organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1360

2-(4-Amino­phen­yl)-3,4,5,6-tetra­hydro­pyrimidin-1-ium chloride

aDepartment of Phyiscal Chemistry, Rudjer Bošković Institute, POB-180, HR-10002 Zagreb, Croatia, and bDepartment of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
*Correspondence e-mail: kmolcano@irb.hr

(Received 7 December 2011; accepted 3 April 2012; online 13 April 2012)

In the title compound, C10H14N3+·Cl, the tetra­hydro­pyridinium ring of the cation, which adopts a slightly distorted envelope conformation, is disordered over two orientations with an occupancy ratio of 0.653 (5):0.347 (5). The amidinium fragment of the major conformer is twisted relative to the benzene ring by 22.5 (6)° and the two C—N bond lengths of this fragment are similar [1.3228 (16) and 1.319 (2) Å]. In the crystal, the chloride anions are involved in three N—H⋯Cl hydrogen bonds, which link the components into a two-dimensional hydrogen-bonded network parallel to (010).

Related literature

For the synthesis, see: Wydra et al. (1990[Wydra, R. L., Patterson, S. E. & Strekowski, L. (1990). J. Heterocycl. Chem. 27, 803-805.]); Stolić et al. (2009[Stolić, I., Mišković, K., Magdaleno, A., Silber, A. M., Piantanida, I., Bajić, M. & Glavaš-Obrovac, L. (2009). Bioorg. Med. Chem. 17, 2544-2554.], 2011[Stolić, I., Mišković, I., Piantanida, I., Baus-Lončar, M., Glavaš-Obrovac, Lj. & Bajić, M. (2011). Eur. J. Med. Chem. 46, 743-755.]). For related compounds, see: Molčanov et al. (2011[Molčanov, K., Stolić, I., Kojić-Prodić, B. & Bajić, M. (2011). Acta Cryst. E67, o3450-o3451.]); Jarak et al. (2005[Jarak, I., Karminski-Zamola, G., Pavlović, G. & Popović, Z. (2005). Acta Cryst. C61, o98-o100.]); Legrand et al. (2008[Legrand, Y. M., Lee, A. van der & Barboiu, M. (2008). Acta Cryst. E64, o967-o968.]). For the biological activity of compounds comprising a cyclic amidine system, see: Boykin (2002[Boykin, D. W. (2002). J. Braz. Chem. Soc. 13, 763-771.]); Chaires et al. (2004[Chaires, J. B., Ren, J., Hamelberg, D., Kumar, A., Pandya, V., Boykin, D. W. & Wilson, W. D. (2004). J. Med. Chem. 47, 5729-5742.]); Farahat et al. (2011[Farahat, A. A., Paliakov, E., Kumar, A., Barghash, A. E., Goda, F. E., Eisa, H. M., Wenzler, T., Brun, R., Liu, Y., Wilson, W. D. & Boykin, D. W. (2011). Bioorg. Med. Chem. 19, 2156-2167.]); Hall et al. (1998[Hall, J. E., Kerrigan, J. E., Ramachandran, K., Bender, B. C., Stanko, J. P., Jones, S. K., Patrick, D. A. & Tidwell, R. R. (1998). Antimicrob. Agents Chemother. 42, 666-674.]). For the GAMESS program package, see: Schmidt et al. (1993[Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, N. A., Su, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347-1363.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14N3+·Cl

  • Mr = 211.69

  • Orthorhombic, P b c n

  • a = 15.0055 (2) Å

  • b = 8.0884 (1) Å

  • c = 17.8088 (3) Å

  • V = 2161.46 (5) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.84 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur Nova R diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.676, Tmax = 0.784

  • 6131 measured reflections

  • 2242 independent reflections

  • 1760 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.098

  • S = 1.05

  • 2242 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯Cl1i 0.90 2.47 3.3271 (16) 160
N2B—H2N⋯Cl1 0.90 2.27 3.1126 (12) 156
N3B—H3N⋯Cl1ii 0.90 2.42 3.250 (17) 153
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Natural and synthetic aromatic amidines that bind in the DNA minor groove have proved to be clinically useful agents primarly as antiparasitic agents.(Boykin, 2002; Farahat et al., 2011). In addition to their antiparasitic properties, certain diamidines display a useful spectrum of antitumor, antiviral and antifungal activities. (Chaires et al., 2004; Hall et al., 1998; Stolić et al. 2009; Stolić et al. 2011). Cyclic amidine moiety is known in a number of potential antitumor agents; some of them have 4-(1,4,5,6-tetrahydropirimidin-2-yl)phenylamine as the building unit (Stolić et al., 2011; Molčanov et al., 2011).

The asymmetric unit contains a single formula unit of 2-(4-aminophenyl)-3,4,5,6-tetrahydropyrimidin-1-ium chloride. The tetrahydropyrimidinium ring is disordered over two positions designated as A and B (Fig. 1). Their respective occupancies are 0.347 (5)/ 0.653 (5). While there is a formal double C=N bond in the neutral tetrahydropyrimidine, both C—N bonds in the cation are approximately equal. However, the positive charge is localized on the C7 atom, as confirmed by DFT calculations (Fig. 3). Such a delocalization poses a significant restraint to conformation of the tetrahydropyrimidine ring. Cremer-Pople puckering parameters are Q = 0.454 (5)°, Θ = 132.8 (6)°, Φ = 55.2 (9)° for the conformer A (atom sequence N2B–C7B–N3B–C10B–C9B–C8B) and Q = 0.527 (12)°, Θ = 51.4 (11)°, Φ = 197.7 (13)° for the conformer B (atom sequence N2B–C7B–N3B–C10B–C9B–C8B) indicating the envelope form for the A ring and the conformation intermediate between half-chair and boat for the ring B. The chloride anions are coordinated by three N—H···Cl hydrogen bonds in the pyramidal arrangement. The crystal packing is dominated by hydrogen bonded layers parallel to (0 1 0) (Fig. 2, Table 1)

Related literature top

For the synthesis, see: Wydra et al. (1990); Stolić et al. (2009, 2011). For related compounds, see: Molčanov et al. (2011); Jarak et al. (2005); Legrand et al. (2008). For the biological activity of compounds comprising a cyclic amidine system, see: Boykin (2002); Chaires et al. (2004); Farahat et al. (2011); Hall et al. (1998). For the GAMESS program package, see: Schmidt et al. (1993).

Experimental top

The crude imidate ester hydrochloride (1.61 g, 8.6 mmol) prepared from 4-aminobenzonitrile (1.12 g, 9.5 mmol) in anhydrous methanol by Pinner reaction was suspended in anhydrous methanol (100 ml), 1,3-diaminopropane (4 ml) was added and mixture was stirred at room temperature for 4 days under the nitrogen atmosphere. The solvent was removed under reduced pressure and residue was recrystallized from ethanol-diethyl ether to yield 1.06 g (57.6%) of white powder, IR (νmax/cm-1): 2883, 2023, 1595, 1472, 1101, 727, 635; 1H NMR (DMSO-d6) δ/p.p.m.: 8.28 (s, 2H, NH), 7.54 (d, 2H, J = 8.5 Hz, ArH), 6.65 (d, 2H, J = 8.1 Hz, ArH), 6.10 (s, 2H, NH2), 2.88 (t, 4H, J = 7.4 Hz, CH2), 1.90 (m, 2H, J = 7.4 Hz, CH2).

DFT calculations. The structure, obtained from the X-ray structural analysis was optimized without symmetry constrains by using MP2/6–31+G(d,p) level of theory implemented in the GAMESS program package (Schmidt et al., 1993) . Tight convergence criteria were used in the optimization. The calculation was checked for convergence and frequencies were calculated in order to prove that the optimized structure was the minimum. The optimized geometry shows agreement with experimental one (conformer B); only four bonds (N1—C1, N3—C7, C2—C3 and C5–C6) differ more than 3 e.s.d.'s.

Refinement top

Hydrogen atoms were located from a difference Fourier map and refined as riding on their parent atoms. C—H bond lenghts were constrained to 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, while N—H bonds were constrained to 0.90 Å; Uiso(H) = 1.2 Ueq(C,N). Since the disordered atoms are very close to each other, they were refined with equal displacement ellipsoids using the command EADP in SHELXL97 (Sheldrick, 2008) for every pair of disordered atoms (A and B), except C9A and C9B which had their displacement parameters refined independently.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of the asymmetric unit of the title compound showing the major position of the disordered tetrahydropyrimidinium ring (B). Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are depicted as spheres of arbitrary radii.
[Figure 2] Fig. 2. Hydrogen bonded (0 1 0) layer in the title compound. Symmetry operators: (i) x + 3/2, -y + 1/2, -z + 1; (ii) -x, y, -z + 3/2.
[Figure 3] Fig. 3. Mulliken charges calculated by DFT method.
2-(4-Aminophenyl)-3,4,5,6-tetrahydropyrimidin-1-ium chloride top
Crystal data top
C10H14N3+·ClF(000) = 896
Mr = 211.69Dx = 1.301 Mg m3
Orthorhombic, PbcnCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2n 2abCell parameters from 3458 reflections
a = 15.0055 (2) Åθ = 2.5–76.0°
b = 8.0884 (1) ŵ = 2.84 mm1
c = 17.8088 (3) ÅT = 293 K
V = 2161.46 (5) Å3Prism, colourless
Z = 80.15 × 0.10 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur Nova R
diffractometer
1760 reflections with I > 2σ(I)
ω scansRint = 0.017
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
θmax = 76.2°, θmin = 5.0°
Tmin = 0.676, Tmax = 0.784h = 1818
6131 measured reflectionsk = 510
2242 independent reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.0224P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.18 e Å3
2242 reflectionsΔρmin = 0.16 e Å3
146 parameters
Crystal data top
C10H14N3+·ClV = 2161.46 (5) Å3
Mr = 211.69Z = 8
Orthorhombic, PbcnCu Kα radiation
a = 15.0055 (2) ŵ = 2.84 mm1
b = 8.0884 (1) ÅT = 293 K
c = 17.8088 (3) Å0.15 × 0.10 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur Nova R
diffractometer
2242 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1760 reflections with I > 2σ(I)
Tmin = 0.676, Tmax = 0.784Rint = 0.017
6131 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
2242 reflectionsΔρmin = 0.16 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.33023 (2)0.24010 (5)0.60412 (2)0.05806 (15)
N10.73148 (10)0.50143 (18)0.76130 (9)0.0710 (4)
H1NB0.77750.57270.75930.085*
H1NA0.71540.45390.80490.085*
N2A0.48706 (7)0.24901 (14)0.48980 (7)0.0481 (3)0.347 (5)
H2NB0.45160.26920.52960.058*0.347 (5)
N2B0.48706 (7)0.24901 (14)0.48980 (7)0.0481 (3)0.653 (5)
H2N0.45160.26910.52950.058*0.653 (5)
N3A0.6227 (6)0.2596 (6)0.4311 (5)0.0498 (10)0.653 (5)
H3M0.6820.27220.43590.06*0.653 (5)
N3B0.6181 (11)0.3005 (15)0.4279 (11)0.0498 (10)0.347 (5)
H3N0.67740.31320.43270.06*0.347 (5)
C10.69335 (9)0.45272 (15)0.69569 (8)0.0474 (3)
C20.61748 (9)0.35056 (16)0.69653 (7)0.0475 (3)
H20.59370.31630.74220.057*
C30.57817 (8)0.30093 (16)0.63062 (7)0.0436 (3)
H30.52750.23480.63230.052*
C40.61292 (8)0.34788 (14)0.56100 (7)0.0405 (3)
C50.68797 (9)0.45061 (16)0.56016 (8)0.0483 (3)
H50.7120.48390.51450.058*
C60.72660 (10)0.50288 (16)0.62576 (9)0.0510 (3)
H60.77570.57290.62380.061*
C7A0.57250 (8)0.28921 (15)0.49100 (7)0.0427 (3)0.347 (5)
C7B0.57250 (8)0.28921 (15)0.49100 (7)0.0427 (3)0.653 (5)
C8A0.4451 (10)0.2003 (13)0.4167 (7)0.0457 (8)0.347 (5)
H8A10.40260.27770.39570.055*0.347 (5)
H8A20.41270.10210.43240.055*0.347 (5)
C8B0.4427 (5)0.1637 (5)0.4285 (3)0.0457 (8)0.653 (5)
H8A0.4460.04420.4320.055*0.653 (5)
H8B0.38030.19510.42760.055*0.653 (5)
C9A0.5137 (3)0.1287 (7)0.3654 (2)0.0539 (14)0.347 (5)
H9A10.54280.02660.38020.065*0.347 (5)
H9A20.48320.10870.31830.065*0.347 (5)
C9B0.48604 (17)0.2297 (4)0.35639 (14)0.0574 (8)0.653 (5)
H9B10.4750.34680.34920.069*0.653 (5)
H9B20.46110.17090.31380.069*0.653 (5)
C10A0.5833 (7)0.2609 (10)0.3539 (6)0.0575 (9)0.347 (5)
H10C0.62690.22730.31670.069*0.347 (5)
H10D0.55670.36490.33860.069*0.347 (5)
C10B0.5866 (3)0.1982 (5)0.3599 (3)0.0575 (9)0.653 (5)
H10A0.59850.08040.35930.069*0.653 (5)
H10B0.61590.24820.3170.069*0.653 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0367 (2)0.0877 (3)0.0498 (2)0.00153 (14)0.00414 (13)0.00525 (16)
N10.0747 (9)0.0785 (8)0.0598 (8)0.0183 (7)0.0182 (7)0.0077 (6)
N2A0.0334 (5)0.0656 (7)0.0454 (6)0.0000 (4)0.0010 (5)0.0087 (5)
N2B0.0334 (5)0.0656 (7)0.0454 (6)0.0000 (4)0.0010 (5)0.0087 (5)
N3A0.0340 (10)0.069 (3)0.0461 (10)0.005 (2)0.0034 (8)0.006 (2)
N3B0.0340 (10)0.069 (3)0.0461 (10)0.005 (2)0.0034 (8)0.006 (2)
C10.0431 (6)0.0459 (6)0.0533 (7)0.0034 (5)0.0080 (6)0.0059 (5)
C20.0433 (7)0.0561 (7)0.0430 (6)0.0005 (5)0.0012 (6)0.0006 (6)
C30.0350 (6)0.0488 (6)0.0470 (7)0.0029 (5)0.0009 (5)0.0013 (5)
C40.0322 (5)0.0453 (6)0.0440 (6)0.0024 (4)0.0000 (5)0.0004 (5)
C50.0407 (6)0.0529 (7)0.0515 (7)0.0045 (5)0.0037 (6)0.0042 (5)
C60.0395 (6)0.0508 (7)0.0627 (8)0.0083 (5)0.0033 (6)0.0019 (6)
C7A0.0354 (6)0.0495 (6)0.0433 (6)0.0037 (5)0.0008 (5)0.0003 (5)
C7B0.0354 (6)0.0495 (6)0.0433 (6)0.0037 (5)0.0008 (5)0.0003 (5)
C8A0.0416 (7)0.050 (2)0.0454 (19)0.0047 (19)0.0044 (13)0.0034 (14)
C8B0.0416 (7)0.050 (2)0.0454 (19)0.0047 (19)0.0044 (13)0.0034 (14)
C9A0.052 (3)0.061 (3)0.049 (2)0.005 (2)0.0064 (19)0.0088 (19)
C9B0.0558 (14)0.0712 (18)0.0453 (12)0.0074 (12)0.0077 (10)0.0036 (11)
C10A0.0534 (10)0.077 (3)0.0425 (11)0.004 (2)0.0041 (9)0.007 (2)
C10B0.0534 (10)0.077 (3)0.0425 (11)0.004 (2)0.0041 (9)0.007 (2)
Geometric parameters (Å, º) top
N1—C11.3593 (18)C4—C51.3996 (17)
N1—H1NB0.8999C4—C7A1.4653 (17)
N1—H1NA0.8999C5—C61.3710 (19)
N2A—C7A1.3228 (17)C5—H50.93
N2A—C8A1.499 (14)C6—H60.93
N2A—H2NB0.901C8A—C9A1.494 (15)
N2B—H2N0.9C8A—H8A10.9677
N2B—C7B1.3228 (16)C8A—H8A20.9717
N2B—C8B1.453 (6)C8B—C9B1.535 (6)
N3A—C7A1.327 (9)C8B—H8A0.97
N3A—C10A1.497 (14)C8B—H8B0.97
N3A—H3M0.8999C9A—C10A1.509 (11)
N3B—C10B1.541 (19)C9A—H9A10.97
N3B—C7B1.319 (2)C9A—H9A20.97
N3B—H3N0.8999C9B—C10B1.531 (6)
C1—C61.402 (2)C9B—H9B10.97
C1—C21.4069 (19)C10A—H10C0.97
C2—C31.3736 (18)C10A—H10D0.97
C2—H20.93C10B—H10A0.97
C3—C41.3975 (18)C10B—H10B0.97
C3—H30.93
C1—N1—H1NB118.4C10A—C9A—H9A2109.1
C1—N1—H1NA120.4H9A1—C9A—H9A2107.8
H1NB—N1—H1NA120.9C8A—C9A—H9B284.7
C7A—N2A—C8A119.1 (6)C10A—C9A—H9B298.2
C7A—N2A—H2NB121H9A1—C9A—H9B2135.3
C8A—N2A—H2NB118.8C8A—C9A—H10A145.1
C7A—N2A—H2N121C10A—C9A—H10A62.4
C8A—N2A—H2N118.8H9A1—C9A—H10A49
C7A—N3A—C10A120.9 (7)H9A2—C9A—H10A109.4
C7A—N3A—H3M117.6H9B2—C9A—H10A128.2
C10A—N3A—H3M118.5C10B—C9B—C8B109.0 (4)
C7A—N3A—H3N113.1C10B—C9B—H8A1148.6
C10A—N3A—H3N111.9C8B—C9B—H8A148.7
C10B—N3B—H3M106.6C10B—C9B—H9A285.5
C10B—N3B—H3N116.1C8B—C9B—H9A2100.1
N1—C1—C6122.01 (13)H8A1—C9B—H9A2116.9
N1—C1—C2120.11 (13)C10B—C9B—H9B1109.6
C6—C1—C2117.87 (12)C8B—C9B—H9B1112.2
C3—C2—C1120.67 (12)H8A1—C9B—H9B170.4
C3—C2—H2119.7H9A2—C9B—H9B1136.1
C1—C2—H2119.7C10B—C9B—H9B2109.3
C2—C3—C4121.22 (12)C8B—C9B—H9B2108.6
C2—C3—H3119.4H8A1—C9B—H9B299.8
C4—C3—H3119.4H9B1—C9B—H9B2108.1
C3—C4—C5118.10 (11)C10B—C9B—H10D56.9
C3—C4—C7A120.81 (11)C8B—C9B—H10D134.7
C5—C4—C7A121.08 (11)H8A1—C9B—H10D119.1
C6—C5—C4120.94 (12)H9A2—C9B—H10D119.1
C6—C5—H5119.5H9B1—C9B—H10D53.3
C4—C5—H5119.5H9B2—C9B—H10D116.7
C5—C6—C1121.16 (12)N3A—C10A—C9A98.2 (6)
C5—C6—H6119.4N3A—C10A—H10C111.1
C1—C6—H6119.4C9A—C10A—H10C111.2
N2A—C7A—N3A119.5 (4)N3A—C10A—H10D115.2
N2A—C7A—C4119.64 (12)C9A—C10A—H10D111.6
N3A—C7A—C4120.5 (4)H10C—C10A—H10D109.3
C9A—C8A—N2A110.1 (10)N3A—C10A—H10A82.6
C9A—C8A—H8A1117.9C9A—C10A—H10A53
N2A—C8A—H8A1116.2H10C—C10A—H10A70.4
C9A—C8A—H8A2101.8H10D—C10A—H10A159.5
N2A—C8A—H8A2100N3A—C10A—H10B119.8
H8A1—C8A—H8A2108.1C9A—C10A—H10B115.4
C9A—C8A—H8A75.1H10D—C10A—H10B97.5
N2A—C8A—H8A94H10A—C10A—H10B80.6
H8A1—C8A—H8A136.1C9B—C10B—N3B104.2 (7)
C9A—C8A—H8B141.2C9B—C10B—H9A175.3
N2A—C8A—H8B104.6N3B—C10B—H9A1114.9
H8A1—C8A—H8B57.2C9B—C10B—H10C121.5
H8A2—C8A—H8B54.5N3B—C10B—H10C106.9
H8A—C8A—H8B85.9H9A1—C10B—H10C129.1
C9B—C8B—H8A163.6C9B—C10B—H10D62.4
C9B—C8B—H8A2128.9N3B—C10B—H10D78.7
H8A1—C8B—H8A2105.9H9A1—C10B—H10D137.7
C9B—C8B—H8A112.3H10C—C10B—H10D76.8
H8A1—C8B—H8A142.5C9B—C10B—H10A110.2
C9B—C8B—H8B107.8N3B—C10B—H10A118.6
H8A1—C8B—H8B48.2H10C—C10B—H10A96.3
H8A2—C8B—H8B63.4H10D—C10B—H10A162.7
H8A—C8B—H8B108.2C9B—C10B—H10B110.2
C8A—C9A—C10A106.6 (7)N3B—C10B—H10B104.8
C8A—C9A—H9A1118.3H9A1—C10B—H10B137.3
C10A—C9A—H9A1109.2H10D—C10B—H10B63.5
C8A—C9A—H9A2105.5H10A—C10B—H10B108.4
N1—C1—C2—C3179.79 (13)C10A—N3A—C7A—N2A29.8 (6)
C6—C1—C2—C30.59 (19)C10A—N3A—C7A—C4157.3 (5)
C1—C2—C3—C41.0 (2)C3—C4—C7A—N2A26.62 (18)
C2—C3—C4—C51.51 (19)C5—C4—C7A—N2A154.22 (12)
C2—C3—C4—C7A177.68 (12)C3—C4—C7A—N3A146.3 (3)
C3—C4—C5—C60.38 (19)C5—C4—C7A—N3A32.9 (3)
C7A—C4—C5—C6178.81 (12)C7A—N2A—C8A—C9A27.2 (7)
C4—C5—C6—C11.3 (2)N2A—C8A—C9A—C10A59.5 (8)
N1—C1—C6—C5179.09 (13)C7A—N3A—C10A—C9A58.3 (7)
C2—C1—C6—C51.7 (2)C8A—C9A—C10A—N3A69.8 (8)
C8A—N2A—C7A—N3A11.2 (5)C8B—C9B—C10B—N3B62.7 (7)
C8A—N2A—C7A—C4175.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···Cl1i0.902.473.3271 (16)160
N2B—H2N···Cl10.902.273.1126 (12)156
N3B—H3N···Cl1ii0.902.423.250 (17)153
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H14N3+·Cl
Mr211.69
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)15.0055 (2), 8.0884 (1), 17.8088 (3)
V3)2161.46 (5)
Z8
Radiation typeCu Kα
µ (mm1)2.84
Crystal size (mm)0.15 × 0.10 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur Nova R
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.676, 0.784
No. of measured, independent and
observed [I > 2σ(I)] reflections
6131, 2242, 1760
Rint0.017
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.098, 1.05
No. of reflections2242
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···Cl1i0.902.473.3271 (16)160
N2B—H2N···Cl10.902.273.1126 (12)156
N3B—H3N···Cl1ii0.902.423.250 (17)153
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+1/2, z+1.
Calculated bond lengths (Å) top
N1C11.372
N1H1NB1.008
N1H1NA1.008
N2C71.332
N2H2A1.011
N2C81.470
N3C71.332
N3C101.469
N3H30.899
C1C61.411
C1C21.411
C2C31.388
C2H21.083
C3C41.407
C3H31.084
C4C51.407
C4C71.458
C5C61.388
C5H51.084
C6H61.083
C8C91.520
C8H8A1.089
C8H8B1.092
C9C101.522
C9H9A1.089
C9H9B1.091
C10H10A1.087
C10H10B1.092
 

Acknowledgements

This research was funded by the Croatian Ministry of Science, Education and Sports, grant Nos. 098–1191344-2943 and 053–0982914–2965.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBoykin, D. W. (2002). J. Braz. Chem. Soc. 13, 763–771.  Web of Science CrossRef CAS Google Scholar
First citationChaires, J. B., Ren, J., Hamelberg, D., Kumar, A., Pandya, V., Boykin, D. W. & Wilson, W. D. (2004). J. Med. Chem. 47, 5729–5742.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarahat, A. A., Paliakov, E., Kumar, A., Barghash, A. E., Goda, F. E., Eisa, H. M., Wenzler, T., Brun, R., Liu, Y., Wilson, W. D. & Boykin, D. W. (2011). Bioorg. Med. Chem. 19, 2156–2167.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHall, J. E., Kerrigan, J. E., Ramachandran, K., Bender, B. C., Stanko, J. P., Jones, S. K., Patrick, D. A. & Tidwell, R. R. (1998). Antimicrob. Agents Chemother. 42, 666–674.  Web of Science CAS PubMed Google Scholar
First citationJarak, I., Karminski-Zamola, G., Pavlović, G. & Popović, Z. (2005). Acta Cryst. C61, o98–o100.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLegrand, Y. M., Lee, A. van der & Barboiu, M. (2008). Acta Cryst. E64, o967–o968.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMolčanov, K., Stolić, I., Kojić-Prodić, B. & Bajić, M. (2011). Acta Cryst. E67, o3450–o3451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, N. A., Su, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347-1363.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStolić, I., Mišković, K., Magdaleno, A., Silber, A. M., Piantanida, I., Bajić, M. & Glavaš-Obrovac, L. (2009). Bioorg. Med. Chem. 17, 2544–2554.  Web of Science PubMed Google Scholar
First citationStolić, I., Mišković, I., Piantanida, I., Baus-Lončar, M., Glavaš-Obrovac, Lj. & Bajić, M. (2011). Eur. J. Med. Chem. 46, 743–755.  Web of Science PubMed Google Scholar
First citationWydra, R. L., Patterson, S. E. & Strekowski, L. (1990). J. Heterocycl. Chem. 27, 803–805.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1360
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds