organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1299

N′-Cyclo­pentyl­­idene­pyridine-4-carbo­hydrazide

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa, bFaculty of Science, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates, and cInstitute of Mineralogy and Petrography, University of Innsbruck, Innsbruck 6020, Austria
*Correspondence e-mail: andreas.lemmerer@wits.ac.za

(Received 8 March 2012; accepted 30 March 2012; online 4 April 2012)

The title compound, C11H13N3O, is a derivative of the anti­tuberculosis drug isoniazid [systematic name: pyridine-4-carbohydrazide]. The crystal structure consists of repeating hydrogen-bonded chains parallel to the b axis. Adjacent mol­ecules in the chains are linked by bifurcated N—H⋯(O,N) hydrogen bonds, which form an R12(5) ring motif.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13N3O

  • Mr = 203.24

  • Orthorhombic, P b c a

  • a = 15.762 (3) Å

  • b = 8.1144 (16) Å

  • c = 16.015 (3) Å

  • V = 2048.3 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.35 × 0.22 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Gemini R diffractometer

  • Absorption correction: multi-scan (ABSPACK in CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.970, Tmax = 0.983

  • 11794 measured reflections

  • 1884 independent reflections

  • 1420 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.081

  • S = 0.96

  • 1884 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.889 (15) 2.303 (15) 3.1155 (16) 151.9 (12)
N1—H1⋯O1i 0.889 (15) 2.607 (15) 3.3368 (14) 140.0 (11)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Fig. 1 shows the atomic numbering scheme of the title compound. The amide functional groups form a torsion angle of -39.73 (17)° (C5—C1—C6—O1) with the pyridine ring. Fig. 2 shows the R21(5) (Bernstein et al., 1995) hydrogen bonded ring formed with adjacent amide functional groups, leading to a chain along the b-axis.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A stoichiometric amount in the ratio of 1:1 of isonicotinic acid hydrazide (0.200 g, 1.46 mmol) to cyclopentanone (0.129 g) was dissolved in 5 ml of methanol. The solution was refluxed for a few hours, and left to cool to room temperature. Colourless, block-like crystals were harvested after slow evaporation over a few days at ambient conditions.

Refinement top

The C-bound H atoms were geometrically placed (C—H bond lengths of 0.95 (aromatic CH) and 0.99 (methylene CH2) Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located in the difference map and coordinates refined freely together with their isotropic thermal parameters.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding chain showing the ring shaped hydrogen bonding motif. Intermolecular N—H···O and N—-H···N hydrogen bonds are shown as dashed red lines.
N'-Cyclopentylidenepyridine-4-carbohydrazide top
Crystal data top
C11H13N3OF(000) = 864
Mr = 203.24Dx = 1.318 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5050 reflections
a = 15.762 (3) Åθ = 2.9–28.5°
b = 8.1144 (16) ŵ = 0.09 mm1
c = 16.015 (3) ÅT = 173 K
V = 2048.3 (7) Å3Block, colourless
Z = 80.35 × 0.22 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Gemini R
diffractometer
1420 reflections with I > 2σ(I)
ω scansRint = 0.034
Absorption correction: multi-scan
(ABSPACK in CrysAlis PRO; Oxford Diffraction, 2006)
θmax = 25.5°, θmin = 3.1°
Tmin = 0.970, Tmax = 0.983h = 1718
11794 measured reflectionsk = 99
1884 independent reflectionsl = 1914
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0527P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max < 0.001
S = 0.96Δρmax = 0.14 e Å3
1884 reflectionsΔρmin = 0.21 e Å3
140 parameters
Crystal data top
C11H13N3OV = 2048.3 (7) Å3
Mr = 203.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.762 (3) ŵ = 0.09 mm1
b = 8.1144 (16) ÅT = 173 K
c = 16.015 (3) Å0.35 × 0.22 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Gemini R
diffractometer
1884 independent reflections
Absorption correction: multi-scan
(ABSPACK in CrysAlis PRO; Oxford Diffraction, 2006)
1420 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.983Rint = 0.034
11794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.14 e Å3
1884 reflectionsΔρmin = 0.21 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.63373 (8)0.29380 (15)0.50919 (7)0.0229 (3)
C20.68605 (8)0.18488 (16)0.46629 (8)0.0300 (3)
H20.74580.18790.47360.036*
C30.64926 (9)0.07249 (17)0.41303 (9)0.0362 (3)
H30.68560.00070.38360.043*
C40.51676 (9)0.16426 (16)0.44216 (8)0.0330 (3)
H40.45710.15690.43450.04*
C50.54713 (8)0.28276 (16)0.49627 (7)0.0265 (3)
H50.50930.35540.52410.032*
C60.66894 (7)0.42811 (15)0.56313 (7)0.0223 (3)
C70.83244 (7)0.46470 (15)0.70795 (8)0.0238 (3)
C80.84781 (8)0.29668 (16)0.74453 (8)0.0284 (3)
H8A0.87630.22360.70370.034*
H8B0.79390.2450.76240.034*
C90.90543 (8)0.33071 (17)0.81972 (9)0.0322 (3)
H9A0.87150.35360.87050.039*
H9B0.94350.23610.83070.039*
C100.95583 (8)0.48203 (16)0.79324 (8)0.0302 (3)
H10A1.00220.45190.75440.036*
H10B0.98030.53930.84220.036*
C110.88949 (8)0.58868 (17)0.74995 (9)0.0328 (3)
H11A0.85760.65580.79090.039*
H11B0.91610.66290.70850.039*
N10.73514 (6)0.38419 (14)0.61158 (6)0.0247 (3)
H10.7496 (8)0.2789 (19)0.6174 (9)0.036 (4)*
N20.56579 (8)0.05969 (14)0.40008 (7)0.0377 (3)
N30.78134 (6)0.50934 (12)0.65045 (6)0.0251 (3)
O10.63990 (5)0.56802 (10)0.56036 (5)0.0298 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0297 (7)0.0192 (6)0.0197 (6)0.0008 (5)0.0020 (5)0.0038 (5)
C20.0304 (7)0.0305 (7)0.0292 (7)0.0059 (6)0.0038 (5)0.0017 (6)
C30.0478 (9)0.0292 (8)0.0316 (7)0.0092 (7)0.0051 (6)0.0063 (6)
C40.0349 (7)0.0283 (7)0.0359 (8)0.0032 (6)0.0117 (6)0.0051 (6)
C50.0295 (7)0.0238 (7)0.0260 (7)0.0008 (6)0.0024 (5)0.0041 (5)
C60.0232 (6)0.0207 (7)0.0230 (6)0.0000 (5)0.0028 (5)0.0013 (5)
C70.0260 (7)0.0200 (7)0.0253 (7)0.0003 (5)0.0004 (5)0.0029 (5)
C80.0322 (7)0.0218 (7)0.0312 (7)0.0027 (6)0.0053 (5)0.0016 (6)
C90.0335 (8)0.0330 (8)0.0299 (7)0.0018 (6)0.0052 (5)0.0016 (6)
C100.0296 (7)0.0332 (8)0.0279 (7)0.0029 (6)0.0047 (5)0.0027 (6)
C110.0349 (8)0.0244 (7)0.0390 (8)0.0033 (6)0.0091 (6)0.0044 (6)
N10.0319 (6)0.0146 (6)0.0277 (6)0.0010 (5)0.0073 (4)0.0016 (5)
N20.0499 (8)0.0289 (7)0.0343 (6)0.0009 (6)0.0141 (5)0.0026 (5)
N30.0284 (6)0.0189 (6)0.0281 (6)0.0021 (4)0.0041 (4)0.0023 (5)
O10.0298 (5)0.0221 (5)0.0374 (5)0.0048 (4)0.0036 (4)0.0022 (4)
Geometric parameters (Å, º) top
C1—C51.3836 (18)C7—C111.5076 (17)
C1—C21.3904 (18)C8—C91.5333 (18)
C1—C61.4973 (17)C8—H8A0.99
C2—C31.3768 (19)C8—H8B0.99
C2—H20.95C9—C101.5227 (19)
C3—N21.3360 (19)C9—H9A0.99
C3—H30.95C9—H9B0.99
C4—N21.3309 (18)C10—C111.5243 (18)
C4—C51.3801 (18)C10—H10A0.99
C4—H40.95C10—H10B0.99
C5—H50.95C11—H11A0.99
C6—O11.2249 (14)C11—H11B0.99
C6—N11.3484 (16)N1—N31.3961 (14)
C7—N31.2759 (15)N1—H10.889 (15)
C7—C81.5035 (17)
C5—C1—C2118.04 (11)C9—C8—H8B111
C5—C1—C6119.94 (11)H8A—C8—H8B109
C2—C1—C6121.87 (11)C10—C9—C8103.63 (10)
C3—C2—C1118.51 (12)C10—C9—H9A111
C3—C2—H2120.7C8—C9—H9A111
C1—C2—H2120.7C10—C9—H9B111
N2—C3—C2124.23 (13)C8—C9—H9B111
N2—C3—H3117.9H9A—C9—H9B109
C2—C3—H3117.9C9—C10—C11103.09 (10)
N2—C4—C5124.11 (13)C9—C10—H10A111.1
N2—C4—H4117.9C11—C10—H10A111.1
C5—C4—H4117.9C9—C10—H10B111.1
C4—C5—C1118.76 (12)C11—C10—H10B111.1
C4—C5—H5120.6H10A—C10—H10B109.1
C1—C5—H5120.6C7—C11—C10103.49 (10)
O1—C6—N1123.71 (11)C7—C11—H11A111.1
O1—C6—C1121.01 (11)C10—C11—H11A111.1
N1—C6—C1115.24 (10)C7—C11—H11B111.1
N3—C7—C8129.82 (11)C10—C11—H11B111.1
N3—C7—C11120.59 (11)H11A—C11—H11B109
C8—C7—C11109.59 (10)C6—N1—N3117.90 (10)
C7—C8—C9103.78 (10)C6—N1—H1120.9 (9)
C7—C8—H8A111N3—N1—H1121.2 (9)
C9—C8—H8A111C4—N2—C3116.34 (11)
C7—C8—H8B111C7—N3—N1116.39 (10)
C5—C1—C2—C30.30 (18)C7—C8—C9—C1030.69 (13)
C6—C1—C2—C3175.20 (12)C8—C9—C10—C1140.97 (13)
C1—C2—C3—N20.6 (2)N3—C7—C11—C10163.83 (11)
N2—C4—C5—C10.92 (19)C8—C7—C11—C1015.97 (14)
C2—C1—C5—C40.40 (17)C9—C10—C11—C734.78 (13)
C6—C1—C5—C4175.99 (11)O1—C6—N1—N310.45 (17)
C5—C1—C6—O139.73 (17)C1—C6—N1—N3167.52 (9)
C2—C1—C6—O1135.69 (13)C5—C4—N2—C30.65 (19)
C5—C1—C6—N1142.25 (11)C2—C3—N2—C40.1 (2)
C2—C1—C6—N142.34 (16)C8—C7—N3—N13.79 (18)
N3—C7—C8—C9171.14 (12)C11—C7—N3—N1175.96 (10)
C11—C7—C8—C99.09 (14)C6—N1—N3—C7166.86 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.889 (15)2.303 (15)3.1155 (16)151.9 (12)
N1—H1···O1i0.889 (15)2.607 (15)3.3368 (14)140.0 (11)
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC11H13N3O
Mr203.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)15.762 (3), 8.1144 (16), 16.015 (3)
V3)2048.3 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.22 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Gemini R
diffractometer
Absorption correctionMulti-scan
(ABSPACK in CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.970, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
11794, 1884, 1420
Rint0.034
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 0.96
No. of reflections1884
No. of parameters140
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.889 (15)2.303 (15)3.1155 (16)151.9 (12)
N1—H1···O1i0.889 (15)2.607 (15)3.3368 (14)140.0 (11)
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

This work was supported in part by grant No. 2004118 from the United States–Israel Binational Science Foundation (Jerusalem). AL thanks the South African National Research Foundation for a postdoctoral scholarship (SFP2007070400002), the Oppenheimer Memorial Trust for financial support and the Mol­ecular Sciences Institute for infrastructure.

References

First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1299
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds