organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1444

3-Amino­pyridin-1-ium 3-carb­­oxy­benzo­ate

aFacultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. Angel Flores, CP 81223, Los Mochis, Sinaloa, México, and bInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, México
*Correspondence e-mail: simonho@unam.mx, cenriqueza@yahoo.com.mx

(Received 14 March 2012; accepted 12 April 2012; online 21 April 2012)

In the title organic salt, C5H7N2+·C8H5O4, the carb­oxy­lic group is nearly coplanar with the benzene ring [dihedral angle 1.9 (4)°] whereas the carboxyl­ate group is twisted relative to the benzene ring by 13.6 (4)°. In the crystal, N-H⋯O and O—H⋯O hydrogen bonds connect the components into a three-dimensional framework consisting of stacks of alternating pairs of anions and cations exhibiting ππ stacking inter­actions with centroid–centroid distances in the range 3.676 (2)–3.711 (1) Å. The ππ stacks extend along [110] and [-110].

Related literature

For background to crystal engineering with carb­oxy­lic acids and pyridine, see: Aakeröy & Salmon (2005[Aakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439-448.]); Almarsson & Zaworotko (2004[Almarsson, O. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889-1896.]); Mohamed et al. (2009[Mohamed, S., Derek, A. T., Vickers, M., Karamertzanis, P. G. & Price, S. L. (2009). Cryst. Growth Des. 9, 2881-2889.]); Sarma et al. (2009[Sarma, B., Nath, N. K., Bhogala, B. R. & Nangia, A. (2009). Cryst. Growth Des. 9, 1546-1557.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N2+·C8H5O4

  • Mr = 260.25

  • Monoclinic, P 21 /c

  • a = 11.9282 (13) Å

  • b = 8.3715 (9) Å

  • c = 13.1421 (14) Å

  • β = 113.138 (2)°

  • V = 1206.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.42 × 0.28 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 9652 measured reflections

  • 2216 independent reflections

  • 1668 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.154

  • S = 1.05

  • 2216 reflections

  • 184 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.86 (1) 1.76 (1) 2.616 (2) 173 (3)
N1—H1A⋯O4ii 0.89 (1) 2.02 (1) 2.880 (2) 162 (2)
N1—H1B⋯O2iii 0.91 (1) 2.11 (2) 2.967 (3) 157 (2)
N9—H9⋯O3iv 0.91 (1) 1.97 (1) 2.858 (3) 167 (3)
N9—H9⋯O4iv 0.91 (1) 2.25 (2) 2.930 (3) 131 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Inter­molecular ππ stacking inter­actions in the title compound (Å)

centroid centroid distance Symmetry-code
C1—C6 C1—C6 3.711 (1) (i)
C1—C6 N9—C14 3.676 (2) (ii)
N9—C14 N9—C14 3.701 (2) (iii)
(i) −x + 1, −y, −z, (ii) x, −y + [{1\over 2}], z − [{1\over 2}]; (iii) −x, −y, −z + 1

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT & SMART . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT & SMART . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The identification of supramolecular synthons between common functional groups is the first step towards crystal engineering. Specific recognition of the carboxylic acid group and pyridine (acid-pyridine synthon) (Aakeröy & Salmon, 2005; Almarsson & Zaworotko, 2004), or their analogs with proton transfer (Mohamed et al., 2009; Sarma et al., 2009), has been well studied. Both carboxylic acid and pyridine are popular substrates in supramolecular synthesis and herein we report the molecular and crystal structure of 3-aminopyridin-1-ium 3-carboxybenzoate.

The asymmetric unit consists of one 3-aminopyridin-1-ium cation (3AP+) and one 3-carboxybenzoate anion (3CB-), shown in Figure 1. The geometry of intermolecular interactions are given in Table 1. The 3CB- anion is almost planar with the carboxyl and carboxylate groups forming dihedral angles of 1.9 (4)° and 13.6 (4)°, respectively. A typical pyridinium-carboxylate R22(7) synthon is not observed in this organic salt as the pyridinium N9-H9 group forms a three-center interaction with the carboxylate O3 and O4 atoms acting as acceptors (Table 1). Two 3CB- anions are connected via a short O-H···O hydrogen bonds and the pairs of hydrogen bonded anions are bridged by the primary amino group forming two N-H···O hydrogen bonds. These three interactions generate R66(18) ring motif and a two-dimensional assembly parallel to (-1 0 2). Adjacent assemblies are connected by hydrogen bonds between the pyridinium N-H groups and the carboxylate groups into a three dimensional framework. This framework consists of stacks of alternating pairs of anions and cations exhibiting π-π stacking interactions with centroid-centroid distances in the range 3.676 (2)-3.711 (1) Å (Table 2). The π-π stacks are extending along [1 1 0] and [-1 1 0].

Related literature top

For background to crystal engineering with carboxylic acids and pyridine, see: Aakeröy & Salmon (2005); Almarsson & Zaworotko (2004); Mohamed et al. (2009); Sarma et al. (2009).

Experimental top

3-Aminopyridine (0.531 mmol), benzene-1,3-dicarboxylic acid (0.531 mmol) and CH3OH (8 ml) were mixed and the resulting solution allowed to stand at room temperature. After two weeks, colorless crystals of the title compound were obtained (m.p. 498 K).

Refinement top

H atoms were positioned geometrically and constrained using riding-model approximation C—H = 0.93 Å, Uiso (H) = 1.2 Ueq(C). Hydrogen atoms bonded to O (H1) and N (H1A, H1B and H9) were located in difference Fourier maps. The coordinates of the O—H and N—H hydrogen atoms were refined with distance restraints: O—H = 0.86 (1) Å, N—H = 0.90 (1) Å and Uiso(H) = 1.2 Ueq(O, N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound with displacement ellipsoids drawn at the 40% probability level. Hydrogen atoms from C-H groups are omitted.
[Figure 2] Fig. 2. Packing diagram of the title compound. The intermolecular O—H···O, N—H···O hydrogen bonds and π···π interactions are shown as dashed lines.
3-Aminopyridin-1-ium 3-carboxybenzoate top
Crystal data top
C5H7N2+·C8H5O4F(000) = 544
Mr = 260.25Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4087 reflections
a = 11.9282 (13) Åθ = 3.0–25.3°
b = 8.3715 (9) ŵ = 0.11 mm1
c = 13.1421 (14) ÅT = 298 K
β = 113.138 (2)°Prism, colourless
V = 1206.8 (2) Å30.42 × 0.28 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1668 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.065
Graphite monochromatorθmax = 25.4°, θmin = 1.9°
Detector resolution: 0.83 pixels mm-1h = 1414
ω scansk = 1010
9652 measured reflectionsl = 1515
2216 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0836P)2 + 0.2115P]
where P = (Fo2 + 2Fc2)/3
2216 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.23 e Å3
4 restraintsΔρmin = 0.38 e Å3
Crystal data top
C5H7N2+·C8H5O4V = 1206.8 (2) Å3
Mr = 260.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9282 (13) ŵ = 0.11 mm1
b = 8.3715 (9) ÅT = 298 K
c = 13.1421 (14) Å0.42 × 0.28 × 0.19 mm
β = 113.138 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1668 reflections with I > 2σ(I)
9652 measured reflectionsRint = 0.065
2216 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0554 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.23 e Å3
2216 reflectionsΔρmin = 0.38 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58230 (14)0.2128 (2)0.26222 (13)0.0548 (5)
H10.6446 (16)0.257 (3)0.3133 (16)0.066*
O20.6431 (2)0.3505 (3)0.15207 (17)0.1158 (10)
O30.22032 (13)0.15499 (19)0.09404 (13)0.0517 (5)
O40.09883 (14)0.1061 (2)0.07778 (15)0.0694 (6)
N10.11595 (19)0.0115 (3)0.26504 (17)0.0627 (6)
H1A0.0560 (18)0.027 (3)0.1989 (12)0.075*
H1B0.1824 (17)0.047 (3)0.270 (2)0.075*
C10.46713 (18)0.1929 (2)0.06964 (17)0.0403 (5)
C20.38557 (17)0.0848 (2)0.08307 (17)0.0361 (5)
H20.39670.04980.15350.043*
C30.28745 (17)0.0288 (2)0.00859 (17)0.0369 (5)
C40.27335 (19)0.0822 (3)0.11310 (18)0.0452 (6)
H40.20770.04610.17490.054*
C50.3553 (2)0.1878 (3)0.12654 (19)0.0511 (6)
H50.34530.22160.19700.061*
C60.4514 (2)0.2428 (3)0.03560 (18)0.0477 (6)
H60.50650.31410.04460.057*
C70.5726 (2)0.2594 (3)0.16453 (19)0.0497 (6)
C80.19579 (18)0.0850 (2)0.00273 (18)0.0420 (5)
N90.0135 (3)0.2041 (3)0.4558 (3)0.0770 (8)
H90.0550 (17)0.256 (3)0.451 (3)0.092*
C100.0165 (2)0.1532 (3)0.3625 (3)0.0608 (7)
H100.04700.17910.29590.073*
C110.11220 (19)0.0622 (2)0.36152 (19)0.0443 (6)
C120.2049 (2)0.0253 (3)0.46412 (19)0.0453 (5)
H120.27030.03770.46730.054*
C130.1992 (3)0.0818 (3)0.5596 (2)0.0601 (7)
H130.26130.05890.62760.072*
C140.1005 (3)0.1731 (3)0.5541 (3)0.0776 (10)
H140.09510.21220.61830.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0476 (10)0.0693 (11)0.0425 (10)0.0175 (8)0.0122 (7)0.0059 (8)
O20.1051 (17)0.170 (2)0.0587 (13)0.1032 (17)0.0171 (12)0.0029 (14)
O30.0402 (9)0.0588 (10)0.0498 (10)0.0096 (7)0.0110 (7)0.0132 (8)
O40.0380 (9)0.0790 (12)0.0653 (12)0.0198 (9)0.0074 (8)0.0209 (10)
N10.0545 (13)0.0724 (15)0.0462 (13)0.0151 (11)0.0038 (10)0.0017 (11)
C10.0343 (11)0.0422 (12)0.0442 (12)0.0037 (9)0.0151 (9)0.0032 (9)
C20.0322 (10)0.0388 (11)0.0361 (11)0.0012 (8)0.0121 (8)0.0021 (9)
C30.0299 (10)0.0365 (11)0.0404 (12)0.0017 (8)0.0098 (9)0.0020 (9)
C40.0401 (12)0.0502 (13)0.0379 (12)0.0036 (10)0.0075 (9)0.0010 (10)
C50.0539 (14)0.0619 (15)0.0382 (13)0.0053 (12)0.0189 (11)0.0047 (11)
C60.0453 (13)0.0520 (13)0.0490 (14)0.0113 (10)0.0222 (10)0.0014 (11)
C70.0459 (13)0.0583 (14)0.0436 (13)0.0140 (11)0.0164 (11)0.0023 (11)
C80.0306 (11)0.0409 (12)0.0476 (13)0.0003 (9)0.0081 (10)0.0050 (10)
N90.0859 (19)0.0427 (13)0.136 (3)0.0153 (12)0.079 (2)0.0137 (15)
C100.0443 (14)0.0436 (14)0.099 (2)0.0090 (11)0.0326 (14)0.0114 (13)
C110.0364 (12)0.0365 (12)0.0572 (14)0.0002 (9)0.0155 (10)0.0022 (10)
C120.0417 (12)0.0433 (12)0.0523 (14)0.0060 (10)0.0200 (10)0.0008 (10)
C130.0775 (18)0.0521 (15)0.0565 (16)0.0061 (13)0.0326 (14)0.0062 (12)
C140.130 (3)0.0440 (15)0.102 (3)0.0105 (17)0.092 (2)0.0148 (15)
Geometric parameters (Å, º) top
O1—C71.303 (3)C4—H40.9300
O1—H10.864 (10)C5—C61.370 (3)
O2—C71.193 (3)C5—H50.9300
O3—C81.262 (3)C6—H60.9300
O4—C81.236 (2)N9—C101.312 (4)
N1—C111.354 (3)N9—C141.327 (4)
N1—H1A0.892 (10)N9—H90.905 (10)
N1—H1B0.909 (10)C10—C111.376 (3)
C1—C61.385 (3)C10—H100.9300
C1—C21.390 (3)C11—C121.401 (3)
C1—C71.488 (3)C12—C131.367 (3)
C2—C31.390 (3)C12—H120.9300
C2—H20.9300C13—C141.382 (4)
C3—C41.390 (3)C13—H130.9300
C3—C81.501 (3)C14—H140.9300
C4—C51.380 (3)
C7—O1—H1110.8 (18)O2—C7—C1122.2 (2)
C11—N1—H1A123.9 (18)O1—C7—C1115.60 (19)
C11—N1—H1B116.5 (18)O4—C8—O3122.5 (2)
H1A—N1—H1B119 (3)O4—C8—C3118.6 (2)
C6—C1—C2119.72 (19)O3—C8—C3118.89 (18)
C6—C1—C7117.55 (19)C10—N9—C14123.3 (2)
C2—C1—C7122.73 (19)C10—N9—H9116 (2)
C1—C2—C3120.16 (19)C14—N9—H9120 (2)
C1—C2—H2119.9N9—C10—C11121.0 (3)
C3—C2—H2119.9N9—C10—H10119.5
C2—C3—C4118.80 (19)C11—C10—H10119.5
C2—C3—C8121.75 (19)N1—C11—C10121.0 (2)
C4—C3—C8119.45 (19)N1—C11—C12121.9 (2)
C5—C4—C3121.0 (2)C10—C11—C12117.2 (2)
C5—C4—H4119.5C13—C12—C11120.1 (2)
C3—C4—H4119.5C13—C12—H12119.9
C6—C5—C4119.7 (2)C11—C12—H12119.9
C6—C5—H5120.2C12—C13—C14119.5 (3)
C4—C5—H5120.2C12—C13—H13120.3
C5—C6—C1120.6 (2)C14—C13—H13120.3
C5—C6—H6119.7N9—C14—C13118.9 (2)
C1—C6—H6119.7N9—C14—H14120.6
O2—C7—O1122.2 (2)C13—C14—H14120.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O30.91 (1)2.69 (2)3.277 (3)124 (2)
O1—H1···O3i0.86 (1)1.76 (1)2.616 (2)173 (3)
N1—H1A···O4ii0.89 (1)2.02 (1)2.880 (2)162 (2)
N1—H1B···O2iii0.91 (1)2.11 (2)2.967 (3)157 (2)
N9—H9···O3iv0.91 (1)1.97 (1)2.858 (3)167 (3)
N9—H9···O4iv0.91 (1)2.25 (2)2.930 (3)131 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y, z; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H7N2+·C8H5O4
Mr260.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.9282 (13), 8.3715 (9), 13.1421 (14)
β (°) 113.138 (2)
V3)1206.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.42 × 0.28 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9652, 2216, 1668
Rint0.065
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.154, 1.05
No. of reflections2216
No. of parameters184
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.38

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.86 (1)1.756 (11)2.616 (2)173 (3)
N1—H1A···O4ii0.89 (1)2.018 (13)2.880 (2)162 (2)
N1—H1B···O2iii0.91 (1)2.109 (15)2.967 (3)157 (2)
N9—H9···O3iv0.91 (1)1.969 (12)2.858 (3)167 (3)
N9—H9···O4iv0.91 (1)2.25 (2)2.930 (3)131 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y, z; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z+1/2.
Intermolecular ππ stacking interactions in the title compound (Å) top
centroidcentroiddistanceSymmetry-code
C1-C6C1-C63.711 (1)(i)
C1-C6N9-C143.676 (2)(ii)
N9-C14N9-C143.701 (2)(iii)
(i) -x+1, -y, -z, (ii) x, -y+1/2, z-1/2; (iii) -x, -y, -z+1
 

Acknowledgements

Financial support of this work by the Secretaría de Educación Pública (PROMEP-UAS, PTC-035), the Universidad Autónoma de Sinaloa (PROFAPI 2011/048) and CONACyT (grant No. 1564732) is gratefully acknowledged. Thanks are given to the Consejo Superior de Investigaciones Cientificas (CSIC) of Spain for the award of a licence for the use of the Cambridge Structural Database (CSD).

References

First citationAakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439–448.  Web of Science CrossRef Google Scholar
First citationAlmarsson, O. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889–1896.  Web of Science CrossRef Google Scholar
First citationBruker (2007). SAINT & SMART . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMohamed, S., Derek, A. T., Vickers, M., Karamertzanis, P. G. & Price, S. L. (2009). Cryst. Growth Des. 9, 2881–2889.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarma, B., Nath, N. K., Bhogala, B. R. & Nangia, A. (2009). Cryst. Growth Des. 9, 1546–1557.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1444
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds