organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1478

1-Methyl-1,3-diazinan-2-one

aInstitut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and bFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@htw-aalen.de

(Received 2 April 2012; accepted 16 April 2012; online 21 April 2012)

In the crystal structure of the title compound, C5H10N2O, mol­ecules are connected via pairs of strong N—H⋯O hydrogen bonds into centrosymmetric dimers, which are stacked along the a axis. The molecule is not planar, the dihedral angle between the N/C/N and C/C/C planes being 42.1(1)°.

Related literature

For substitution of hexa­methyl­phospho­ramide (HMPT) by the cyclic urea 1,3-dimethyl-3,4,5,6-tetra­hydro­pyrimidin-2-one (DMPU), see: Mukhopadhyay & Seebach (1982[Mukhopadhyay, T. & Seebach, D. (1982). Helv. Chim. Acta, 65, 385-391.]). For the crystal structure of 3,4,5,6-tetra­hydro­pyrimidin-2-one, see: Rizal et al. (2008[Rizal, M. R., Azizul, I. & Ng, S. W. (2008). Acta Cryst. E64, o914.]) and of 1-methyl-imidazolidin-2-one, see: Caudle et al. (2005[Caudle, M. T., Tassone, E. & Groy, T. L. (2005). Acta Cryst. E61, o3269-o3270.]).

[Scheme 1]

Experimental

Crystal data
  • C5H10N2O

  • Mr = 114.15

  • Orthorhombic, P b c a

  • a = 5.8479 (2) Å

  • b = 13.3438 (6) Å

  • c = 15.0883 (8) Å

  • V = 1177.39 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.19 × 0.15 × 0.11 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • 2628 measured reflections

  • 1434 independent reflections

  • 1190 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.092

  • S = 1.03

  • 1434 reflections

  • 79 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 (2) 2.00 (2) 2.875 (1) 177 (2)
Symmetry code: (i) -x, -y+1, -z.

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3-Dimethyl-3,4,5,6-tetrahydropyrimidin-2-one (DMPU), a liquid at room temperature, is often used in organic synthesis as a polar aprotic solvent, replacing the carcinogenic hexamethylphosphoramide (HMPT) (Mukhopadhyay & Seebach, 1982). In contast, 3,4,5,6-tetrahydropyrimidin-2-one is a solid with a melting point of 263–267 °C and its ordered crystal structure was quite recently determined (Rizal et al., 2008). The crystal structure of the missing link 1-methyl-3,4,5,6-tetrahydropyrimidin-2-one (I) was previously unknown. Prominent bond parameters for the title molecule are: C1–O1 = 1.248 (1) Å, N1–C1 = 1.357 (1) Å and N2–C1 = 1.362 (1) Å. The bond length between N2 and the terminal C-methyl group (C5) measures 1.453 (1) Å. The C–N2–C angles are: 123.54 (9)° (C4–N2–C1), 120.32 (8)° (C1–N2–C5) and 115.18 (9)° (C5–N2–C4), which indicates a trigonal-planar surrounding of the nitrogen centre by the C atoms. These data are in good agreement with those of the five membered heterocycle 1-methyl-imidazolidin-2-one (Caudle et al., 2005). In contrast to the aforementioned compound, the six membered heterocycle in (I) is non–planar (Fig. 1). The carbon atom C3 is not in the ring plane, the angle between the planes N1/C1/N2 and C2/C3/C4 is 42.1 (1)°. In the packing, each two molecules are linked by strong N–H···O hydrogen bonds, forming centrosymmetric dimers, which are stacked along the a axis (Fig.2). The H···O distance is 2.00 (2) Å, with a nearly linear N–H···O angle of 177 (2)° (Tab.1).

Related literature top

For substitution of hexamethylphosphoramide (HMPT) by the cyclic urea 1,3-dimethyl-3,4,5,6-tetrahydropyrimidin-2-one (DMPU), see: Mukhopadhyay & Seebach (1982). For the crystal structure of 3,4,5,6-tetrahydropyrimidin-2-one, see: Rizal et al. (2008) and of 1-methyl-imidazolidin-2-one, see: Caudle et al. (2005).

Experimental top

The title compound was obtained as a byproduct by reaction of 1-Methyl-2-dimethylamino-1,4,5,6-tetrahydropyrimidinium-chloride with excess aqueous sodium hydroxide at room temperature. After distillation of the crude product in vacuo, a colourless liquid was obtained. The compound crystallized spontaneously upon standing at room temperature after several days, forming colourless single crystals.

Refinement top

The N-bound H atom was located in a difference Fourier map and was refined freely. The hydrogen atoms of the methyl group were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with U(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å and were included in the refinement in the riding model approximation, with U(H) set to 1.2 Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule. Anisotropic displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound, bc-view. The N–H···O hydrogen bonds are indicated by dashed lines.
1-Methyl-1,3-diazinan-2-one top
Crystal data top
C5H10N2OF(000) = 496
Mr = 114.15Dx = 1.288 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1677 reflections
a = 5.8479 (2) Åθ = 0.4–28.3°
b = 13.3438 (6) ŵ = 0.09 mm1
c = 15.0883 (8) ÅT = 100 K
V = 1177.39 (9) Å3Lath-shaped, colourless
Z = 80.19 × 0.15 × 0.11 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1190 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.024
Graphite monochromatorθmax = 28.2°, θmin = 2.7°
ϕ scans, and ω scansh = 77
2628 measured reflectionsk = 1717
1434 independent reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.4078P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1434 reflectionsΔρmax = 0.27 e Å3
79 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (3)
Crystal data top
C5H10N2OV = 1177.39 (9) Å3
Mr = 114.15Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 5.8479 (2) ŵ = 0.09 mm1
b = 13.3438 (6) ÅT = 100 K
c = 15.0883 (8) Å0.19 × 0.15 × 0.11 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1190 reflections with I > 2σ(I)
2628 measured reflectionsRint = 0.024
1434 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.27 e Å3
1434 reflectionsΔρmin = 0.18 e Å3
79 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13599 (13)0.58154 (5)0.07922 (5)0.0178 (2)
N10.21849 (16)0.41809 (6)0.05287 (6)0.0162 (2)
H10.108 (3)0.4198 (11)0.0134 (10)0.032 (4)*
N20.44922 (16)0.51361 (6)0.14565 (6)0.0147 (2)
C10.26381 (18)0.50789 (7)0.09125 (6)0.0127 (2)
C20.3761 (2)0.33384 (7)0.05379 (7)0.0170 (2)
H2A0.49010.34150.00580.020*
H2B0.29130.27060.04390.020*
C30.4956 (2)0.33051 (8)0.14262 (7)0.0203 (3)
H3A0.61200.27660.14270.024*
H3B0.38340.31620.19010.024*
C40.6091 (2)0.43089 (8)0.15938 (8)0.0209 (3)
H4A0.66730.43300.22100.025*
H4B0.74110.43870.11890.025*
C50.5230 (2)0.60977 (8)0.18066 (7)0.0182 (3)
H5A0.41060.66130.16500.027*
H5B0.67190.62740.15530.027*
H5C0.53620.60550.24530.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0179 (4)0.0130 (4)0.0226 (4)0.0039 (3)0.0052 (3)0.0015 (3)
N10.0153 (5)0.0118 (4)0.0213 (5)0.0022 (4)0.0052 (4)0.0026 (3)
N20.0148 (5)0.0120 (4)0.0173 (4)0.0003 (4)0.0034 (3)0.0002 (3)
C10.0131 (5)0.0122 (4)0.0128 (4)0.0013 (4)0.0008 (4)0.0015 (4)
C20.0195 (5)0.0118 (5)0.0196 (5)0.0036 (4)0.0003 (4)0.0011 (4)
C30.0260 (6)0.0142 (5)0.0206 (5)0.0071 (5)0.0023 (5)0.0023 (4)
C40.0193 (6)0.0195 (5)0.0241 (6)0.0063 (5)0.0066 (5)0.0012 (4)
C50.0196 (5)0.0160 (5)0.0190 (5)0.0038 (4)0.0034 (4)0.0010 (4)
Geometric parameters (Å, º) top
O1—C11.2480 (13)C2—H2B0.9900
N1—C11.3570 (13)C3—C41.5162 (16)
N1—C21.4537 (13)C3—H3A0.9900
N1—H10.881 (18)C3—H3B0.9900
N2—C11.3620 (14)C4—H4A0.9900
N2—C51.4532 (13)C4—H4B0.9900
N2—C41.4614 (14)C5—H5A0.9800
C2—C31.5123 (15)C5—H5B0.9800
C2—H2A0.9900C5—H5C0.9800
C1—N1—C2123.71 (9)C4—C3—H3A109.9
C1—N1—H1114.2 (9)C2—C3—H3B109.9
C2—N1—H1119.6 (10)C4—C3—H3B109.9
C1—N2—C5120.32 (8)H3A—C3—H3B108.3
C1—N2—C4123.54 (9)N2—C4—C3111.31 (9)
C5—N2—C4115.18 (9)N2—C4—H4A109.4
O1—C1—N1121.08 (10)C3—C4—H4A109.4
O1—C1—N2121.36 (9)N2—C4—H4B109.4
N1—C1—N2117.52 (9)C3—C4—H4B109.4
N1—C2—C3108.92 (8)H4A—C4—H4B108.0
N1—C2—H2A109.9N2—C5—H5A109.5
C3—C2—H2A109.9N2—C5—H5B109.5
N1—C2—H2B109.9H5A—C5—H5B109.5
C3—C2—H2B109.9N2—C5—H5C109.5
H2A—C2—H2B108.3H5A—C5—H5C109.5
C2—C3—C4108.92 (8)H5B—C5—H5C109.5
C2—C3—H3A109.9
C2—N1—C1—O1170.94 (10)C1—N1—C2—C337.71 (14)
C2—N1—C1—N211.24 (15)N1—C2—C3—C455.31 (12)
C5—N2—C1—O19.34 (16)C1—N2—C4—C325.76 (14)
C4—N2—C1—O1177.57 (10)C5—N2—C4—C3165.46 (9)
C5—N2—C1—N1172.84 (9)C2—C3—C4—N250.42 (12)
C4—N2—C1—N14.62 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (2)2.00 (2)2.875 (1)177 (2)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC5H10N2O
Mr114.15
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)5.8479 (2), 13.3438 (6), 15.0883 (8)
V3)1177.39 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.19 × 0.15 × 0.11
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2628, 1434, 1190
Rint0.024
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 1.03
No. of reflections1434
No. of parameters79
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.18

Computer programs: COLLECT (Hooft, 2004), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (2)2.00 (2)2.875 (1)177 (2)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank Dr Falk Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring the crystal data.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.  Google Scholar
First citationCaudle, M. T., Tassone, E. & Groy, T. L. (2005). Acta Cryst. E61, o3269–o3270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMukhopadhyay, T. & Seebach, D. (1982). Helv. Chim. Acta, 65, 385–391.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRizal, M. R., Azizul, I. & Ng, S. W. (2008). Acta Cryst. E64, o914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1478
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds