organic compounds
2-Chloro-3-[(E)-(hydrazin-1-ylidene)methyl]-6-methoxyquinoline
aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri-Constantine, 25000 Algeria, bLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the title compound, C11H10ClN3O, the quinoline ring system is essentially planar, the r.m.s. deviation for the non-H atoms being 0.014 (2) Å with a maximum deviation from the mean plane of 0.0206 (14) Å for the C atom bonded to the –CH—N=NH2 group. In the crystal, molecules are linked via N—H⋯O and N—H⋯N hydrogen bonds, forming zigzag layers parallel to (010).
Related literature
For previous work on molecules with a quinolyl moiety, see: Benzerka et al. (2011); Belfaitah et al. (2006) Bouraiou et al. (2008, 2011); Ladraa et al. (2009). For applications of pyrazole and its derivatives, see: Mali et al. (2010); Paul et al. (2001).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812017977/fj2545sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812017977/fj2545Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812017977/fj2545Isup3.cml
First, 6-methoxy-1H-pyrazolo[3,4-b]quinoline was prepared from 2-chloro-6-methoxyquinoline-3-carbaldehyde and hydrazine hydrate in refluxing ethanol in a one-pot synthesis. Next, a mixture of 6-methoxy-1H-pyrazolo[3,4-b]quinoline(5 mmol)and RuCl3(5 mmol) in aqueous HCl(10 ml) was stirred at 50°C for 1 h. Under these conditions, compound I was successfully obtained. Single crystals suitable for X-ray
were obtained by dissolving the corresponding compound in methanol solution and letting it for slow evaporation at room temperature.All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C or N atom. (with C—H = 0.95 and 0.98 Å, N—H = 0.88 Å and Uiso(H) =1.5 or 1.2(carrier atom)).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).C11H10ClN3O | Dx = 1.517 Mg m−3 |
Mr = 235.67 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 26476 reflections |
a = 3.8949 (2) Å | θ = 2.9–27.5° |
b = 12.0510 (5) Å | µ = 0.35 mm−1 |
c = 21.9910 (9) Å | T = 150 K |
V = 1032.20 (8) Å3 | Prism, colourless |
Z = 4 | 0.28 × 0.15 × 0.14 mm |
F(000) = 488 |
Bruker APEXII diffractometer | 2352 independent reflections |
Radiation source: Enraf–Nonius FR590 | 2044 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 3.3° |
CCD rotation images, thin slices scans | h = −5→5 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | k = −15→15 |
Tmin = 0.898, Tmax = 0.952 | l = −28→28 |
15777 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.073 | w = 1/[σ2(Fo2) + (0.0395P)2 + 0.2196P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2352 reflections | Δρmax = 0.31 e Å−3 |
147 parameters | Δρmin = −0.26 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 922 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.00 (6) |
C11H10ClN3O | V = 1032.20 (8) Å3 |
Mr = 235.67 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 3.8949 (2) Å | µ = 0.35 mm−1 |
b = 12.0510 (5) Å | T = 150 K |
c = 21.9910 (9) Å | 0.28 × 0.15 × 0.14 mm |
Bruker APEXII diffractometer | 2352 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 2044 reflections with I > 2σ(I) |
Tmin = 0.898, Tmax = 0.952 | Rint = 0.044 |
15777 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.073 | Δρmax = 0.31 e Å−3 |
S = 1.06 | Δρmin = −0.26 e Å−3 |
2352 reflections | Absolute structure: Flack (1983), 922 Friedel pairs |
147 parameters | Absolute structure parameter: 0.00 (6) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4493 (5) | 0.15128 (15) | 0.87535 (8) | 0.0170 (4) | |
C3 | 0.3425 (5) | 0.16948 (14) | 0.77399 (8) | 0.0168 (4) | |
C4 | 0.3615 (5) | 0.23375 (14) | 0.72037 (8) | 0.0187 (4) | |
H4 | 0.4634 | 0.3053 | 0.7216 | 0.022* | |
C5 | 0.2342 (5) | 0.19378 (14) | 0.66667 (8) | 0.0201 (4) | |
H5 | 0.2468 | 0.2378 | 0.6309 | 0.024* | |
C6 | 0.0840 (5) | 0.08694 (15) | 0.66430 (8) | 0.0179 (4) | |
C7 | 0.0598 (5) | 0.02243 (15) | 0.71528 (8) | 0.0173 (4) | |
H7 | −0.0414 | −0.0492 | 0.7131 | 0.021* | |
C8 | 0.1864 (5) | 0.06299 (13) | 0.77136 (8) | 0.0160 (4) | |
C9 | 0.1641 (5) | 0.00226 (13) | 0.82624 (8) | 0.0156 (4) | |
H9 | 0.0595 | −0.069 | 0.8261 | 0.019* | |
C10 | 0.2916 (5) | 0.04468 (14) | 0.87986 (8) | 0.0165 (4) | |
C11 | 0.2622 (5) | −0.01392 (14) | 0.93795 (8) | 0.0179 (4) | |
H11 | 0.3884 | 0.0114 | 0.9722 | 0.021* | |
C15 | −0.1868 (5) | −0.05136 (14) | 0.60289 (8) | 0.0219 (4) | |
H15A | −0.0198 | −0.1085 | 0.6143 | 0.033* | |
H15B | −0.2623 | −0.0637 | 0.5609 | 0.033* | |
H15C | −0.3852 | −0.0552 | 0.6302 | 0.033* | |
N2 | 0.4745 (4) | 0.21203 (13) | 0.82682 (6) | 0.0176 (3) | |
N12 | 0.0681 (4) | −0.09888 (12) | 0.94285 (7) | 0.0202 (3) | |
N13 | 0.0692 (5) | −0.15224 (13) | 0.99808 (7) | 0.0240 (4) | |
H13A | 0.1995 | −0.1275 | 1.0278 | 0.029* | |
H13B | −0.0603 | −0.2112 | 1.0037 | 0.029* | |
Cl1 | 0.62727 (12) | 0.20978 (3) | 0.941458 (19) | 0.02055 (12) | |
O14 | −0.0299 (4) | 0.05616 (10) | 0.60762 (5) | 0.0210 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0146 (10) | 0.0199 (9) | 0.0167 (8) | 0.0006 (7) | 0.0013 (8) | −0.0050 (7) |
C3 | 0.0146 (9) | 0.0175 (8) | 0.0183 (8) | 0.0019 (8) | 0.0024 (8) | −0.0024 (7) |
C4 | 0.0198 (9) | 0.0143 (8) | 0.0219 (8) | 0.0004 (8) | 0.0038 (8) | 0.0006 (7) |
C5 | 0.0244 (10) | 0.0191 (9) | 0.0170 (9) | 0.0024 (8) | 0.0041 (8) | 0.0025 (7) |
C6 | 0.0179 (10) | 0.0207 (9) | 0.0151 (8) | 0.0033 (8) | 0.0011 (8) | −0.0031 (7) |
C7 | 0.0193 (10) | 0.0138 (8) | 0.0189 (9) | −0.0001 (7) | 0.0025 (8) | −0.0011 (7) |
C8 | 0.0149 (10) | 0.0155 (8) | 0.0176 (8) | 0.0032 (7) | 0.0025 (8) | −0.0012 (7) |
C9 | 0.0158 (10) | 0.0121 (8) | 0.0188 (8) | −0.0007 (8) | 0.0031 (8) | 0.0000 (7) |
C10 | 0.0149 (10) | 0.0163 (9) | 0.0184 (9) | 0.0027 (7) | 0.0024 (7) | −0.0020 (7) |
C11 | 0.0190 (9) | 0.0191 (9) | 0.0156 (8) | 0.0017 (7) | −0.0014 (8) | −0.0031 (8) |
C15 | 0.0242 (11) | 0.0227 (9) | 0.0187 (9) | −0.0015 (8) | −0.0010 (9) | −0.0039 (7) |
N2 | 0.0173 (7) | 0.0173 (7) | 0.0181 (7) | −0.0005 (7) | 0.0025 (6) | −0.0021 (7) |
N12 | 0.0224 (8) | 0.0201 (7) | 0.0181 (7) | 0.0014 (6) | 0.0024 (8) | 0.0018 (7) |
N13 | 0.0339 (10) | 0.0203 (8) | 0.0177 (7) | −0.0039 (8) | −0.0013 (8) | 0.0034 (6) |
Cl1 | 0.0223 (2) | 0.0211 (2) | 0.01815 (19) | −0.00307 (19) | −0.0007 (2) | −0.00380 (18) |
O14 | 0.0302 (8) | 0.0194 (7) | 0.0135 (6) | −0.0021 (5) | −0.0012 (6) | −0.0008 (5) |
C1—N2 | 1.298 (2) | C8—C9 | 1.414 (2) |
C1—C10 | 1.428 (2) | C9—C10 | 1.378 (2) |
C1—Cl1 | 1.7581 (17) | C9—H9 | 0.95 |
C3—N2 | 1.370 (2) | C10—C11 | 1.464 (2) |
C3—C4 | 1.413 (2) | C11—N12 | 1.277 (2) |
C3—C8 | 1.421 (2) | C11—H11 | 0.95 |
C4—C5 | 1.368 (3) | C15—O14 | 1.436 (2) |
C4—H4 | 0.95 | C15—H15A | 0.98 |
C5—C6 | 1.415 (3) | C15—H15B | 0.98 |
C5—H5 | 0.95 | C15—H15C | 0.98 |
C6—C7 | 1.368 (2) | N12—N13 | 1.374 (2) |
C6—O14 | 1.374 (2) | N13—H13A | 0.88 |
C7—C8 | 1.415 (2) | N13—H13B | 0.88 |
C7—H7 | 0.95 | ||
N2—C1—C10 | 126.68 (16) | C10—C9—C8 | 121.08 (15) |
N2—C1—Cl1 | 115.08 (13) | C10—C9—H9 | 119.5 |
C10—C1—Cl1 | 118.23 (13) | C8—C9—H9 | 119.5 |
N2—C3—C4 | 118.87 (16) | C9—C10—C1 | 115.43 (15) |
N2—C3—C8 | 122.21 (15) | C9—C10—C11 | 122.66 (15) |
C4—C3—C8 | 118.92 (16) | C1—C10—C11 | 121.89 (15) |
C5—C4—C3 | 120.56 (16) | N12—C11—C10 | 120.43 (17) |
C5—C4—H4 | 119.7 | N12—C11—H11 | 119.8 |
C3—C4—H4 | 119.7 | C10—C11—H11 | 119.8 |
C4—C5—C6 | 120.12 (16) | O14—C15—H15A | 109.5 |
C4—C5—H5 | 119.9 | O14—C15—H15B | 109.5 |
C6—C5—H5 | 119.9 | H15A—C15—H15B | 109.5 |
C7—C6—O14 | 124.60 (16) | O14—C15—H15C | 109.5 |
C7—C6—C5 | 121.03 (16) | H15A—C15—H15C | 109.5 |
O14—C6—C5 | 114.37 (15) | H15B—C15—H15C | 109.5 |
C6—C7—C8 | 119.60 (16) | C1—N2—C3 | 117.24 (15) |
C6—C7—H7 | 120.2 | C11—N12—N13 | 116.60 (16) |
C8—C7—H7 | 120.2 | N12—N13—H13A | 120 |
C9—C8—C7 | 122.92 (16) | N12—N13—H13B | 120 |
C9—C8—C3 | 117.32 (16) | H13A—N13—H13B | 120 |
C7—C8—C3 | 119.76 (16) | C6—O14—C15 | 116.53 (14) |
N2—C3—C4—C5 | 179.61 (17) | C8—C9—C10—C1 | −1.1 (3) |
C8—C3—C4—C5 | −0.5 (3) | C8—C9—C10—C11 | 177.74 (17) |
C3—C4—C5—C6 | −0.4 (3) | N2—C1—C10—C9 | 2.1 (3) |
C4—C5—C6—C7 | 0.7 (3) | Cl1—C1—C10—C9 | −178.57 (14) |
C4—C5—C6—O14 | −179.26 (17) | N2—C1—C10—C11 | −176.71 (17) |
O14—C6—C7—C8 | 179.99 (18) | Cl1—C1—C10—C11 | 2.6 (2) |
C5—C6—C7—C8 | 0.1 (3) | C9—C10—C11—N12 | −11.3 (3) |
C6—C7—C8—C9 | 178.61 (17) | C1—C10—C11—N12 | 167.39 (17) |
C6—C7—C8—C3 | −1.0 (3) | C10—C1—N2—C3 | −1.3 (3) |
N2—C3—C8—C9 | 1.4 (3) | Cl1—C1—N2—C3 | 179.38 (13) |
C4—C3—C8—C9 | −178.41 (18) | C4—C3—N2—C1 | 179.25 (17) |
N2—C3—C8—C7 | −178.88 (17) | C8—C3—N2—C1 | −0.6 (3) |
C4—C3—C8—C7 | 1.3 (3) | C10—C11—N12—N13 | 176.74 (15) |
C7—C8—C9—C10 | 179.82 (18) | C7—C6—O14—C15 | 0.5 (3) |
C3—C8—C9—C10 | −0.5 (3) | C5—C6—O14—C15 | −179.58 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N13—H13A···O14i | 0.88 | 2.34 | 3.219 (2) | 178 |
N13—H13B···N13ii | 0.88 | 2.19 | 3.058 (2) | 169 |
C11—H11···Cl1 | 0.95 | 2.65 | 3.0488 (18) | 106 |
Symmetry codes: (i) −x+1/2, −y, z+1/2; (ii) x−1/2, −y−1/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C11H10ClN3O |
Mr | 235.67 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 150 |
a, b, c (Å) | 3.8949 (2), 12.0510 (5), 21.9910 (9) |
V (Å3) | 1032.20 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.35 |
Crystal size (mm) | 0.28 × 0.15 × 0.14 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.898, 0.952 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15777, 2352, 2044 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.073, 1.06 |
No. of reflections | 2352 |
No. of parameters | 147 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.26 |
Absolute structure | Flack (1983), 922 Friedel pairs |
Absolute structure parameter | 0.00 (6) |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N13—H13A···O14i | 0.8800 | 2.3400 | 3.219 (2) | 178.00 |
N13—H13B···N13ii | 0.8800 | 2.1900 | 3.058 (2) | 169.00 |
Symmetry codes: (i) −x+1/2, −y, z+1/2; (ii) x−1/2, −y−1/2, −z+2. |
Acknowledgements
We are grateful to the PHYSYNOR laboratory, Université Mentouri-Constantine, Algeria for assistance. Thanks are also due to the Ministére de l'Enseignement Supérieur et de la Recherche Scientifique and the Agence Nationale pour le Développement de la Recherche Universitaire for financial support via the PNR programm.
References
Belfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355–o1357. Web of Science CSD CrossRef IUCr Journals Google Scholar
Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o2084–o2085. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474–477. CSD CrossRef Google Scholar
Bouraiou, A., Debbache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333. CrossRef CAS Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2009). Acta Cryst. C65, o475–o478. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mali, J. R., Pratap, U. R., Jawale, D. V. & Mane, R. A. (2010). Tetrahedron Lett. 51, 3980–3982. Web of Science CrossRef CAS Google Scholar
Paul, S., Gupta, M., Gupta, R. & Loupy, A. (2001). Tetrahedron Lett. 42, 3827–3829. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrazole and its derivatives are gaining importance in medicinal and organic chemistry. They have displayed broad spectrum of pharmacological and biological activities such as anti-bacterial, anti-depressant, and anti-hyperglycemic (Mali et al., 2010). Pyrazolo[3,4-b]quinolines have displayed bioactivities such as antiviral, antimalarial, lowering of serum cholesterol (Paul et al., 2001), but no metal complexes of such drugs have been reported in the past which might possibly have better pharmaceutical effect. Therefore, studies of the metal complexes are important in the search for new drugs. In previous works, we were interested in the design and synthesis of new molecules that contain a quinolyl moiety (Belfaitah et al., 2006; Bouraiou et al., 2008, 2011; Ladraa et al., 2009 and Benzerka et al., 2011). In this paper, we report the structure determination of compound resulting from an unwanted reaction of the 6-methoxy-1H-pyrazolo[3,4-b]quinoline with RuCl3 in acidic conditions. Our attempt to synthesis the pyrazolo[3,4-b]quinoline/Ruthenium complex was failed and led to (E)-1-((2-chloro-6-methylquinolin-3-yl)methylene)hydrazine (I).
The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. In the asymetric unit of title molecule, (C11 H10 Cl N3 O), the chloro-quinolyl unit is linked to methoxy and methylenehydrazine group. The quinoline ring system is essentially planar; the r.m.s. deviation for the non-H atoms is 0.014 (2) Å with a maximum deviation from the mean plane of 0.0206 (14) Å for the C atom bonded to the –CH—N═NH2 group. The crystal packing can be described as layers in zigzag parallel to the (010) plane (Fig. 2). It is stabilized by N—H···O and N—H···N intermolecular hydrogen bonds (Fig. 2). These interaction bonds link the molecules within the layers and also link the layers together, reinforcing the cohesion of the structure. Hydrogen-bonding parameters are listed in table 1.