organic compounds
2-(4-Aminophenyl)-3,4,5,6-tetrahydropyrimidin-1-ium chloride
aDepartment of Phyiscal Chemistry, Rudjer Bošković Institute, POB-180, HR-10002 Zagreb, Croatia, and bDepartment of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
*Correspondence e-mail: kmolcano@irb.hr
In the title compound, C10H14N3+·Cl−, the tetrahydropyridinium ring of the cation, which adopts a slightly distorted is disordered over two orientations with an occupancy ratio of 0.653 (5):0.347 (5). The amidinium fragment of the major conformer is twisted relative to the benzene ring by 22.5 (6)° and the two C—N bond lengths of this fragment are similar [1.3228 (16) and 1.319 (2) Å]. In the crystal, the chloride anions are involved in three N—H⋯Cl hydrogen bonds, which link the components into a two-dimensional hydrogen-bonded network parallel to (010).
Related literature
For the synthesis, see: Wydra et al. (1990); Stolić et al. (2009, 2011). For related compounds, see: Molčanov et al. (2011); Jarak et al. (2005); Legrand et al. (2008). For the biological activity of compounds comprising a cyclic amidine system, see: Boykin (2002); Chaires et al. (2004); Farahat et al. (2011); Hall et al. (1998). For the GAMESS program package, see: Schmidt et al. (1993).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812014493/gk2441sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812014493/gk2441Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812014493/gk2441Isup3.cml
The crude imidate ester hydrochloride (1.61 g, 8.6 mmol) prepared from 4-aminobenzonitrile (1.12 g, 9.5 mmol) in anhydrous methanol by Pinner reaction was suspended in anhydrous methanol (100 ml), 1,3-diaminopropane (4 ml) was added and mixture was stirred at room temperature for 4 days under the nitrogen atmosphere. The solvent was removed under reduced pressure and residue was recrystallized from ethanol-diethyl ether to yield 1.06 g (57.6%) of white powder, IR (νmax/cm-1): 2883, 2023, 1595, 1472, 1101, 727, 635; 1H NMR (DMSO-d6) δ/p.p.m.: 8.28 (s, 2H, NH), 7.54 (d, 2H, J = 8.5 Hz, ArH), 6.65 (d, 2H, J = 8.1 Hz, ArH), 6.10 (s, 2H, NH2), 2.88 (t, 4H, J = 7.4 Hz, CH2), 1.90 (m, 2H, J = 7.4 Hz, CH2).
DFT calculations. The structure, obtained from the X-ray structural analysis was optimized without symmetry constrains by using MP2/6–31+G(d,p) level of theory implemented in the GAMESS program package (Schmidt et al., 1993) . Tight convergence criteria were used in the optimization. The calculation was checked for convergence and frequencies were calculated in order to prove that the optimized structure was the minimum. The optimized geometry shows agreement with experimental one (conformer B); only four bonds (N1—C1, N3—C7, C2—C3 and C5–C6) differ more than 3 e.s.d.'s.
Hydrogen atoms were located from a difference Fourier map and refined as riding on their parent atoms. C—H bond lenghts were constrained to 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, while N—H bonds were constrained to 0.90 Å; Uiso(H) = 1.2 Ueq(C,N). Since the disordered atoms are very close to each other, they were refined with equal displacement ellipsoids using the command EADP in SHELXL97 (Sheldrick, 2008) for every pair of disordered atoms (A and B), except C9A and C9B which had their displacement parameters refined independently.
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C10H14N3+·Cl− | F(000) = 896 |
Mr = 211.69 | Dx = 1.301 Mg m−3 |
Orthorhombic, Pbcn | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 3458 reflections |
a = 15.0055 (2) Å | θ = 2.5–76.0° |
b = 8.0884 (1) Å | µ = 2.84 mm−1 |
c = 17.8088 (3) Å | T = 293 K |
V = 2161.46 (5) Å3 | Prism, colourless |
Z = 8 | 0.15 × 0.10 × 0.09 mm |
Oxford Diffraction Xcalibur Nova R diffractometer | 1760 reflections with I > 2σ(I) |
ω scans | Rint = 0.017 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | θmax = 76.2°, θmin = 5.0° |
Tmin = 0.676, Tmax = 0.784 | h = −18→18 |
6131 measured reflections | k = −5→10 |
2242 independent reflections | l = −22→22 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.0642P)2 + 0.0224P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.098 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.18 e Å−3 |
2242 reflections | Δρmin = −0.16 e Å−3 |
146 parameters |
C10H14N3+·Cl− | V = 2161.46 (5) Å3 |
Mr = 211.69 | Z = 8 |
Orthorhombic, Pbcn | Cu Kα radiation |
a = 15.0055 (2) Å | µ = 2.84 mm−1 |
b = 8.0884 (1) Å | T = 293 K |
c = 17.8088 (3) Å | 0.15 × 0.10 × 0.09 mm |
Oxford Diffraction Xcalibur Nova R diffractometer | 2242 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 1760 reflections with I > 2σ(I) |
Tmin = 0.676, Tmax = 0.784 | Rint = 0.017 |
6131 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.18 e Å−3 |
2242 reflections | Δρmin = −0.16 e Å−3 |
146 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.33023 (2) | 0.24010 (5) | 0.60412 (2) | 0.05806 (15) | |
N1 | 0.73148 (10) | 0.50143 (18) | 0.76130 (9) | 0.0710 (4) | |
H1NB | 0.7775 | 0.5727 | 0.7593 | 0.085* | |
H1NA | 0.7154 | 0.4539 | 0.8049 | 0.085* | |
N2A | 0.48706 (7) | 0.24901 (14) | 0.48980 (7) | 0.0481 (3) | 0.347 (5) |
H2NB | 0.4516 | 0.2692 | 0.5296 | 0.058* | 0.347 (5) |
N2B | 0.48706 (7) | 0.24901 (14) | 0.48980 (7) | 0.0481 (3) | 0.653 (5) |
H2N | 0.4516 | 0.2691 | 0.5295 | 0.058* | 0.653 (5) |
N3A | 0.6227 (6) | 0.2596 (6) | 0.4311 (5) | 0.0498 (10) | 0.653 (5) |
H3M | 0.682 | 0.2722 | 0.4359 | 0.06* | 0.653 (5) |
N3B | 0.6181 (11) | 0.3005 (15) | 0.4279 (11) | 0.0498 (10) | 0.347 (5) |
H3N | 0.6774 | 0.3132 | 0.4327 | 0.06* | 0.347 (5) |
C1 | 0.69335 (9) | 0.45272 (15) | 0.69569 (8) | 0.0474 (3) | |
C2 | 0.61748 (9) | 0.35056 (16) | 0.69653 (7) | 0.0475 (3) | |
H2 | 0.5937 | 0.3163 | 0.7422 | 0.057* | |
C3 | 0.57817 (8) | 0.30093 (16) | 0.63062 (7) | 0.0436 (3) | |
H3 | 0.5275 | 0.2348 | 0.6323 | 0.052* | |
C4 | 0.61292 (8) | 0.34788 (14) | 0.56100 (7) | 0.0405 (3) | |
C5 | 0.68797 (9) | 0.45061 (16) | 0.56016 (8) | 0.0483 (3) | |
H5 | 0.712 | 0.4839 | 0.5145 | 0.058* | |
C6 | 0.72660 (10) | 0.50288 (16) | 0.62576 (9) | 0.0510 (3) | |
H6 | 0.7757 | 0.5729 | 0.6238 | 0.061* | |
C7A | 0.57250 (8) | 0.28921 (15) | 0.49100 (7) | 0.0427 (3) | 0.347 (5) |
C7B | 0.57250 (8) | 0.28921 (15) | 0.49100 (7) | 0.0427 (3) | 0.653 (5) |
C8A | 0.4451 (10) | 0.2003 (13) | 0.4167 (7) | 0.0457 (8) | 0.347 (5) |
H8A1 | 0.4026 | 0.2777 | 0.3957 | 0.055* | 0.347 (5) |
H8A2 | 0.4127 | 0.1021 | 0.4324 | 0.055* | 0.347 (5) |
C8B | 0.4427 (5) | 0.1637 (5) | 0.4285 (3) | 0.0457 (8) | 0.653 (5) |
H8A | 0.446 | 0.0442 | 0.432 | 0.055* | 0.653 (5) |
H8B | 0.3803 | 0.1951 | 0.4276 | 0.055* | 0.653 (5) |
C9A | 0.5137 (3) | 0.1287 (7) | 0.3654 (2) | 0.0539 (14) | 0.347 (5) |
H9A1 | 0.5428 | 0.0266 | 0.3802 | 0.065* | 0.347 (5) |
H9A2 | 0.4832 | 0.1087 | 0.3183 | 0.065* | 0.347 (5) |
C9B | 0.48604 (17) | 0.2297 (4) | 0.35639 (14) | 0.0574 (8) | 0.653 (5) |
H9B1 | 0.475 | 0.3468 | 0.3492 | 0.069* | 0.653 (5) |
H9B2 | 0.4611 | 0.1709 | 0.3138 | 0.069* | 0.653 (5) |
C10A | 0.5833 (7) | 0.2609 (10) | 0.3539 (6) | 0.0575 (9) | 0.347 (5) |
H10C | 0.6269 | 0.2273 | 0.3167 | 0.069* | 0.347 (5) |
H10D | 0.5567 | 0.3649 | 0.3386 | 0.069* | 0.347 (5) |
C10B | 0.5866 (3) | 0.1982 (5) | 0.3599 (3) | 0.0575 (9) | 0.653 (5) |
H10A | 0.5985 | 0.0804 | 0.3593 | 0.069* | 0.653 (5) |
H10B | 0.6159 | 0.2482 | 0.317 | 0.069* | 0.653 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0367 (2) | 0.0877 (3) | 0.0498 (2) | −0.00153 (14) | 0.00414 (13) | 0.00525 (16) |
N1 | 0.0747 (9) | 0.0785 (8) | 0.0598 (8) | −0.0183 (7) | −0.0182 (7) | −0.0077 (6) |
N2A | 0.0334 (5) | 0.0656 (7) | 0.0454 (6) | 0.0000 (4) | 0.0010 (5) | −0.0087 (5) |
N2B | 0.0334 (5) | 0.0656 (7) | 0.0454 (6) | 0.0000 (4) | 0.0010 (5) | −0.0087 (5) |
N3A | 0.0340 (10) | 0.069 (3) | 0.0461 (10) | 0.005 (2) | 0.0034 (8) | −0.006 (2) |
N3B | 0.0340 (10) | 0.069 (3) | 0.0461 (10) | 0.005 (2) | 0.0034 (8) | −0.006 (2) |
C1 | 0.0431 (6) | 0.0459 (6) | 0.0533 (7) | 0.0034 (5) | −0.0080 (6) | −0.0059 (5) |
C2 | 0.0433 (7) | 0.0561 (7) | 0.0430 (6) | −0.0005 (5) | 0.0012 (6) | −0.0006 (6) |
C3 | 0.0350 (6) | 0.0488 (6) | 0.0470 (7) | −0.0029 (5) | 0.0009 (5) | −0.0013 (5) |
C4 | 0.0322 (5) | 0.0453 (6) | 0.0440 (6) | 0.0024 (4) | 0.0000 (5) | −0.0004 (5) |
C5 | 0.0407 (6) | 0.0529 (7) | 0.0515 (7) | −0.0045 (5) | 0.0037 (6) | 0.0042 (5) |
C6 | 0.0395 (6) | 0.0508 (7) | 0.0627 (8) | −0.0083 (5) | −0.0033 (6) | −0.0019 (6) |
C7A | 0.0354 (6) | 0.0495 (6) | 0.0433 (6) | 0.0037 (5) | 0.0008 (5) | −0.0003 (5) |
C7B | 0.0354 (6) | 0.0495 (6) | 0.0433 (6) | 0.0037 (5) | 0.0008 (5) | −0.0003 (5) |
C8A | 0.0416 (7) | 0.050 (2) | 0.0454 (19) | −0.0047 (19) | −0.0044 (13) | 0.0034 (14) |
C8B | 0.0416 (7) | 0.050 (2) | 0.0454 (19) | −0.0047 (19) | −0.0044 (13) | 0.0034 (14) |
C9A | 0.052 (3) | 0.061 (3) | 0.049 (2) | 0.005 (2) | −0.0064 (19) | −0.0088 (19) |
C9B | 0.0558 (14) | 0.0712 (18) | 0.0453 (12) | 0.0074 (12) | −0.0077 (10) | −0.0036 (11) |
C10A | 0.0534 (10) | 0.077 (3) | 0.0425 (11) | 0.004 (2) | 0.0041 (9) | −0.007 (2) |
C10B | 0.0534 (10) | 0.077 (3) | 0.0425 (11) | 0.004 (2) | 0.0041 (9) | −0.007 (2) |
N1—C1 | 1.3593 (18) | C4—C5 | 1.3996 (17) |
N1—H1NB | 0.8999 | C4—C7A | 1.4653 (17) |
N1—H1NA | 0.8999 | C5—C6 | 1.3710 (19) |
N2A—C7A | 1.3228 (17) | C5—H5 | 0.93 |
N2A—C8A | 1.499 (14) | C6—H6 | 0.93 |
N2A—H2NB | 0.901 | C8A—C9A | 1.494 (15) |
N2B—H2N | 0.9 | C8A—H8A1 | 0.9677 |
N2B—C7B | 1.3228 (16) | C8A—H8A2 | 0.9717 |
N2B—C8B | 1.453 (6) | C8B—C9B | 1.535 (6) |
N3A—C7A | 1.327 (9) | C8B—H8A | 0.97 |
N3A—C10A | 1.497 (14) | C8B—H8B | 0.97 |
N3A—H3M | 0.8999 | C9A—C10A | 1.509 (11) |
N3B—C10B | 1.541 (19) | C9A—H9A1 | 0.97 |
N3B—C7B | 1.319 (2) | C9A—H9A2 | 0.97 |
N3B—H3N | 0.8999 | C9B—C10B | 1.531 (6) |
C1—C6 | 1.402 (2) | C9B—H9B1 | 0.97 |
C1—C2 | 1.4069 (19) | C10A—H10C | 0.97 |
C2—C3 | 1.3736 (18) | C10A—H10D | 0.97 |
C2—H2 | 0.93 | C10B—H10A | 0.97 |
C3—C4 | 1.3975 (18) | C10B—H10B | 0.97 |
C3—H3 | 0.93 | ||
C1—N1—H1NB | 118.4 | C10A—C9A—H9A2 | 109.1 |
C1—N1—H1NA | 120.4 | H9A1—C9A—H9A2 | 107.8 |
H1NB—N1—H1NA | 120.9 | C8A—C9A—H9B2 | 84.7 |
C7A—N2A—C8A | 119.1 (6) | C10A—C9A—H9B2 | 98.2 |
C7A—N2A—H2NB | 121 | H9A1—C9A—H9B2 | 135.3 |
C8A—N2A—H2NB | 118.8 | C8A—C9A—H10A | 145.1 |
C7A—N2A—H2N | 121 | C10A—C9A—H10A | 62.4 |
C8A—N2A—H2N | 118.8 | H9A1—C9A—H10A | 49 |
C7A—N3A—C10A | 120.9 (7) | H9A2—C9A—H10A | 109.4 |
C7A—N3A—H3M | 117.6 | H9B2—C9A—H10A | 128.2 |
C10A—N3A—H3M | 118.5 | C10B—C9B—C8B | 109.0 (4) |
C7A—N3A—H3N | 113.1 | C10B—C9B—H8A1 | 148.6 |
C10A—N3A—H3N | 111.9 | C8B—C9B—H8A1 | 48.7 |
C10B—N3B—H3M | 106.6 | C10B—C9B—H9A2 | 85.5 |
C10B—N3B—H3N | 116.1 | C8B—C9B—H9A2 | 100.1 |
N1—C1—C6 | 122.01 (13) | H8A1—C9B—H9A2 | 116.9 |
N1—C1—C2 | 120.11 (13) | C10B—C9B—H9B1 | 109.6 |
C6—C1—C2 | 117.87 (12) | C8B—C9B—H9B1 | 112.2 |
C3—C2—C1 | 120.67 (12) | H8A1—C9B—H9B1 | 70.4 |
C3—C2—H2 | 119.7 | H9A2—C9B—H9B1 | 136.1 |
C1—C2—H2 | 119.7 | C10B—C9B—H9B2 | 109.3 |
C2—C3—C4 | 121.22 (12) | C8B—C9B—H9B2 | 108.6 |
C2—C3—H3 | 119.4 | H8A1—C9B—H9B2 | 99.8 |
C4—C3—H3 | 119.4 | H9B1—C9B—H9B2 | 108.1 |
C3—C4—C5 | 118.10 (11) | C10B—C9B—H10D | 56.9 |
C3—C4—C7A | 120.81 (11) | C8B—C9B—H10D | 134.7 |
C5—C4—C7A | 121.08 (11) | H8A1—C9B—H10D | 119.1 |
C6—C5—C4 | 120.94 (12) | H9A2—C9B—H10D | 119.1 |
C6—C5—H5 | 119.5 | H9B1—C9B—H10D | 53.3 |
C4—C5—H5 | 119.5 | H9B2—C9B—H10D | 116.7 |
C5—C6—C1 | 121.16 (12) | N3A—C10A—C9A | 98.2 (6) |
C5—C6—H6 | 119.4 | N3A—C10A—H10C | 111.1 |
C1—C6—H6 | 119.4 | C9A—C10A—H10C | 111.2 |
N2A—C7A—N3A | 119.5 (4) | N3A—C10A—H10D | 115.2 |
N2A—C7A—C4 | 119.64 (12) | C9A—C10A—H10D | 111.6 |
N3A—C7A—C4 | 120.5 (4) | H10C—C10A—H10D | 109.3 |
C9A—C8A—N2A | 110.1 (10) | N3A—C10A—H10A | 82.6 |
C9A—C8A—H8A1 | 117.9 | C9A—C10A—H10A | 53 |
N2A—C8A—H8A1 | 116.2 | H10C—C10A—H10A | 70.4 |
C9A—C8A—H8A2 | 101.8 | H10D—C10A—H10A | 159.5 |
N2A—C8A—H8A2 | 100 | N3A—C10A—H10B | 119.8 |
H8A1—C8A—H8A2 | 108.1 | C9A—C10A—H10B | 115.4 |
C9A—C8A—H8A | 75.1 | H10D—C10A—H10B | 97.5 |
N2A—C8A—H8A | 94 | H10A—C10A—H10B | 80.6 |
H8A1—C8A—H8A | 136.1 | C9B—C10B—N3B | 104.2 (7) |
C9A—C8A—H8B | 141.2 | C9B—C10B—H9A1 | 75.3 |
N2A—C8A—H8B | 104.6 | N3B—C10B—H9A1 | 114.9 |
H8A1—C8A—H8B | 57.2 | C9B—C10B—H10C | 121.5 |
H8A2—C8A—H8B | 54.5 | N3B—C10B—H10C | 106.9 |
H8A—C8A—H8B | 85.9 | H9A1—C10B—H10C | 129.1 |
C9B—C8B—H8A1 | 63.6 | C9B—C10B—H10D | 62.4 |
C9B—C8B—H8A2 | 128.9 | N3B—C10B—H10D | 78.7 |
H8A1—C8B—H8A2 | 105.9 | H9A1—C10B—H10D | 137.7 |
C9B—C8B—H8A | 112.3 | H10C—C10B—H10D | 76.8 |
H8A1—C8B—H8A | 142.5 | C9B—C10B—H10A | 110.2 |
C9B—C8B—H8B | 107.8 | N3B—C10B—H10A | 118.6 |
H8A1—C8B—H8B | 48.2 | H10C—C10B—H10A | 96.3 |
H8A2—C8B—H8B | 63.4 | H10D—C10B—H10A | 162.7 |
H8A—C8B—H8B | 108.2 | C9B—C10B—H10B | 110.2 |
C8A—C9A—C10A | 106.6 (7) | N3B—C10B—H10B | 104.8 |
C8A—C9A—H9A1 | 118.3 | H9A1—C10B—H10B | 137.3 |
C10A—C9A—H9A1 | 109.2 | H10D—C10B—H10B | 63.5 |
C8A—C9A—H9A2 | 105.5 | H10A—C10B—H10B | 108.4 |
N1—C1—C2—C3 | 179.79 (13) | C10A—N3A—C7A—N2A | 29.8 (6) |
C6—C1—C2—C3 | 0.59 (19) | C10A—N3A—C7A—C4 | −157.3 (5) |
C1—C2—C3—C4 | 1.0 (2) | C3—C4—C7A—N2A | 26.62 (18) |
C2—C3—C4—C5 | −1.51 (19) | C5—C4—C7A—N2A | −154.22 (12) |
C2—C3—C4—C7A | 177.68 (12) | C3—C4—C7A—N3A | −146.3 (3) |
C3—C4—C5—C6 | 0.38 (19) | C5—C4—C7A—N3A | 32.9 (3) |
C7A—C4—C5—C6 | −178.81 (12) | C7A—N2A—C8A—C9A | 27.2 (7) |
C4—C5—C6—C1 | 1.3 (2) | N2A—C8A—C9A—C10A | −59.5 (8) |
N1—C1—C6—C5 | 179.09 (13) | C7A—N3A—C10A—C9A | −58.3 (7) |
C2—C1—C6—C5 | −1.7 (2) | C8A—C9A—C10A—N3A | 69.8 (8) |
C8A—N2A—C7A—N3A | −11.2 (5) | C8B—C9B—C10B—N3B | −62.7 (7) |
C8A—N2A—C7A—C4 | 175.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1NA···Cl1i | 0.90 | 2.47 | 3.3271 (16) | 160 |
N2B—H2N···Cl1 | 0.90 | 2.27 | 3.1126 (12) | 156 |
N3B—H3N···Cl1ii | 0.90 | 2.42 | 3.250 (17) | 153 |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) x+1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C10H14N3+·Cl− |
Mr | 211.69 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 293 |
a, b, c (Å) | 15.0055 (2), 8.0884 (1), 17.8088 (3) |
V (Å3) | 2161.46 (5) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 2.84 |
Crystal size (mm) | 0.15 × 0.10 × 0.09 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Nova R diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.676, 0.784 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6131, 2242, 1760 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.630 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.098, 1.05 |
No. of reflections | 2242 |
No. of parameters | 146 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.16 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1NA···Cl1i | 0.90 | 2.47 | 3.3271 (16) | 160 |
N2B—H2N···Cl1 | 0.90 | 2.27 | 3.1126 (12) | 156 |
N3B—H3N···Cl1ii | 0.90 | 2.42 | 3.250 (17) | 153 |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) x+1/2, −y+1/2, −z+1. |
N1 | C1 | 1.372 |
N1 | H1NB | 1.008 |
N1 | H1NA | 1.008 |
N2 | C7 | 1.332 |
N2 | H2A | 1.011 |
N2 | C8 | 1.470 |
N3 | C7 | 1.332 |
N3 | C10 | 1.469 |
N3 | H3 | 0.899 |
C1 | C6 | 1.411 |
C1 | C2 | 1.411 |
C2 | C3 | 1.388 |
C2 | H2 | 1.083 |
C3 | C4 | 1.407 |
C3 | H3 | 1.084 |
C4 | C5 | 1.407 |
C4 | C7 | 1.458 |
C5 | C6 | 1.388 |
C5 | H5 | 1.084 |
C6 | H6 | 1.083 |
C8 | C9 | 1.520 |
C8 | H8A | 1.089 |
C8 | H8B | 1.092 |
C9 | C10 | 1.522 |
C9 | H9A | 1.089 |
C9 | H9B | 1.091 |
C10 | H10A | 1.087 |
C10 | H10B | 1.092 |
Acknowledgements
This research was funded by the Croatian Ministry of Science, Education and Sports, grant Nos. 098–1191344-2943 and 053–0982914–2965.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Boykin, D. W. (2002). J. Braz. Chem. Soc. 13, 763–771. Web of Science CrossRef CAS Google Scholar
Chaires, J. B., Ren, J., Hamelberg, D., Kumar, A., Pandya, V., Boykin, D. W. & Wilson, W. D. (2004). J. Med. Chem. 47, 5729–5742. Web of Science CrossRef PubMed CAS Google Scholar
Farahat, A. A., Paliakov, E., Kumar, A., Barghash, A. E., Goda, F. E., Eisa, H. M., Wenzler, T., Brun, R., Liu, Y., Wilson, W. D. & Boykin, D. W. (2011). Bioorg. Med. Chem. 19, 2156–2167. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hall, J. E., Kerrigan, J. E., Ramachandran, K., Bender, B. C., Stanko, J. P., Jones, S. K., Patrick, D. A. & Tidwell, R. R. (1998). Antimicrob. Agents Chemother. 42, 666–674. Web of Science CAS PubMed Google Scholar
Jarak, I., Karminski-Zamola, G., Pavlović, G. & Popović, Z. (2005). Acta Cryst. C61, o98–o100. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Legrand, Y. M., Lee, A. van der & Barboiu, M. (2008). Acta Cryst. E64, o967–o968. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Molčanov, K., Stolić, I., Kojić-Prodić, B. & Bajić, M. (2011). Acta Cryst. E67, o3450–o3451. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, N. A., Su, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347-1363. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stolić, I., Mišković, K., Magdaleno, A., Silber, A. M., Piantanida, I., Bajić, M. & Glavaš-Obrovac, L. (2009). Bioorg. Med. Chem. 17, 2544–2554. Web of Science PubMed Google Scholar
Stolić, I., Mišković, I., Piantanida, I., Baus-Lončar, M., Glavaš-Obrovac, Lj. & Bajić, M. (2011). Eur. J. Med. Chem. 46, 743–755. Web of Science PubMed Google Scholar
Wydra, R. L., Patterson, S. E. & Strekowski, L. (1990). J. Heterocycl. Chem. 27, 803–805. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Natural and synthetic aromatic amidines that bind in the DNA minor groove have proved to be clinically useful agents primarly as antiparasitic agents.(Boykin, 2002; Farahat et al., 2011). In addition to their antiparasitic properties, certain diamidines display a useful spectrum of antitumor, antiviral and antifungal activities. (Chaires et al., 2004; Hall et al., 1998; Stolić et al. 2009; Stolić et al. 2011). Cyclic amidine moiety is known in a number of potential antitumor agents; some of them have 4-(1,4,5,6-tetrahydropirimidin-2-yl)phenylamine as the building unit (Stolić et al., 2011; Molčanov et al., 2011).
The asymmetric unit contains a single formula unit of 2-(4-aminophenyl)-3,4,5,6-tetrahydropyrimidin-1-ium chloride. The tetrahydropyrimidinium ring is disordered over two positions designated as A and B (Fig. 1). Their respective occupancies are 0.347 (5)/ 0.653 (5). While there is a formal double C=N bond in the neutral tetrahydropyrimidine, both C—N bonds in the cation are approximately equal. However, the positive charge is localized on the C7 atom, as confirmed by DFT calculations (Fig. 3). Such a delocalization poses a significant restraint to conformation of the tetrahydropyrimidine ring. Cremer-Pople puckering parameters are Q = 0.454 (5)°, Θ = 132.8 (6)°, Φ = 55.2 (9)° for the conformer A (atom sequence N2B–C7B–N3B–C10B–C9B–C8B) and Q = 0.527 (12)°, Θ = 51.4 (11)°, Φ = 197.7 (13)° for the conformer B (atom sequence N2B–C7B–N3B–C10B–C9B–C8B) indicating the envelope form for the A ring and the conformation intermediate between half-chair and boat for the ring B. The chloride anions are coordinated by three N—H···Cl hydrogen bonds in the pyramidal arrangement. The crystal packing is dominated by hydrogen bonded layers parallel to (0 1 0) (Fig. 2, Table 1)