organic compounds
3-Aminopyridin-1-ium 3-carboxybenzoate
aFacultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. Angel Flores, CP 81223, Los Mochis, Sinaloa, México, and bInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, México
*Correspondence e-mail: simonho@unam.mx, cenriqueza@yahoo.com.mx
In the title organic salt, C5H7N2+·C8H5O4−, the carboxylic group is nearly coplanar with the benzene ring [dihedral angle 1.9 (4)°] whereas the carboxylate group is twisted relative to the benzene ring by 13.6 (4)°. In the crystal, N-H⋯O and O—H⋯O hydrogen bonds connect the components into a three-dimensional framework consisting of stacks of alternating pairs of anions and cations exhibiting π–π stacking interactions with centroid–centroid distances in the range 3.676 (2)–3.711 (1) Å. The π–π stacks extend along [110] and [-110].
Related literature
For background to crystal engineering with carboxylic acids and pyridine, see: Aakeröy & Salmon (2005); Almarsson & Zaworotko (2004); Mohamed et al. (2009); Sarma et al. (2009).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812016108/gk2468sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812016108/gk2468Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812016108/gk2468Isup3.cml
3-Aminopyridine (0.531 mmol), benzene-1,3-dicarboxylic acid (0.531 mmol) and CH3OH (8 ml) were mixed and the resulting solution allowed to stand at room temperature. After two weeks, colorless crystals of the title compound were obtained (m.p. 498 K).
H atoms were positioned geometrically and constrained using riding-model approximation C—H = 0.93 Å, Uiso (H) = 1.2 Ueq(C). Hydrogen atoms bonded to O (H1) and N (H1A, H1B and H9) were located in difference Fourier maps. The coordinates of the O—H and N—H hydrogen atoms were refined with distance restraints: O—H = 0.86 (1) Å, N—H = 0.90 (1) Å and Uiso(H) = 1.2 Ueq(O, N).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Asymmetric unit of the title compound with displacement ellipsoids drawn at the 40% probability level. Hydrogen atoms from C-H groups are omitted. | |
Fig. 2. Packing diagram of the title compound. The intermolecular O—H···O, N—H···O hydrogen bonds and π···π interactions are shown as dashed lines. |
C5H7N2+·C8H5O4− | F(000) = 544 |
Mr = 260.25 | Dx = 1.432 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4087 reflections |
a = 11.9282 (13) Å | θ = 3.0–25.3° |
b = 8.3715 (9) Å | µ = 0.11 mm−1 |
c = 13.1421 (14) Å | T = 298 K |
β = 113.138 (2)° | Prism, colourless |
V = 1206.8 (2) Å3 | 0.42 × 0.28 × 0.19 mm |
Z = 4 |
Bruker SMART APEX CCD area-detector diffractometer | 1668 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.065 |
Graphite monochromator | θmax = 25.4°, θmin = 1.9° |
Detector resolution: 0.83 pixels mm-1 | h = −14→14 |
ω scans | k = −10→10 |
9652 measured reflections | l = −15→15 |
2216 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.154 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0836P)2 + 0.2115P] where P = (Fo2 + 2Fc2)/3 |
2216 reflections | (Δ/σ)max < 0.001 |
184 parameters | Δρmax = 0.23 e Å−3 |
4 restraints | Δρmin = −0.38 e Å−3 |
C5H7N2+·C8H5O4− | V = 1206.8 (2) Å3 |
Mr = 260.25 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.9282 (13) Å | µ = 0.11 mm−1 |
b = 8.3715 (9) Å | T = 298 K |
c = 13.1421 (14) Å | 0.42 × 0.28 × 0.19 mm |
β = 113.138 (2)° |
Bruker SMART APEX CCD area-detector diffractometer | 1668 reflections with I > 2σ(I) |
9652 measured reflections | Rint = 0.065 |
2216 independent reflections |
R[F2 > 2σ(F2)] = 0.055 | 4 restraints |
wR(F2) = 0.154 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.23 e Å−3 |
2216 reflections | Δρmin = −0.38 e Å−3 |
184 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.58230 (14) | 0.2128 (2) | 0.26222 (13) | 0.0548 (5) | |
H1 | 0.6446 (16) | 0.257 (3) | 0.3133 (16) | 0.066* | |
O2 | 0.6431 (2) | 0.3505 (3) | 0.15207 (17) | 0.1158 (10) | |
O3 | 0.22032 (13) | −0.15499 (19) | 0.09404 (13) | 0.0517 (5) | |
O4 | 0.09883 (14) | −0.1061 (2) | −0.07778 (15) | 0.0694 (6) | |
N1 | 0.11595 (19) | 0.0115 (3) | 0.26504 (17) | 0.0627 (6) | |
H1A | 0.0560 (18) | 0.027 (3) | 0.1989 (12) | 0.075* | |
H1B | 0.1824 (17) | −0.047 (3) | 0.270 (2) | 0.075* | |
C1 | 0.46713 (18) | 0.1929 (2) | 0.06964 (17) | 0.0403 (5) | |
C2 | 0.38557 (17) | 0.0848 (2) | 0.08307 (17) | 0.0361 (5) | |
H2 | 0.3967 | 0.0498 | 0.1535 | 0.043* | |
C3 | 0.28745 (17) | 0.0288 (2) | −0.00859 (17) | 0.0369 (5) | |
C4 | 0.27335 (19) | 0.0822 (3) | −0.11310 (18) | 0.0452 (6) | |
H4 | 0.2077 | 0.0461 | −0.1749 | 0.054* | |
C5 | 0.3553 (2) | 0.1878 (3) | −0.12654 (19) | 0.0511 (6) | |
H5 | 0.3453 | 0.2216 | −0.1970 | 0.061* | |
C6 | 0.4514 (2) | 0.2428 (3) | −0.03560 (18) | 0.0477 (6) | |
H6 | 0.5065 | 0.3141 | −0.0446 | 0.057* | |
C7 | 0.5726 (2) | 0.2594 (3) | 0.16453 (19) | 0.0497 (6) | |
C8 | 0.19579 (18) | −0.0850 (2) | 0.00273 (18) | 0.0420 (5) | |
N9 | 0.0135 (3) | 0.2041 (3) | 0.4558 (3) | 0.0770 (8) | |
H9 | −0.0550 (17) | 0.256 (3) | 0.451 (3) | 0.092* | |
C10 | 0.0165 (2) | 0.1532 (3) | 0.3625 (3) | 0.0608 (7) | |
H10 | −0.0470 | 0.1791 | 0.2959 | 0.073* | |
C11 | 0.11220 (19) | 0.0622 (2) | 0.36152 (19) | 0.0443 (6) | |
C12 | 0.2049 (2) | 0.0253 (3) | 0.46412 (19) | 0.0453 (5) | |
H12 | 0.2703 | −0.0377 | 0.4673 | 0.054* | |
C13 | 0.1992 (3) | 0.0818 (3) | 0.5596 (2) | 0.0601 (7) | |
H13 | 0.2613 | 0.0589 | 0.6276 | 0.072* | |
C14 | 0.1005 (3) | 0.1731 (3) | 0.5541 (3) | 0.0776 (10) | |
H14 | 0.0951 | 0.2122 | 0.6183 | 0.093* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0476 (10) | 0.0693 (11) | 0.0425 (10) | −0.0175 (8) | 0.0122 (7) | −0.0059 (8) |
O2 | 0.1051 (17) | 0.170 (2) | 0.0587 (13) | −0.1032 (17) | 0.0171 (12) | −0.0029 (14) |
O3 | 0.0402 (9) | 0.0588 (10) | 0.0498 (10) | −0.0096 (7) | 0.0110 (7) | 0.0132 (8) |
O4 | 0.0380 (9) | 0.0790 (12) | 0.0653 (12) | −0.0198 (9) | −0.0074 (8) | 0.0209 (10) |
N1 | 0.0545 (13) | 0.0724 (15) | 0.0462 (13) | 0.0151 (11) | 0.0038 (10) | −0.0017 (11) |
C1 | 0.0343 (11) | 0.0422 (12) | 0.0442 (12) | −0.0037 (9) | 0.0151 (9) | −0.0032 (9) |
C2 | 0.0322 (10) | 0.0388 (11) | 0.0361 (11) | 0.0012 (8) | 0.0121 (8) | 0.0021 (9) |
C3 | 0.0299 (10) | 0.0365 (11) | 0.0404 (12) | 0.0017 (8) | 0.0098 (9) | 0.0020 (9) |
C4 | 0.0401 (12) | 0.0502 (13) | 0.0379 (12) | −0.0036 (10) | 0.0075 (9) | 0.0010 (10) |
C5 | 0.0539 (14) | 0.0619 (15) | 0.0382 (13) | −0.0053 (12) | 0.0189 (11) | 0.0047 (11) |
C6 | 0.0453 (13) | 0.0520 (13) | 0.0490 (14) | −0.0113 (10) | 0.0222 (10) | 0.0014 (11) |
C7 | 0.0459 (13) | 0.0583 (14) | 0.0436 (13) | −0.0140 (11) | 0.0164 (11) | −0.0023 (11) |
C8 | 0.0306 (11) | 0.0409 (12) | 0.0476 (13) | −0.0003 (9) | 0.0081 (10) | 0.0050 (10) |
N9 | 0.0859 (19) | 0.0427 (13) | 0.136 (3) | 0.0153 (12) | 0.079 (2) | 0.0137 (15) |
C10 | 0.0443 (14) | 0.0436 (14) | 0.099 (2) | 0.0090 (11) | 0.0326 (14) | 0.0114 (13) |
C11 | 0.0364 (12) | 0.0365 (12) | 0.0572 (14) | −0.0002 (9) | 0.0155 (10) | 0.0022 (10) |
C12 | 0.0417 (12) | 0.0433 (12) | 0.0523 (14) | 0.0060 (10) | 0.0200 (10) | −0.0008 (10) |
C13 | 0.0775 (18) | 0.0521 (15) | 0.0565 (16) | −0.0061 (13) | 0.0326 (14) | −0.0062 (12) |
C14 | 0.130 (3) | 0.0440 (15) | 0.102 (3) | −0.0105 (17) | 0.092 (2) | −0.0148 (15) |
O1—C7 | 1.303 (3) | C4—H4 | 0.9300 |
O1—H1 | 0.864 (10) | C5—C6 | 1.370 (3) |
O2—C7 | 1.193 (3) | C5—H5 | 0.9300 |
O3—C8 | 1.262 (3) | C6—H6 | 0.9300 |
O4—C8 | 1.236 (2) | N9—C10 | 1.312 (4) |
N1—C11 | 1.354 (3) | N9—C14 | 1.327 (4) |
N1—H1A | 0.892 (10) | N9—H9 | 0.905 (10) |
N1—H1B | 0.909 (10) | C10—C11 | 1.376 (3) |
C1—C6 | 1.385 (3) | C10—H10 | 0.9300 |
C1—C2 | 1.390 (3) | C11—C12 | 1.401 (3) |
C1—C7 | 1.488 (3) | C12—C13 | 1.367 (3) |
C2—C3 | 1.390 (3) | C12—H12 | 0.9300 |
C2—H2 | 0.9300 | C13—C14 | 1.382 (4) |
C3—C4 | 1.390 (3) | C13—H13 | 0.9300 |
C3—C8 | 1.501 (3) | C14—H14 | 0.9300 |
C4—C5 | 1.380 (3) | ||
C7—O1—H1 | 110.8 (18) | O2—C7—C1 | 122.2 (2) |
C11—N1—H1A | 123.9 (18) | O1—C7—C1 | 115.60 (19) |
C11—N1—H1B | 116.5 (18) | O4—C8—O3 | 122.5 (2) |
H1A—N1—H1B | 119 (3) | O4—C8—C3 | 118.6 (2) |
C6—C1—C2 | 119.72 (19) | O3—C8—C3 | 118.89 (18) |
C6—C1—C7 | 117.55 (19) | C10—N9—C14 | 123.3 (2) |
C2—C1—C7 | 122.73 (19) | C10—N9—H9 | 116 (2) |
C1—C2—C3 | 120.16 (19) | C14—N9—H9 | 120 (2) |
C1—C2—H2 | 119.9 | N9—C10—C11 | 121.0 (3) |
C3—C2—H2 | 119.9 | N9—C10—H10 | 119.5 |
C2—C3—C4 | 118.80 (19) | C11—C10—H10 | 119.5 |
C2—C3—C8 | 121.75 (19) | N1—C11—C10 | 121.0 (2) |
C4—C3—C8 | 119.45 (19) | N1—C11—C12 | 121.9 (2) |
C5—C4—C3 | 121.0 (2) | C10—C11—C12 | 117.2 (2) |
C5—C4—H4 | 119.5 | C13—C12—C11 | 120.1 (2) |
C3—C4—H4 | 119.5 | C13—C12—H12 | 119.9 |
C6—C5—C4 | 119.7 (2) | C11—C12—H12 | 119.9 |
C6—C5—H5 | 120.2 | C12—C13—C14 | 119.5 (3) |
C4—C5—H5 | 120.2 | C12—C13—H13 | 120.3 |
C5—C6—C1 | 120.6 (2) | C14—C13—H13 | 120.3 |
C5—C6—H6 | 119.7 | N9—C14—C13 | 118.9 (2) |
C1—C6—H6 | 119.7 | N9—C14—H14 | 120.6 |
O2—C7—O1 | 122.2 (2) | C13—C14—H14 | 120.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O3 | 0.91 (1) | 2.69 (2) | 3.277 (3) | 124 (2) |
O1—H1···O3i | 0.86 (1) | 1.76 (1) | 2.616 (2) | 173 (3) |
N1—H1A···O4ii | 0.89 (1) | 2.02 (1) | 2.880 (2) | 162 (2) |
N1—H1B···O2iii | 0.91 (1) | 2.11 (2) | 2.967 (3) | 157 (2) |
N9—H9···O3iv | 0.91 (1) | 1.97 (1) | 2.858 (3) | 167 (3) |
N9—H9···O4iv | 0.91 (1) | 2.25 (2) | 2.930 (3) | 131 (3) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, −y, −z; (iii) −x+1, y−1/2, −z+1/2; (iv) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C5H7N2+·C8H5O4− |
Mr | 260.25 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 11.9282 (13), 8.3715 (9), 13.1421 (14) |
β (°) | 113.138 (2) |
V (Å3) | 1206.8 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.42 × 0.28 × 0.19 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9652, 2216, 1668 |
Rint | 0.065 |
(sin θ/λ)max (Å−1) | 0.603 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.154, 1.05 |
No. of reflections | 2216 |
No. of parameters | 184 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.23, −0.38 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.86 (1) | 1.756 (11) | 2.616 (2) | 173 (3) |
N1—H1A···O4ii | 0.89 (1) | 2.018 (13) | 2.880 (2) | 162 (2) |
N1—H1B···O2iii | 0.91 (1) | 2.109 (15) | 2.967 (3) | 157 (2) |
N9—H9···O3iv | 0.91 (1) | 1.969 (12) | 2.858 (3) | 167 (3) |
N9—H9···O4iv | 0.91 (1) | 2.25 (2) | 2.930 (3) | 131 (3) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, −y, −z; (iii) −x+1, y−1/2, −z+1/2; (iv) −x, y+1/2, −z+1/2. |
centroid | centroid | distance | Symmetry-code |
C1-C6 | C1-C6 | 3.711 (1) | (i) |
C1-C6 | N9-C14 | 3.676 (2) | (ii) |
N9-C14 | N9-C14 | 3.701 (2) | (iii) |
(i) -x+1, -y, -z, (ii) x, -y+1/2, z-1/2; (iii) -x, -y, -z+1 |
Acknowledgements
Financial support of this work by the Secretaría de Educación Pública (PROMEP-UAS, PTC-035), the Universidad Autónoma de Sinaloa (PROFAPI 2011/048) and CONACyT (grant No. 1564732) is gratefully acknowledged. Thanks are given to the Consejo Superior de Investigaciones Cientificas (CSIC) of Spain for the award of a licence for the use of the Cambridge Structural Database (CSD).
References
Aakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439–448. Web of Science CrossRef Google Scholar
Almarsson, O. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889–1896. Web of Science CrossRef Google Scholar
Bruker (2007). SAINT & SMART . Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Mohamed, S., Derek, A. T., Vickers, M., Karamertzanis, P. G. & Price, S. L. (2009). Cryst. Growth Des. 9, 2881–2889. Web of Science CSD CrossRef CAS Google Scholar
Sarma, B., Nath, N. K., Bhogala, B. R. & Nangia, A. (2009). Cryst. Growth Des. 9, 1546–1557. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The identification of supramolecular synthons between common functional groups is the first step towards crystal engineering. Specific recognition of the carboxylic acid group and pyridine (acid-pyridine synthon) (Aakeröy & Salmon, 2005; Almarsson & Zaworotko, 2004), or their analogs with proton transfer (Mohamed et al., 2009; Sarma et al., 2009), has been well studied. Both carboxylic acid and pyridine are popular substrates in supramolecular synthesis and herein we report the molecular and crystal structure of 3-aminopyridin-1-ium 3-carboxybenzoate.
The asymmetric unit consists of one 3-aminopyridin-1-ium cation (3AP+) and one 3-carboxybenzoate anion (3CB-), shown in Figure 1. The geometry of intermolecular interactions are given in Table 1. The 3CB- anion is almost planar with the carboxyl and carboxylate groups forming dihedral angles of 1.9 (4)° and 13.6 (4)°, respectively. A typical pyridinium-carboxylate R22(7) synthon is not observed in this organic salt as the pyridinium N9-H9 group forms a three-center interaction with the carboxylate O3 and O4 atoms acting as acceptors (Table 1). Two 3CB- anions are connected via a short O-H···O hydrogen bonds and the pairs of hydrogen bonded anions are bridged by the primary amino group forming two N-H···O hydrogen bonds. These three interactions generate R66(18) ring motif and a two-dimensional assembly parallel to (-1 0 2). Adjacent assemblies are connected by hydrogen bonds between the pyridinium N-H groups and the carboxylate groups into a three dimensional framework. This framework consists of stacks of alternating pairs of anions and cations exhibiting π-π stacking interactions with centroid-centroid distances in the range 3.676 (2)-3.711 (1) Å (Table 2). The π-π stacks are extending along [1 1 0] and [-1 1 0].