.024*
C60.0840 (5)0.08694 (15)0.66430 (8)0.0179 (4)
C70.0598 (5)0.02243 (15)0.71528 (8)0.0173 (4)
H70.04140.04920.71310.021*
C80.1864 (5)0.06299 (13)0.77136 (8)0.0160 (4)
C90.1641 (5)0.00226 (13)0.82624 (8)0.0156 (4)
H90.05950.0690.82610.019*
C100.2916 (5)0.04468 (14)0.87986 (8)0.0165 (4)
C110.2622 (5)0.01392 (14)0.93795 (8)0.0179 (4)
H110.38840.01140.97220.021*
C150.1868 (5)0.05136 (14)0.60289 (8)0.0219 (4)
H15A0.01980.10850.61430.033*
H15B0.26230.06370.56090.033*
H15C0.38520.05520.63020.033*
N20.4745 (4)0.21203 (13)0.82682 (6)0.0176 (3)
N120.0681 (4)0.09888 (12)0.94285 (7)0.0202 (3)
N130.0692 (5)0.15224 (13)0.99808 (7)0.0240 (4)
H13A0.19950.12751.02780.029*
H13B0.06030.21121.00370.029*
Cl10.62727 (12)0.20978 (3)0.941458 (19)0.02055 (12)
O140.0299 (4)0.05616 (10)0.60762 (5)0.0210 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0146 (10)0.0199 (9)0.0167 (8)0.0006 (7)0.0013 (8)0.0050 (7)
C30.0146 (9)0.0175 (8)0.0183 (8)0.0019 (8)0.0024 (8)0.0024 (7)
C40.0198 (9)0.0143 (8)0.0219 (8)0.0004 (8)0.0038 (8)0.0006 (7)
C50.0244 (10)0.0191 (9)0.0170 (9)0.0024 (8)0.0041 (8)0.0025 (7)
C60.0179 (10)0.0207 (9)0.0151 (8)0.0033 (8)0.0011 (8)0.0031 (7)
C70.0193 (10)0.0138 (8)0.0189 (9)0.0001 (7)0.0025 (8)0.0011 (7)
C80.0149 (10)0.0155 (8)0.0176 (8)0.0032 (7)0.0025 (8)0.0012 (7)
C90.0158 (10)0.0121 (8)0.0188 (8)0.0007 (8)0.0031 (8)0.0000 (7)
C100.0149 (10)0.0163 (9)0.0184 (9)0.0027 (7)0.0024 (7)0.0020 (7)
C110.0190 (9)0.0191 (9)0.0156 (8)0.0017 (7)0.0014 (8)0.0031 (8)
C150.0242 (11)0.0227 (9)0.0187 (9)0.0015 (8)0.0010 (9)0.0039 (7)
N20.0173 (7)0.0173 (7)0.0181 (7)0.0005 (7)0.0025 (6)0.0021 (7)
N120.0224 (8)0.0201 (7)0.0181 (7)0.0014 (6)0.0024 (8)0.0018 (7)
N130.0339 (10)0.0203 (8)0.0177 (7)0.0039 (8)0.0013 (8)0.0034 (6)
Cl10.0223 (2)0.0211 (2)0.01815 (19)0.00307 (19)0.0007 (2)0.00380 (18)
O140.0302 (8)0.0194 (7)0.0135 (6)0.0021 (5)0.0012 (6)0.0008 (5)
Geometric parameters (Å, º) top
C1—N21.298 (2)C8—C91.414 (2)
C1—C101.428 (2)C9—C101.378 (2)
C1—Cl11.7581 (17)C9—H90.95
C3—N21.370 (2)C10—C111.464 (2)
C3—C41.413 (2)C11—N121.277 (2)
C3—C81.421 (2)C11—H110.95
C4—C51.368 (3)C15—O141.436 (2)
C4—H40.95C15—H15A0.98
C5—C61.415 (3)C15—H15B0.98
C5—H50.95C15—H15C0.98
C6—C71.368 (2)N12—N131.374 (2)
C6—O141.374 (2)N13—H13A0.88
C7—C81.415 (2)N13—H13B0.88
C7—H70.95
N2—C1—C10126.68 (16)C10—C9—C8121.08 (15)
N2—C1—Cl1115.08 (13)C10—C9—H9119.5
C10—C1—Cl1118.23 (13)C8—C9—H9119.5
N2—C3—C4118.87 (16)C9—C10—C1115.43 (15)
N2—C3—C8122.21 (15)C9—C10—C11122.66 (15)
C4—C3—C8118.92 (16)C1—C10—C11121.89 (15)
C5—C4—C3120.56 (16)N12—C11—C10120.43 (17)
C5—C4—H4119.7N12—C11—H11119.8
C3—C4—H4119.7C10—C11—H11119.8
C4—C5—C6120.12 (16)O14—C15—H15A109.5
C4—C5—H5119.9O14—C15—H15B109.5
C6—C5—H5119.9H15A—C15—H15B109.5
C7—C6—O14124.60 (16)O14—C15—H15C109.5
C7—C6—C5121.03 (16)H15A—C15—H15C109.5
O14—C6—C5114.37 (15)H15B—C15—H15C109.5
C6—C7—C8119.60 (16)C1—N2—C3117.24 (15)
C6—C7—H7120.2C11—N12—N13116.60 (16)
C8—C7—H7120.2N12—N13—H13A120
C9—C8—C7122.92 (16)N12—N13—H13B120
C9—C8—C3117.32 (16)H13A—N13—H13B120
C7—C8—C3119.76 (16)C6—O14—C15116.53 (14)
N2—C3—C4—C5179.61 (17)C8—C9—C10—C11.1 (3)
C8—C3—C4—C50.5 (3)C8—C9—C10—C11177.74 (17)
C3—C4—C5—C60.4 (3)N2—C1—C10—C92.1 (3)
C4—C5—C6—C70.7 (3)Cl1—C1—C10—C9178.57 (14)
C4—C5—C6—O14179.26 (17)N2—C1—C10—C11176.71 (17)
O14—C6—C7—C8179.99 (18)Cl1—C1—C10—C112.6 (2)
C5—C6—C7—C80.1 (3)C9—C10—C11—N1211.3 (3)
C6—C7—C8—C9178.61 (17)C1—C10—C11—N12167.39 (17)
C6—C7—C8—C31.0 (3)C10—C1—N2—C31.3 (3)
N2—C3—C8—C91.4 (3)Cl1—C1—N2—C3179.38 (13)
C4—C3—C8—C9178.41 (18)C4—C3—N2—C1179.25 (17)
N2—C3—C8—C7178.88 (17)C8—C3—N2—C10.6 (3)
C4—C3—C8—C71.3 (3)C10—C11—N12—N13176.74 (15)
C7—C8—C9—C10179.82 (18)C7—C6—O14—C150.5 (3)
C3—C8—C9—C100.5 (3)C5—C6—O14—C15179.58 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13A···O14i0.882.343.219 (2)178
N13—H13B···N13ii0.882.193.058 (2)169
C11—H11···Cl10.952.653.0488 (18)106
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC11H10ClN3O
Mr235.67
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)3.8949 (2), 12.0510 (5), 21.9910 (9)
V3)1032.20 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.28 × 0.15 × 0.14
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.898, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
15777, 2352, 2044
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.073, 1.06
No. of reflections2352
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.26
Absolute structureFlack (1983), 922 Friedel pairs
Absolute structure parameter0.00 (6)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13A···O14i0.88002.34003.219 (2)178.00
N13—H13B···N13ii0.88002.19003.058 (2)169.00
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y1/2, z+2.
 

Acknowledgements

We are grateful to the PHYSYNOR laboratory, Université Mentouri-Constantine, Algeria for assistance. Thanks are also due to the Ministére de l'Enseignement Supérieur et de la Recherche Scientifique and the Agence Nationale pour le Développement de la Recherche Universitaire for financial support via the PNR programm.

References

First citationBelfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355–o1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o2084–o2085.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474–477.  CSD CrossRef Google Scholar
First citationBouraiou, A., Debbache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLadraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2009). Acta Cryst. C65, o475–o478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMali, J. R., Pratap, U. R., Jawale, D. V. & Mane, R. A. (2010). Tetrahedron Lett. 51, 3980–3982.  Web of Science CrossRef CAS Google Scholar
First citationPaul, S., Gupta, M., Gupta, R. & Loupy, A. (2001). Tetrahedron Lett. 42, 3827–3829.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1548
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds