metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m660-m661

Poly[[bis­­(μ-4,4′-bi­pyridine-κ2N:N′)copper(I)] perchlorate 0.24-hydrate]

aTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China, bClinical Medical College of Tianjin Medical University, Tianjin Medical University, Tianjin 300070, People's Republic of China, and cDepartment of Pharmacy, The Second Affiliated Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China
*Correspondence e-mail: xiechengzhi@tijmu.edu.cn

(Received 29 February 2012; accepted 18 April 2012; online 25 April 2012)

The title copper(I) polymeric compound, {[Cu(C10H8N2)2]ClO4·0.24H2O}n, obtained by the reaction of Cu(ClO4)2 and 4,4′-bipyridine (4,4′-bpy) under hydro­thermal conditions, features a fourfold-inter­penetrated diamondoid coordination framework. The asymmetric unit consists of two CuI atoms, three 4,4′-bpy ligands in general positions and two halves of two centrosymmetric 4,4′-bpy ligands, two ClO4 anions and water mol­ecule with a site-occupancy factor of 0.480 (17). The CuI atoms are in a distorted tetra­hedral coordination environment and are bridged by 4,4′-bpy ligands, forming a diamondoid cationic polymeric framework that encloses two symmetry-independent channels along [100], which accommodate perchlorate anions and water mol­ecules.

Related literature

For the use of the 4,4′-bipyridine ligand in the construction of metal-organic frameworks, see: Yaghi & Li (1996[Yaghi, O. M. & Li, H. (1996). J. Am. Chem. Soc. 118, 295-296.]); MacGillivray et al. (1994[MacGillivray, L. R., Subramamian, S. & Zaworotko, M. J. (1994). Chem. Commun. pp. 1325-1326.]); Xie et al. (2010[Xie, C. Z., Su, Q. J., Li, S. H., Xu, J. Y. & Wang, L. Y. (2010). Z. Anorg. Allg. Chem. 13, 1476-1479.]). For reduction of CuII to CuI and other phenomena occuring under hydro­thermal conditions, see: Liu et al. (2001[Liu, C. M., Gao, S. & Kou, H. Z. (2001). Chem. Commun. pp. 1670-1671.]); Yang et al. (2010[Yang, E. C., Liu, Z. Y., Shi, X. J., Liang, Q. Q. & Zhao, X. J. (2010). Inorg. Chem. 49, 7969-7995.]); Xie et al. (2006[Xie, C. Z., Zhang, Z. F., Zhang, B. F., Wang, X. Q., Wang, R. J., Shen, G. Q., Shen, D. Z. & Ding, B. (2006). Eur. J. Inorg. Chem. 6, 1337-1340.], 2008[Xie, C. Z., Zhang, B. F., Wang, X. Q., Yu, B., Wang, R. J., Shen, G. Q. & Shen, D. Z. (2008). Inorg. Chem. Commun. 634, 387-391.]). For related structures, see: Pedireddi et al. (2006[Pedireddi, V. R., Shimpi, M. R. & Yakhmi, S. J. V. (2006). Macromol. Symp. 241, 83-87.]); Zhang et al. (2007[Zhang, J., Liu, R., Feng, P. Y. & Bu, X. H. (2007). Angew. Chem. Int. Ed. 46, 8388-8391.]); Qin et al. (2007[Qin, J. H., Li, X. L. & Guo, H. (2007). Z. Kristallogr. New Cryst. Struct. 222, 318-320.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H8N2)2]ClO4·0.24H2O

  • Mr = 479.68

  • Monoclinic, P 21 /c

  • a = 7.1894 (14) Å

  • b = 32.380 (7) Å

  • c = 17.319 (4) Å

  • β = 100.40 (3)°

  • V = 3965.6 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 293 K

  • 0.26 × 0.11 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.732, Tmax = 0.877

  • 29543 measured reflections

  • 6849 independent reflections

  • 4507 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.201

  • S = 1.04

  • 6849 reflections

  • 547 parameters

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Selected bond lengths (Å)

N1—Cu1 1.989 (4)
N2—Cu2 2.000 (4)
N3—Cu1 2.078 (5)
N4—Cu2i 2.040 (5)
N5—Cu1 2.086 (5)
N6—Cu2ii 2.064 (5)
N7—Cu1 2.023 (5)
N8—Cu2 2.057 (5)
Symmetry codes: (i) [x+2, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z-1.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 2005[Brandenburg, K. & Berndt, M. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of metal-organic frameworks (MOF) is becoming an increasingly popular field of research in view of the formation of fascinating structures and their potentially useful ion-exchange, adsorption, catalytic, fluorescence and magnetic properties. The simple, rigid, rod-like ligand, 4,4'-bipy, has been used extensively to ligate metal ions into open frameworks with channels (Yaghi & Li, 1996; MacGillivray et al., 1994; Xie et al., 2010). On the other hand, it has been found that under hydrothermal conditions used for preparation of MOFs many interesting phenomena including ligand oxidative coupling, hydrolysis, substitution and redox processes can occur (Liu et al., 2001; Xie et al., 2008). Encouraged by several recent reports on reduction of CuII to CuI under basic hydrothermal conditions (Yang et al., 2010; Xie et al., 2006), we designed and synthesized the title three-dimensional copper(I) coordination polymer and determined its crystal structure.

The two symmetry independent CuI ions are in a distorted tetrahedral coordination geometry, each surrounded by four nitrogen donors from adjacent 4,4'-bpy ligands (Fig. 1). The 4,4'-bpy ligands bridge the CuI ions into a three dimensional diamodoid framework (Fig. 2) and the crystal structure features a four-fold interpenatration of these frameworks (Fig. 3) leaving two symmetry independent channels along [1 0 0]. These channels are filled with perchlorate counteranions and water molecules. There are three similar examples of diamondoid coordination polymers formed from copper(I) and 4,4'-bipy ligand: [Cu(4,4'-bpy)2] NO3 (Pedireddi et al., 2006), [Cu2 (4,4'-bpy) 4] (d-Hcam) 2.(4,4'-bipy) 2 .12H2O(Zhang et al., 2007) and [Cu(4,4'-bpy) 2]ClO4 (Qin et al., 2007), which contain similar diamondoid framework but differ in number of interpenetrating networks and crystal symmetry.

Related literature top

For the use of the 4,4'-bipyridine ligand in the construction of metal-organic frameworks, see: Yaghi & Li (1996); MacGillivray et al. (1994); Xie et al. (2010). For reduction of CuII to CuI and other phenomena occuring under hydrothermal conditions, see: Liu et al. (2001); Yang et al. (2010); Xie et al. (2006, 2008). For related structures, see: Pedireddi et al. (2006); Zhang et al. (2007); Qin et al. (2007).

Experimental top

A mixture of Cu(ClO4)2. 6H2O (0.186 g, 0.5 mmol), 4,4'-bipy (0.192 g, 1 mmol) and H2O (18.0 ml) in the molar ratio of 1:2:1000 was sealed in a 25 mL stainless steel reactor with Teflon liner, and heated directly to 180°C. After keeping at 180°C for 72 h it was cooled slowly to 30°C at a rate of 2°C/h. The resulting orange block crystals were washed and dried in air (yield: 15%.).

Refinement top

The H atoms of the aromatic rings were placed at calculated positions, with C—H = 0.93 Å and assigned Uiso(H) = 1.2Ueq(C). A high peak in a difference Fourier map was interpreted as a water molecule with partial occupancy. The occupancy factor of water molecule refined at 0.480 (17). Hydrogen atoms of water molecule could not be located. O1W was refined with isotropic displacement parameter.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP presentation of the title compound with 30% probability displacement ellipsoids. All hydrogen atoms are omitted for clarity. Symmetry operations used to generate equivalent atoms: #A -x+1, -y, -z+1; #B -x-3, -y, -z+2; #C x-2, -y+1/2, z+1/2; #D x, y, z+1.
[Figure 2] Fig. 2. A view of a single {[Cu(C10H8N2)2]+n diamondoid framework in the title compound. Perchlorate anions, water molecules and hydrogen atoms are not shown.
[Figure 3] Fig. 3. Four-fold interpenetration of the diamondoid frameworks in the title compound viewed along [1 0 0]. Each framework is shown in different colour. Perchlorate anions, water molecules and hydrogen atoms are not shown.
Poly[[bis(µ-4,4'-bipyridine-κ2N:N')copper(I)] perchlorate 0.24-hydrate] top
Crystal data top
[Cu(C10H8N2)2]ClO4·0.24H2OF(000) = 1955
Mr = 479.68Dx = 1.607 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 36980 reflections
a = 7.1894 (14) Åθ = 3.1–25.5°
b = 32.380 (7) ŵ = 1.27 mm1
c = 17.319 (4) ÅT = 293 K
β = 100.40 (3)°Block, orange
V = 3965.6 (14) Å30.26 × 0.11 × 0.11 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
6849 independent reflections
Radiation source: fine-focus sealed tube4507 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.732, Tmax = 0.877k = 3838
29543 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.201H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0887P)2 + 9.2459P]
where P = (Fo2 + 2Fc2)/3
6849 reflections(Δ/σ)max < 0.001
547 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Cu(C10H8N2)2]ClO4·0.24H2OV = 3965.6 (14) Å3
Mr = 479.68Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.1894 (14) ŵ = 1.27 mm1
b = 32.380 (7) ÅT = 293 K
c = 17.319 (4) Å0.26 × 0.11 × 0.11 mm
β = 100.40 (3)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
6849 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4507 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.877Rint = 0.095
29543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.201H-atom parameters constrained
S = 1.04Δρmax = 1.43 e Å3
6849 reflectionsΔρmin = 0.86 e Å3
547 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2429 (8)0.09009 (17)0.6490 (4)0.0320 (14)
H10.20890.06510.62890.038*
C20.3824 (8)0.08945 (17)0.6942 (3)0.0307 (13)
H20.44150.06470.70260.037*
C30.4345 (8)0.12579 (17)0.7270 (3)0.0272 (12)
C40.3394 (9)0.16107 (17)0.7119 (4)0.0344 (14)
H40.36710.18620.73340.041*
C50.2037 (8)0.15924 (17)0.6653 (4)0.0329 (14)
H50.14320.18360.65600.039*
C60.8364 (9)0.09490 (19)0.8285 (4)0.0378 (15)
H60.91460.07220.83010.045*
C70.7093 (9)0.09400 (19)0.7771 (4)0.0380 (15)
H70.70700.07150.74390.046*
C80.5853 (8)0.12672 (16)0.7754 (3)0.0274 (12)
C90.6128 (9)0.16069 (18)0.8199 (3)0.0343 (14)
H90.54120.18440.81710.041*
C100.7446 (9)0.16006 (18)0.8682 (4)0.0360 (15)
H100.76010.18370.89690.043*
C110.2471 (9)0.20186 (18)0.6009 (3)0.0335 (14)
H110.23130.19480.65140.040*
C120.3796 (9)0.23233 (19)0.5929 (3)0.0348 (14)
H120.44670.24560.63680.042*
C130.4093 (8)0.24236 (16)0.5185 (3)0.0280 (13)
C140.2909 (8)0.22430 (17)0.4555 (3)0.0310 (13)
H140.29970.23190.40450.037*
C150.1605 (9)0.19513 (17)0.4680 (3)0.0304 (13)
H150.08180.18380.42470.036*
C160.7924 (9)0.29751 (18)0.4372 (4)0.0352 (14)
H160.86500.29310.39860.042*
C170.6609 (9)0.26805 (19)0.4472 (3)0.0355 (14)
H170.64260.24510.41450.043*
C180.5554 (8)0.27271 (17)0.5065 (3)0.0278 (12)
C190.5869 (9)0.30835 (18)0.5514 (4)0.0343 (14)
H190.52040.31290.59190.041*
C200.7157 (9)0.33673 (19)0.5360 (4)0.0366 (15)
H200.73170.36070.56600.044*
C210.3331 (9)0.14752 (18)0.4278 (3)0.0342 (14)
H210.35990.16400.46850.041*
C220.4564 (9)0.14808 (19)0.3586 (3)0.0352 (14)
H220.56550.16400.35330.042*
C230.4197 (8)0.12482 (16)0.2958 (3)0.0261 (12)
C240.2568 (9)0.1018 (2)0.3082 (4)0.0414 (16)
H240.22570.08600.26750.050*
C250.1385 (9)0.1020 (2)0.3803 (4)0.0386 (15)
H250.02980.08580.38720.046*
C260.6627 (9)0.09736 (18)0.0896 (4)0.0342 (14)
H260.65170.07740.05210.041*
C270.5376 (8)0.09632 (18)0.1602 (3)0.0326 (13)
H270.44380.07620.16900.039*
C280.5519 (8)0.12528 (16)0.2182 (3)0.0267 (12)
C290.6942 (8)0.15461 (19)0.1994 (3)0.0341 (14)
H290.70870.17510.23550.041*
C300.8129 (8)0.15356 (18)0.1282 (3)0.0329 (14)
H300.90840.17320.11790.040*
C310.3277 (10)0.0863 (2)0.4967 (4)0.0475 (19)
H310.33890.11240.47580.057*
C320.4468 (9)0.05619 (19)0.4798 (4)0.0428 (17)
H320.53590.06240.44870.051*
C330.4365 (8)0.01689 (18)0.5083 (3)0.0302 (13)
C340.3011 (11)0.0112 (2)0.5549 (5)0.058 (2)
H340.28830.01450.57710.070*
C350.1855 (10)0.0430 (2)0.5688 (5)0.051 (2)
H350.09450.03760.59940.061*
C361.1328 (9)0.0501 (2)1.0417 (4)0.0392 (15)
H361.03400.05541.08320.047*
C371.2718 (9)0.02264 (19)1.0534 (4)0.0367 (14)
H371.26410.00981.10200.044*
C381.4211 (8)0.01396 (17)0.9944 (3)0.0287 (12)
C391.4179 (10)0.0331 (2)0.9230 (4)0.0467 (17)
H391.51270.02770.88000.056*
C401.2740 (10)0.0599 (2)0.9161 (4)0.0480 (18)
H401.27550.07220.86740.058*
N10.1530 (7)0.12431 (13)0.6323 (3)0.0273 (10)
N20.8522 (7)0.12694 (14)0.8760 (3)0.0279 (10)
N30.1415 (7)0.18220 (14)0.5406 (3)0.0321 (11)
N40.8213 (7)0.33187 (15)0.4796 (3)0.0313 (11)
N50.1744 (7)0.12460 (13)0.4413 (3)0.0270 (10)
N60.7985 (7)0.12572 (14)0.0731 (3)0.0296 (11)
N70.1957 (7)0.08080 (15)0.5413 (3)0.0299 (11)
N81.1333 (7)0.06960 (14)0.9737 (3)0.0325 (11)
O10.0666 (15)0.0130 (2)0.6676 (5)0.139 (4)
O20.3401 (12)0.0158 (3)0.7042 (7)0.164 (4)
O30.0968 (9)0.06143 (15)0.7597 (4)0.0711 (18)
O40.1105 (17)0.0063 (2)0.7922 (5)0.148 (4)
O60.0371 (9)0.30827 (15)0.7768 (3)0.0673 (17)
O70.2910 (7)0.26223 (16)0.7630 (3)0.0585 (14)
O80.0905 (8)0.26365 (15)0.6697 (3)0.0589 (15)
O90.0181 (8)0.23755 (19)0.7945 (3)0.0713 (16)
O1W0.3437 (18)0.0047 (4)0.7547 (7)0.073 (5)*0.480 (17)
Cl10.1334 (3)0.02079 (5)0.73353 (11)0.0575 (6)
Cl20.0999 (2)0.26851 (5)0.75064 (9)0.0403 (4)
Cu10.00680 (10)0.12611 (2)0.54984 (4)0.0274 (2)
Cu20.98541 (10)0.12353 (2)0.96766 (4)0.0285 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (3)0.025 (3)0.039 (3)0.002 (2)0.014 (3)0.003 (2)
C20.030 (3)0.025 (3)0.039 (3)0.002 (2)0.010 (3)0.000 (2)
C30.024 (3)0.031 (3)0.027 (3)0.000 (2)0.007 (3)0.005 (2)
C40.040 (4)0.022 (3)0.045 (4)0.004 (3)0.019 (3)0.003 (2)
C50.034 (3)0.027 (3)0.042 (3)0.008 (3)0.018 (3)0.000 (3)
C60.034 (3)0.034 (3)0.050 (4)0.010 (3)0.019 (3)0.004 (3)
C70.043 (4)0.037 (3)0.040 (4)0.009 (3)0.022 (3)0.011 (3)
C80.027 (3)0.025 (3)0.031 (3)0.001 (2)0.007 (3)0.001 (2)
C90.039 (4)0.032 (3)0.035 (3)0.005 (3)0.014 (3)0.001 (3)
C100.044 (4)0.027 (3)0.042 (4)0.001 (3)0.021 (3)0.006 (3)
C110.041 (4)0.033 (3)0.027 (3)0.006 (3)0.009 (3)0.002 (3)
C120.036 (3)0.042 (4)0.025 (3)0.011 (3)0.002 (3)0.004 (3)
C130.026 (3)0.023 (3)0.037 (3)0.001 (2)0.011 (3)0.001 (2)
C140.035 (3)0.031 (3)0.027 (3)0.002 (3)0.005 (3)0.002 (2)
C150.036 (3)0.027 (3)0.029 (3)0.003 (2)0.006 (3)0.001 (2)
C160.039 (4)0.037 (3)0.034 (3)0.004 (3)0.017 (3)0.008 (3)
C170.040 (4)0.039 (3)0.031 (3)0.011 (3)0.014 (3)0.007 (3)
C180.023 (3)0.031 (3)0.030 (3)0.005 (2)0.006 (3)0.001 (2)
C190.030 (3)0.037 (3)0.039 (3)0.001 (3)0.015 (3)0.001 (3)
C200.035 (3)0.038 (3)0.040 (4)0.007 (3)0.015 (3)0.012 (3)
C210.039 (4)0.034 (3)0.030 (3)0.009 (3)0.007 (3)0.003 (3)
C220.036 (3)0.038 (3)0.032 (3)0.011 (3)0.006 (3)0.002 (3)
C230.026 (3)0.022 (3)0.032 (3)0.000 (2)0.010 (3)0.002 (2)
C240.039 (4)0.044 (4)0.042 (4)0.014 (3)0.012 (3)0.012 (3)
C250.036 (4)0.047 (4)0.033 (3)0.012 (3)0.006 (3)0.007 (3)
C260.036 (3)0.033 (3)0.033 (3)0.005 (3)0.005 (3)0.007 (3)
C270.028 (3)0.035 (3)0.033 (3)0.008 (3)0.001 (3)0.002 (3)
C280.027 (3)0.022 (3)0.034 (3)0.004 (2)0.014 (3)0.002 (2)
C290.033 (3)0.038 (3)0.032 (3)0.006 (3)0.005 (3)0.005 (3)
C300.033 (3)0.031 (3)0.036 (3)0.008 (3)0.009 (3)0.003 (3)
C310.050 (4)0.030 (3)0.072 (5)0.010 (3)0.038 (4)0.013 (3)
C320.039 (4)0.033 (3)0.065 (4)0.004 (3)0.033 (4)0.008 (3)
C330.025 (3)0.032 (3)0.034 (3)0.002 (2)0.005 (3)0.006 (2)
C340.065 (5)0.033 (4)0.091 (6)0.017 (3)0.052 (5)0.025 (4)
C350.045 (4)0.042 (4)0.077 (5)0.008 (3)0.039 (4)0.016 (4)
C360.034 (3)0.051 (4)0.031 (3)0.005 (3)0.001 (3)0.004 (3)
C370.039 (4)0.041 (4)0.028 (3)0.008 (3)0.002 (3)0.006 (3)
C380.028 (3)0.029 (3)0.030 (3)0.002 (2)0.006 (3)0.000 (2)
C390.044 (4)0.062 (5)0.029 (3)0.017 (3)0.006 (3)0.014 (3)
C400.046 (4)0.065 (5)0.032 (4)0.018 (4)0.003 (3)0.012 (3)
N10.027 (2)0.027 (2)0.029 (3)0.002 (2)0.006 (2)0.0013 (19)
N20.023 (2)0.028 (2)0.034 (3)0.000 (2)0.008 (2)0.004 (2)
N30.034 (3)0.027 (3)0.036 (3)0.001 (2)0.009 (2)0.001 (2)
N40.029 (3)0.036 (3)0.031 (3)0.006 (2)0.010 (2)0.003 (2)
N50.026 (2)0.025 (2)0.031 (3)0.0022 (19)0.008 (2)0.002 (2)
N60.023 (2)0.031 (3)0.036 (3)0.000 (2)0.009 (2)0.003 (2)
N70.025 (3)0.035 (3)0.030 (3)0.002 (2)0.005 (2)0.001 (2)
N80.032 (3)0.030 (3)0.036 (3)0.001 (2)0.008 (3)0.004 (2)
O10.239 (11)0.061 (4)0.159 (8)0.025 (5)0.145 (8)0.038 (5)
O20.081 (6)0.145 (8)0.247 (13)0.027 (5)0.019 (7)0.036 (8)
O30.085 (4)0.047 (3)0.095 (4)0.021 (3)0.053 (4)0.026 (3)
O40.254 (12)0.083 (5)0.088 (6)0.005 (6)0.017 (7)0.036 (4)
O60.091 (4)0.048 (3)0.070 (4)0.034 (3)0.034 (4)0.021 (3)
O70.044 (3)0.063 (3)0.072 (4)0.012 (2)0.019 (3)0.008 (3)
O80.094 (4)0.051 (3)0.036 (3)0.004 (3)0.024 (3)0.002 (2)
O90.068 (4)0.082 (4)0.058 (4)0.008 (3)0.005 (3)0.027 (3)
Cl10.0898 (15)0.0381 (9)0.0517 (11)0.0202 (9)0.0316 (11)0.0095 (8)
Cl20.0521 (10)0.0365 (8)0.0328 (8)0.0097 (7)0.0087 (8)0.0008 (6)
Cu10.0257 (4)0.0265 (4)0.0330 (4)0.0005 (3)0.0132 (3)0.0002 (3)
Cu20.0254 (4)0.0294 (4)0.0336 (4)0.0021 (3)0.0131 (3)0.0015 (3)
Geometric parameters (Å, º) top
C1—N11.340 (7)C25—N51.348 (7)
C1—C21.379 (7)C25—H250.9300
C1—H10.9300C26—N61.333 (7)
C2—C31.388 (7)C26—C271.381 (8)
C2—H20.9300C26—H260.9300
C3—C41.380 (8)C27—C281.391 (8)
C3—C81.486 (8)C27—H270.9300
C4—C51.375 (7)C28—C291.391 (8)
C4—H40.9300C29—C301.367 (8)
C5—N11.347 (7)C29—H290.9300
C5—H50.9300C30—N61.331 (7)
C6—N21.342 (7)C30—H300.9300
C6—C71.385 (8)C31—N71.339 (7)
C6—H60.9300C31—C321.364 (8)
C7—C81.388 (8)C31—H310.9300
C7—H70.9300C32—C331.372 (8)
C8—C91.377 (8)C32—H320.9300
C9—C101.373 (8)C33—C341.384 (8)
C9—H90.9300C33—C33i1.486 (11)
C10—N21.343 (7)C34—C351.370 (9)
C10—H100.9300C34—H340.9300
C11—N31.336 (8)C35—N71.320 (8)
C11—C121.395 (8)C35—H350.9300
C11—H110.9300C36—N81.336 (7)
C12—C131.383 (8)C36—C371.381 (9)
C12—H120.9300C36—H360.9300
C13—C141.386 (8)C37—C381.371 (9)
C13—C181.480 (8)C37—H370.9300
C14—C151.376 (8)C38—C391.388 (8)
C14—H140.9300C38—C38ii1.490 (11)
C15—N31.355 (7)C39—C401.373 (9)
C15—H150.9300C39—H390.9300
C16—N41.328 (7)C40—N81.324 (8)
C16—C171.376 (8)C40—H400.9300
C16—H160.9300N1—Cu11.989 (4)
C17—C181.391 (7)N2—Cu22.000 (4)
C17—H170.9300N3—Cu12.078 (5)
C18—C191.387 (8)N4—Cu2iii2.040 (5)
C19—C201.364 (8)N5—Cu12.086 (5)
C19—H190.9300N6—Cu2iv2.064 (5)
C20—N41.351 (7)N7—Cu12.023 (5)
C20—H200.9300N8—Cu22.057 (5)
C21—N51.346 (7)O1—Cl11.340 (6)
C21—C221.356 (9)O2—Cl11.490 (9)
C21—H210.9300O3—Cl11.401 (5)
C22—C231.388 (8)O4—Cl11.330 (7)
C22—H220.9300O6—Cl21.412 (5)
C23—C241.371 (8)O7—Cl21.442 (5)
C23—C281.499 (9)O8—Cl21.424 (5)
C24—C251.379 (9)O9—Cl21.438 (6)
C24—H240.9300
N1—C1—C2124.3 (5)C30—C29—C28120.5 (5)
N1—C1—H1117.9C30—C29—H29119.8
C2—C1—H1117.9C28—C29—H29119.8
C1—C2—C3119.8 (5)N6—C30—C29123.2 (5)
C1—C2—H2120.1N6—C30—H30118.4
C3—C2—H2120.1C29—C30—H30118.4
C4—C3—C2116.4 (5)N7—C31—C32124.6 (6)
C4—C3—C8121.8 (5)N7—C31—H31117.7
C2—C3—C8121.8 (5)C32—C31—H31117.7
C5—C4—C3120.2 (5)C31—C32—C33120.6 (5)
C5—C4—H4119.9C31—C32—H32119.7
C3—C4—H4119.9C33—C32—H32119.7
N1—C5—C4124.1 (5)C32—C33—C34114.9 (5)
N1—C5—H5118.0C32—C33—C33i122.5 (6)
C4—C5—H5118.0C34—C33—C33i122.5 (7)
N2—C6—C7123.3 (5)C35—C34—C33121.1 (6)
N2—C6—H6118.4C35—C34—H34119.5
C7—C6—H6118.4C33—C34—H34119.5
C6—C7—C8119.8 (5)N7—C35—C34123.9 (6)
C6—C7—H7120.1N7—C35—H35118.1
C8—C7—H7120.1C34—C35—H35118.1
C9—C8—C7116.1 (5)N8—C36—C37123.2 (6)
C9—C8—C3121.6 (5)N8—C36—H36118.4
C7—C8—C3122.2 (5)C37—C36—H36118.4
C10—C9—C8120.9 (5)C38—C37—C36120.9 (6)
C10—C9—H9119.6C38—C37—H37119.6
C8—C9—H9119.6C36—C37—H37119.6
N2—C10—C9123.1 (5)C37—C38—C39115.9 (5)
N2—C10—H10118.4C37—C38—C38ii122.7 (6)
C9—C10—H10118.4C39—C38—C38ii121.4 (7)
N3—C11—C12124.1 (5)C40—C39—C38119.6 (7)
N3—C11—H11117.9C40—C39—H39120.2
C12—C11—H11117.9C38—C39—H39120.2
C13—C12—C11118.8 (6)N8—C40—C39124.7 (6)
C13—C12—H12120.6N8—C40—H40117.6
C11—C12—H12120.6C39—C40—H40117.6
C12—C13—C14117.3 (5)C1—N1—C5115.1 (5)
C12—C13—C18121.3 (6)C1—N1—Cu1122.9 (4)
C14—C13—C18121.4 (5)C5—N1—Cu1121.0 (4)
C15—C14—C13120.3 (5)C6—N2—C10116.2 (5)
C15—C14—H14119.9C6—N2—Cu2123.4 (4)
C13—C14—H14119.9C10—N2—Cu2119.4 (4)
N3—C15—C14123.0 (6)C11—N3—C15116.1 (5)
N3—C15—H15118.5C11—N3—Cu1124.3 (4)
C14—C15—H15118.5C15—N3—Cu1117.9 (4)
N4—C16—C17123.6 (5)C16—N4—C20116.5 (5)
N4—C16—H16118.2C16—N4—Cu2iii125.3 (4)
C17—C16—H16118.2C20—N4—Cu2iii118.2 (4)
C16—C17—C18119.8 (5)C21—N5—C25116.1 (5)
C16—C17—H17120.1C21—N5—Cu1121.0 (4)
C18—C17—H17120.1C25—N5—Cu1122.8 (4)
C19—C18—C17116.6 (5)C30—N6—C26117.5 (5)
C19—C18—C13121.5 (5)C30—N6—Cu2iv122.4 (4)
C17—C18—C13121.8 (5)C26—N6—Cu2iv120.1 (4)
C20—C19—C18120.0 (5)C35—N7—C31115.0 (5)
C20—C19—H19120.0C35—N7—Cu1124.4 (4)
C18—C19—H19120.0C31—N7—Cu1120.1 (4)
N4—C20—C19123.5 (5)C40—N8—C36115.7 (5)
N4—C20—H20118.2C40—N8—Cu2119.6 (4)
C19—C20—H20118.2C36—N8—Cu2121.7 (4)
N5—C21—C22124.0 (5)O4—Cl1—O1120.9 (6)
N5—C21—H21118.0O4—Cl1—O3112.5 (5)
C22—C21—H21118.0O1—Cl1—O3112.1 (4)
C21—C22—C23120.0 (6)O4—Cl1—O299.6 (7)
C21—C22—H22120.0O1—Cl1—O2100.3 (7)
C23—C22—H22120.0O3—Cl1—O2109.3 (5)
C24—C23—C22116.7 (6)O6—Cl2—O8110.4 (3)
C24—C23—C28122.1 (5)O6—Cl2—O9110.0 (4)
C22—C23—C28121.2 (5)O8—Cl2—O9108.3 (3)
C23—C24—C25120.6 (5)O6—Cl2—O7109.8 (3)
C23—C24—H24119.7O8—Cl2—O7110.2 (4)
C25—C24—H24119.7O9—Cl2—O7108.1 (3)
N5—C25—C24122.5 (6)N1—Cu1—N7120.93 (19)
N5—C25—H25118.7N1—Cu1—N3114.72 (18)
C24—C25—H25118.7N7—Cu1—N3107.46 (19)
N6—C26—C27122.8 (5)N1—Cu1—N5107.38 (19)
N6—C26—H26118.6N7—Cu1—N5103.62 (19)
C27—C26—H26118.6N3—Cu1—N5100.09 (19)
C26—C27—C28120.1 (5)N2—Cu2—N4v118.26 (19)
C26—C27—H27120.0N2—Cu2—N8114.40 (19)
C28—C27—H27120.0N4v—Cu2—N8103.2 (2)
C27—C28—C29116.0 (6)N2—Cu2—N6vi111.83 (19)
C27—C28—C23121.5 (5)N4v—Cu2—N6vi103.47 (19)
C29—C28—C23122.5 (5)N8—Cu2—N6vi104.15 (19)
Symmetry codes: (i) x+1, y, z+1; (ii) x3, y, z+2; (iii) x+2, y+1/2, z1/2; (iv) x, y, z1; (v) x2, y+1/2, z+1/2; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C10H8N2)2]ClO4·0.24H2O
Mr479.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.1894 (14), 32.380 (7), 17.319 (4)
β (°) 100.40 (3)
V3)3965.6 (14)
Z8
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.26 × 0.11 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.732, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
29543, 6849, 4507
Rint0.095
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.201, 1.04
No. of reflections6849
No. of parameters547
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 0.86

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 2005), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
N1—Cu11.989 (4)N5—Cu12.086 (5)
N2—Cu22.000 (4)N6—Cu2ii2.064 (5)
N3—Cu12.078 (5)N7—Cu12.023 (5)
N4—Cu2i2.040 (5)N8—Cu22.057 (5)
Symmetry codes: (i) x+2, y+1/2, z1/2; (ii) x, y, z1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20971099) and the Science Foundation of Tianjin Medical University (No. 2010ky11).

References

First citationBrandenburg, K. & Berndt, M. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, C. M., Gao, S. & Kou, H. Z. (2001). Chem. Commun. pp. 1670–1671.  Web of Science CSD CrossRef Google Scholar
First citationMacGillivray, L. R., Subramamian, S. & Zaworotko, M. J. (1994). Chem. Commun. pp. 1325–1326.  CrossRef Google Scholar
First citationPedireddi, V. R., Shimpi, M. R. & Yakhmi, S. J. V. (2006). Macromol. Symp. 241, 83–87.  Web of Science CSD CrossRef CAS Google Scholar
First citationQin, J. H., Li, X. L. & Guo, H. (2007). Z. Kristallogr. New Cryst. Struct. 222, 318–320.  CAS Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, C. Z., Su, Q. J., Li, S. H., Xu, J. Y. & Wang, L. Y. (2010). Z. Anorg. Allg. Chem. 13, 1476–1479.  CAS Google Scholar
First citationXie, C. Z., Zhang, B. F., Wang, X. Q., Yu, B., Wang, R. J., Shen, G. Q. & Shen, D. Z. (2008). Inorg. Chem. Commun. 634, 387–391.  CAS Google Scholar
First citationXie, C. Z., Zhang, Z. F., Zhang, B. F., Wang, X. Q., Wang, R. J., Shen, G. Q., Shen, D. Z. & Ding, B. (2006). Eur. J. Inorg. Chem. 6, 1337–1340.  Web of Science CSD CrossRef Google Scholar
First citationYaghi, O. M. & Li, H. (1996). J. Am. Chem. Soc. 118, 295–296.  CSD CrossRef CAS Web of Science Google Scholar
First citationYang, E. C., Liu, Z. Y., Shi, X. J., Liang, Q. Q. & Zhao, X. J. (2010). Inorg. Chem. 49, 7969–7995.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, J., Liu, R., Feng, P. Y. & Bu, X. H. (2007). Angew. Chem. Int. Ed. 46, 8388–8391.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m660-m661
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds