organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1300-o1301

4-(4-Chloro­phen­yl)-2,6-bis­­(1H-indol-3-yl)-1,4-di­hydro­pyridine-3,5-dicarbo­nitrile ethanol monosolvate

aKey Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221004, People's Republic of China
*Correspondence e-mail: songleizhu@126.com

(Received 29 March 2012; accepted 30 March 2012; online 4 April 2012)

In the title compound, C29H18ClN5·C2H6O, the dihydro­pyridine ring adopts a strongly flattened envelope conformation, with a maximum deviation of 0.139 (2) Å from its best plane for the Csp3 atom. The dihedral angles between the dihydro­pyridine ring plane and the two indole rings in positions 2 and 6 are 34.28 (5) and 40.50 (6)°, respectively. In turn, the benzene ring and the dihydro­pyridine ring are oriented at a dihedral angle of 74.69 (6)°. An intra­molecular C—H⋯Cl hydrogen bond occurs. In the crystal, mol­ecules are linked by N—H⋯N, N—H⋯O and O—H⋯N hydrogen bonds into layers parallel to (001). There are short C—H⋯Cl contacts between mol­ecules in neighboring layers.

Related literature

For the biological activity of indole and 1,4-dihydro­pyridine derivatives, see: da Silva et al. (2001[Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]); Joshi & Chand (1982[Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1-12.]); Janis & Triggle (1983[Janis, R. A. & Triggle, D. J. (1983). J. Med. Chem. 26, 775-785.]). For the synthesis of a series of bis­indoles derivatives of 1,4-dihydro­pyridine, see: Zhu et al. (2008[Zhu, S. L., Ji, S. J., Su, X. M., Sun, C. & Liu, Y. (2008). Tetrahedron Lett. 49, 1777-1781.]).

[Scheme 1]

Experimental

Crystal data
  • C29H18ClN5·C2H6O

  • Mr = 518.00

  • Triclinic, [P \overline 1]

  • a = 9.2133 (17) Å

  • b = 11.611 (2) Å

  • c = 12.473 (2) Å

  • α = 87.714 (7)°

  • β = 83.297 (6)°

  • γ = 89.576 (7)°

  • V = 1324.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 193 K

  • 0.55 × 0.36 × 0.15 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.787, Tmax = 0.974

  • 12971 measured reflections

  • 4803 independent reflections

  • 4095 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.119

  • S = 1.09

  • 4803 reflections

  • 346 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C31—H31A⋯Cl1 0.99 2.83 3.571 (3) 132
C28—H28⋯Cl1i 0.95 2.79 3.520 (2) 135
N5—H5⋯O1ii 0.88 2.04 2.907 (2) 167
N2—H2⋯N4iii 0.88 2.18 2.989 (2) 153
N1—H1A⋯O1iv 0.88 2.04 2.834 (2) 150
O1—H1⋯N3v 0.84 1.96 2.791 (2) 172
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z-1; (iii) x, y-1, z; (iv) -x+1, -y, -z+1; (v) -x, -y, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Indole fragments are important moieties of a large number of natural products and medicinal agents (da Silva et al., 2001). Compounds carrying the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). In addition, 1,4-dihydropyridine compounds are a well-known classe of calcium channel modulators for the treatment of cardiovascular diseases, for example Nifedipin, Felodipin are clinically useful as vasodilators and antihypertensive agents (Janis & Triggle, 1983). Due to the potent and diverse biological activities of indole and 1,4-dihydropyridine derivatives, we investigated a simple and efficient protocol for synthesis of a series of bisindoles derivatives containing 1,4-dihydropyridine units (Zhu et al., 2008). Herein, we report the crystal structure of the title compound.

In the title molecule (Fig. 1), atoms of the newly formed 1,4-dihydropyridine ring A (N1, C1-C5) are nearly planar, with the maximum deviation of 0.139 (2) Å. The dihedral angles between ring A with attached two indole rings B (N2, C6-C13) and C (N5, C22-C29) are 34.28 (5) and 40.50 (6)°, respectively. Ring A and the benzene ring D (C15-C20) are oriented at a dihedral angle of 74.69 (6)°.

In the crystal, intermolecular N-H···N, N-H···O and O-H···N hydrogen bonds link the molecules into layers parallel to (0 0 1) (Table 1, Fig. 2). There are short C-H···Cl contacts between the molecules from neighboring layers.

Related literature top

For the biological activity of indole and 1,4-dihydropyridine derivatives, see: da Silva et al. (2001); Joshi & Chand (1982); Janis & Triggle (1983). For the synthesis of a series of bisindoles derivatives of 1,4-dihydropyridine, see: Zhu et al. (2008).

Experimental top

The title compound was prepared by the reaction of 4-chlorobenzaldehyde (1 mmol), 3-cyanoacetyl indole (2 mmol), ammonium acetate (5 mmol) in glycol solvent (3 mL) under microwave irradiation condition. After irradiating for 8 mins at 413 K, the reaction mixture was cooled and washed with small amount of ethanol. The crude product was filtered and single crystals of the title compound were obtained from ethanol solution by slow evaporation at room temperature (yield: 75%, m.p. > 573 K).

Refinement top

H atoms were positioned geometrically, with N-H = 0.88 Å , O-H = 0.84 Å (for OH), and C-H =0.95, 0.98, 0.99, 1.00 Å for aromatic, methyl, methylene, and methyne H, respectively, and constrained to ride on their parent atoms with Uiso(H) = x Ueq(C,N,O), where x = 1.5 for methyl and hydroxyl H, x = 1.2 for all other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The solvent ethanol is not shown for clarity.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
4-(4-Chlorophenyl)-2,6-bis(1H-indol-3-yl)-1,4-dihydropyridine- 3,5-dicarbonitrile ethanol monosolvate top
Crystal data top
C29H18ClN5·C2H6OZ = 2
Mr = 518.00F(000) = 540
Triclinic, P1Dx = 1.299 Mg m3
Hall symbol: -P 1Melting point > 573 K
a = 9.2133 (17) ÅMo Kα radiation, λ = 0.71070 Å
b = 11.611 (2) ÅCell parameters from 4662 reflections
c = 12.473 (2) Åθ = 3.1–25.3°
α = 87.714 (7)°µ = 0.18 mm1
β = 83.297 (6)°T = 193 K
γ = 89.576 (7)°Block, colorless
V = 1324.1 (4) Å30.55 × 0.36 × 0.15 mm
Data collection top
Rigaku Mercury
diffractometer
4803 independent reflections
Radiation source: fine-focus sealed tube4095 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.1°
ω scansh = 1110
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1313
Tmin = 0.787, Tmax = 0.974l = 1415
12971 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.8429P]
where P = (Fo2 + 2Fc2)/3
4803 reflections(Δ/σ)max < 0.001
346 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
C29H18ClN5·C2H6Oγ = 89.576 (7)°
Mr = 518.00V = 1324.1 (4) Å3
Triclinic, P1Z = 2
a = 9.2133 (17) ÅMo Kα radiation
b = 11.611 (2) ŵ = 0.18 mm1
c = 12.473 (2) ÅT = 193 K
α = 87.714 (7)°0.55 × 0.36 × 0.15 mm
β = 83.297 (6)°
Data collection top
Rigaku Mercury
diffractometer
4803 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
4095 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 0.974Rint = 0.029
12971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.09Δρmax = 0.67 e Å3
4803 reflectionsΔρmin = 0.71 e Å3
346 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.31431 (10)0.42027 (6)0.66333 (5)0.0645 (3)
O10.16731 (15)0.06664 (12)0.79527 (12)0.0305 (4)
H10.09890.02020.79090.046*
N10.59953 (18)0.07570 (14)0.14897 (14)0.0249 (4)
H1A0.66940.02350.14210.030*
N20.46514 (19)0.27027 (14)0.14306 (15)0.0308 (4)
H20.49690.33230.10920.037*
N30.0789 (2)0.06862 (17)0.21675 (19)0.0442 (5)
N40.5715 (2)0.48918 (15)0.10560 (15)0.0324 (4)
N50.98636 (19)0.19122 (16)0.04096 (15)0.0325 (4)
H51.04730.16470.09400.039*
C10.4581 (2)0.03934 (17)0.17981 (16)0.0233 (4)
C20.3512 (2)0.12010 (17)0.20019 (16)0.0240 (4)
C30.3834 (2)0.24738 (16)0.21036 (16)0.0231 (4)
H30.31130.29250.17150.028*
C40.5345 (2)0.27287 (16)0.15183 (16)0.0219 (4)
C50.6369 (2)0.19035 (16)0.12830 (16)0.0223 (4)
C60.4366 (2)0.08497 (17)0.18466 (16)0.0245 (4)
C70.5099 (2)0.16103 (17)0.11543 (18)0.0281 (5)
H70.58130.14000.05690.034*
C80.3627 (2)0.26903 (18)0.23208 (18)0.0294 (5)
C90.2898 (3)0.36089 (19)0.2901 (2)0.0384 (6)
H90.30530.43810.26880.046*
C100.1950 (3)0.3353 (2)0.3789 (2)0.0458 (6)
H100.14230.39590.41910.055*
C110.1741 (3)0.2218 (2)0.4119 (2)0.0439 (6)
H110.10900.20720.47480.053*
C120.2463 (2)0.13097 (19)0.35472 (19)0.0346 (5)
H120.23180.05440.37790.041*
C130.3412 (2)0.15357 (17)0.26201 (17)0.0269 (5)
C140.2016 (2)0.08876 (17)0.21017 (18)0.0295 (5)
C150.3656 (2)0.28430 (16)0.32702 (16)0.0243 (4)
C160.2305 (2)0.32231 (19)0.37341 (19)0.0342 (5)
H160.14870.32110.33360.041*
C170.2140 (3)0.3620 (2)0.4777 (2)0.0427 (6)
H170.12110.38750.50940.051*
C180.3327 (3)0.3643 (2)0.53466 (19)0.0400 (6)
C190.4659 (3)0.3244 (2)0.4922 (2)0.0463 (6)
H190.54650.32400.53320.056*
C200.4817 (2)0.2842 (2)0.38802 (19)0.0372 (6)
H200.57410.25620.35810.045*
C210.5614 (2)0.39169 (18)0.12352 (16)0.0247 (4)
C220.7857 (2)0.20992 (17)0.07727 (16)0.0239 (4)
C230.8523 (2)0.14721 (18)0.00612 (18)0.0302 (5)
H230.81050.08250.03510.036*
C241.0120 (2)0.28385 (17)0.01974 (17)0.0276 (5)
C251.1329 (2)0.35680 (19)0.01216 (19)0.0339 (5)
H251.21390.34770.04140.041*
C261.1297 (2)0.4423 (2)0.0853 (2)0.0371 (6)
H261.20940.49430.08140.045*
C271.0116 (2)0.45460 (19)0.16554 (19)0.0343 (5)
H271.01440.51300.21640.041*
C280.8913 (2)0.38358 (18)0.17213 (18)0.0293 (5)
H280.81180.39270.22690.035*
C290.8885 (2)0.29768 (17)0.09657 (16)0.0244 (4)
C300.2484 (5)0.0453 (3)0.6042 (3)0.0876 (12)
H30A0.33310.00040.62130.131*
H30B0.27380.08980.53630.131*
H30C0.16670.00630.59670.131*
C310.2053 (3)0.1251 (2)0.6923 (2)0.0435 (6)
H31A0.28720.17840.69780.052*
H31B0.12070.17180.67390.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1068 (6)0.0464 (4)0.0364 (4)0.0072 (4)0.0148 (4)0.0185 (3)
O10.0256 (8)0.0288 (8)0.0366 (9)0.0044 (6)0.0005 (7)0.0018 (7)
N10.0224 (9)0.0175 (9)0.0338 (10)0.0003 (7)0.0010 (7)0.0021 (7)
N20.0369 (10)0.0176 (9)0.0376 (11)0.0010 (8)0.0001 (9)0.0083 (8)
N30.0285 (11)0.0335 (11)0.0708 (16)0.0054 (9)0.0083 (10)0.0016 (10)
N40.0356 (10)0.0219 (10)0.0391 (11)0.0013 (8)0.0014 (8)0.0011 (8)
N50.0287 (10)0.0360 (11)0.0306 (10)0.0005 (8)0.0078 (8)0.0060 (8)
C10.0253 (10)0.0214 (10)0.0237 (10)0.0029 (8)0.0040 (8)0.0024 (8)
C20.0240 (10)0.0215 (10)0.0267 (11)0.0020 (8)0.0025 (8)0.0025 (8)
C30.0218 (10)0.0193 (10)0.0282 (11)0.0003 (8)0.0036 (8)0.0001 (8)
C40.0247 (10)0.0189 (10)0.0220 (10)0.0023 (8)0.0014 (8)0.0029 (8)
C50.0244 (10)0.0199 (10)0.0227 (10)0.0029 (8)0.0027 (8)0.0027 (8)
C60.0268 (10)0.0193 (10)0.0277 (11)0.0022 (8)0.0045 (9)0.0021 (8)
C70.0293 (11)0.0233 (11)0.0316 (12)0.0028 (9)0.0024 (9)0.0026 (9)
C80.0276 (11)0.0226 (11)0.0381 (13)0.0037 (9)0.0041 (10)0.0030 (9)
C90.0397 (13)0.0215 (11)0.0533 (16)0.0061 (10)0.0037 (12)0.0010 (10)
C100.0396 (14)0.0317 (13)0.0630 (18)0.0080 (11)0.0043 (13)0.0099 (12)
C110.0400 (14)0.0406 (14)0.0467 (15)0.0004 (11)0.0108 (12)0.0053 (12)
C120.0372 (12)0.0260 (12)0.0390 (13)0.0005 (10)0.0027 (10)0.0035 (10)
C130.0272 (11)0.0217 (11)0.0321 (12)0.0019 (8)0.0046 (9)0.0016 (9)
C140.0303 (12)0.0194 (11)0.0391 (13)0.0004 (9)0.0044 (10)0.0032 (9)
C150.0277 (11)0.0155 (10)0.0285 (11)0.0008 (8)0.0024 (9)0.0019 (8)
C160.0304 (12)0.0340 (13)0.0360 (13)0.0044 (10)0.0045 (10)0.0002 (10)
C170.0460 (15)0.0339 (13)0.0423 (15)0.0102 (11)0.0186 (12)0.0003 (11)
C180.0579 (16)0.0286 (12)0.0306 (13)0.0058 (11)0.0100 (12)0.0087 (10)
C190.0477 (15)0.0599 (17)0.0325 (14)0.0078 (13)0.0061 (12)0.0122 (12)
C200.0297 (12)0.0491 (15)0.0331 (13)0.0028 (10)0.0023 (10)0.0109 (11)
C210.0250 (11)0.0252 (12)0.0237 (11)0.0005 (9)0.0009 (9)0.0037 (8)
C220.0256 (10)0.0198 (10)0.0253 (11)0.0000 (8)0.0011 (9)0.0007 (8)
C230.0290 (11)0.0269 (11)0.0342 (12)0.0029 (9)0.0007 (10)0.0055 (9)
C240.0270 (11)0.0253 (11)0.0295 (12)0.0003 (9)0.0018 (9)0.0061 (9)
C250.0246 (11)0.0359 (13)0.0396 (13)0.0017 (10)0.0013 (10)0.0118 (10)
C260.0295 (12)0.0320 (13)0.0513 (15)0.0088 (10)0.0139 (11)0.0101 (11)
C270.0373 (13)0.0265 (12)0.0417 (14)0.0033 (10)0.0153 (11)0.0006 (10)
C280.0298 (11)0.0260 (11)0.0329 (12)0.0004 (9)0.0063 (10)0.0027 (9)
C290.0259 (11)0.0210 (10)0.0261 (11)0.0006 (8)0.0037 (9)0.0033 (8)
C300.141 (4)0.076 (2)0.0404 (18)0.016 (2)0.015 (2)0.0096 (16)
C310.0500 (15)0.0415 (14)0.0389 (14)0.0043 (12)0.0071 (12)0.0063 (11)
Geometric parameters (Å, º) top
Cl1—C181.745 (2)C11—C121.380 (3)
O1—C311.435 (3)C11—H110.9500
O1—H10.8400C12—C131.398 (3)
N1—C11.379 (3)C12—H120.9500
N1—C51.384 (2)C15—C201.383 (3)
N1—H1A0.8800C15—C161.387 (3)
N2—C71.355 (3)C16—C171.388 (3)
N2—C81.371 (3)C16—H160.9500
N2—H20.8800C17—C181.374 (4)
N3—C141.148 (3)C17—H170.9500
N4—C211.147 (3)C18—C191.364 (4)
N5—C231.357 (3)C19—C201.389 (3)
N5—C241.377 (3)C19—H190.9500
N5—H50.8800C20—H200.9500
C1—C21.364 (3)C22—C231.376 (3)
C1—C61.456 (3)C22—C291.443 (3)
C2—C141.418 (3)C23—H230.9500
C2—C31.523 (3)C24—C251.396 (3)
C3—C41.520 (3)C24—C291.412 (3)
C3—C151.523 (3)C25—C261.373 (3)
C3—H31.0000C25—H250.9500
C4—C51.356 (3)C26—C271.400 (3)
C4—C211.427 (3)C26—H260.9500
C5—C221.457 (3)C27—C281.379 (3)
C6—C71.377 (3)C27—H270.9500
C6—C131.445 (3)C28—C291.402 (3)
C7—H70.9500C28—H280.9500
C8—C91.396 (3)C30—C311.483 (4)
C8—C131.412 (3)C30—H30A0.9800
C9—C101.369 (4)C30—H30B0.9800
C9—H90.9500C30—H30C0.9800
C10—C111.401 (4)C31—H31A0.9900
C10—H100.9500C31—H31B0.9900
C31—O1—H1109.5C20—C15—C3121.96 (18)
C1—N1—C5123.19 (16)C16—C15—C3119.59 (19)
C1—N1—H1A118.4C15—C16—C17120.4 (2)
C5—N1—H1A118.4C15—C16—H16119.8
C7—N2—C8109.32 (17)C17—C16—H16119.8
C7—N2—H2125.3C18—C17—C16119.6 (2)
C8—N2—H2125.3C18—C17—H17120.2
C23—N5—C24109.29 (17)C16—C17—H17120.2
C23—N5—H5125.4C19—C18—C17121.2 (2)
C24—N5—H5125.4C19—C18—Cl1119.1 (2)
C2—C1—N1118.81 (18)C17—C18—Cl1119.73 (19)
C2—C1—C6125.68 (18)C18—C19—C20119.0 (2)
N1—C1—C6115.49 (17)C18—C19—H19120.5
C1—C2—C14120.68 (18)C20—C19—H19120.5
C1—C2—C3122.97 (17)C15—C20—C19121.4 (2)
C14—C2—C3116.33 (17)C15—C20—H20119.3
C4—C3—C2108.33 (16)C19—C20—H20119.3
C4—C3—C15113.00 (16)N4—C21—C4174.1 (2)
C2—C3—C15112.95 (16)C23—C22—C29106.34 (17)
C4—C3—H3107.4C23—C22—C5124.24 (18)
C2—C3—H3107.4C29—C22—C5129.35 (18)
C15—C3—H3107.4N5—C23—C22110.18 (18)
C5—C4—C21122.03 (18)N5—C23—H23124.9
C5—C4—C3123.36 (17)C22—C23—H23124.9
C21—C4—C3114.61 (17)N5—C24—C25129.8 (2)
C4—C5—N1119.10 (17)N5—C24—C29107.72 (18)
C4—C5—C22125.91 (18)C25—C24—C29122.5 (2)
N1—C5—C22114.93 (17)C26—C25—C24117.2 (2)
C7—C6—C13106.43 (17)C26—C25—H25121.4
C7—C6—C1125.15 (19)C24—C25—H25121.4
C13—C6—C1128.39 (18)C25—C26—C27121.5 (2)
N2—C7—C6110.08 (19)C25—C26—H26119.3
N2—C7—H7125.0C27—C26—H26119.3
C6—C7—H7125.0C28—C27—C26121.3 (2)
N2—C8—C9129.4 (2)C28—C27—H27119.3
N2—C8—C13108.17 (18)C26—C27—H27119.3
C9—C8—C13122.4 (2)C27—C28—C29118.8 (2)
C10—C9—C8117.3 (2)C27—C28—H28120.6
C10—C9—H9121.3C29—C28—H28120.6
C8—C9—H9121.3C28—C29—C24118.59 (19)
C9—C10—C11121.5 (2)C28—C29—C22134.93 (19)
C9—C10—H10119.2C24—C29—C22106.45 (17)
C11—C10—H10119.2C31—C30—H30A109.5
C12—C11—C10121.1 (2)C31—C30—H30B109.5
C12—C11—H11119.4H30A—C30—H30B109.5
C10—C11—H11119.4C31—C30—H30C109.5
C11—C12—C13118.9 (2)H30A—C30—H30C109.5
C11—C12—H12120.6H30B—C30—H30C109.5
C13—C12—H12120.6O1—C31—C30113.1 (2)
C12—C13—C8118.70 (19)O1—C31—H31A109.0
C12—C13—C6135.23 (19)C30—C31—H31A109.0
C8—C13—C6105.99 (18)O1—C31—H31B109.0
N3—C14—C2176.8 (2)C30—C31—H31B109.0
C20—C15—C16118.4 (2)H31A—C31—H31B107.8
C5—N1—C1—C25.9 (3)C1—C6—C13—C122.5 (4)
C5—N1—C1—C6172.47 (17)C7—C6—C13—C80.9 (2)
N1—C1—C2—C14166.92 (19)C1—C6—C13—C8179.07 (19)
C6—C1—C2—C1411.3 (3)C4—C3—C15—C2030.7 (3)
N1—C1—C2—C311.3 (3)C2—C3—C15—C2092.7 (2)
C6—C1—C2—C3170.48 (18)C4—C3—C15—C16147.46 (19)
C1—C2—C3—C422.5 (3)C2—C3—C15—C1689.1 (2)
C14—C2—C3—C4155.86 (18)C20—C15—C16—C171.7 (3)
C1—C2—C3—C15103.5 (2)C3—C15—C16—C17176.58 (19)
C14—C2—C3—C1578.2 (2)C15—C16—C17—C180.4 (3)
C2—C3—C4—C519.9 (3)C16—C17—C18—C192.4 (4)
C15—C3—C4—C5106.0 (2)C16—C17—C18—Cl1177.11 (18)
C2—C3—C4—C21160.43 (17)C17—C18—C19—C202.1 (4)
C15—C3—C4—C2173.6 (2)Cl1—C18—C19—C20177.4 (2)
C21—C4—C5—N1174.08 (18)C16—C15—C20—C191.9 (3)
C3—C4—C5—N16.3 (3)C3—C15—C20—C19176.2 (2)
C21—C4—C5—C222.9 (3)C18—C19—C20—C150.1 (4)
C3—C4—C5—C22176.79 (18)C4—C5—C22—C23134.1 (2)
C1—N1—C5—C48.5 (3)N1—C5—C22—C2343.0 (3)
C1—N1—C5—C22168.82 (18)C4—C5—C22—C2942.3 (3)
C2—C1—C6—C7142.7 (2)N1—C5—C22—C29140.6 (2)
N1—C1—C6—C735.6 (3)C24—N5—C23—C220.6 (3)
C2—C1—C6—C1339.5 (3)C29—C22—C23—N51.4 (2)
N1—C1—C6—C13142.3 (2)C5—C22—C23—N5175.73 (19)
C8—N2—C7—C60.8 (2)C23—N5—C24—C25178.7 (2)
C13—C6—C7—N21.1 (2)C23—N5—C24—C290.4 (2)
C1—C6—C7—N2179.30 (18)N5—C24—C25—C26179.1 (2)
C7—N2—C8—C9178.1 (2)C29—C24—C25—C261.9 (3)
C7—N2—C8—C130.2 (2)C24—C25—C26—C271.2 (3)
N2—C8—C9—C10178.0 (2)C25—C26—C27—C282.1 (3)
C13—C8—C9—C100.2 (3)C26—C27—C28—C290.0 (3)
C8—C9—C10—C111.3 (4)C27—C28—C29—C242.9 (3)
C9—C10—C11—C121.3 (4)C27—C28—C29—C22179.7 (2)
C10—C11—C12—C130.3 (4)N5—C24—C29—C28176.82 (18)
C11—C12—C13—C81.8 (3)C25—C24—C29—C283.9 (3)
C11—C12—C13—C6177.9 (2)N5—C24—C29—C221.2 (2)
N2—C8—C13—C12176.76 (19)C25—C24—C29—C22177.99 (19)
C9—C8—C13—C121.7 (3)C23—C22—C29—C28176.0 (2)
N2—C8—C13—C60.5 (2)C5—C22—C29—C287.1 (4)
C9—C8—C13—C6178.9 (2)C23—C22—C29—C241.6 (2)
C7—C6—C13—C12175.6 (2)C5—C22—C29—C24175.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31A···Cl10.992.833.571 (3)132
C28—H28···Cl1i0.952.793.520 (2)135
N5—H5···O1ii0.882.042.907 (2)167
N2—H2···N4iii0.882.182.989 (2)153
N1—H1A···O1iv0.882.042.834 (2)150
O1—H1···N3v0.841.962.791 (2)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z1; (iii) x, y1, z; (iv) x+1, y, z+1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC29H18ClN5·C2H6O
Mr518.00
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)9.2133 (17), 11.611 (2), 12.473 (2)
α, β, γ (°)87.714 (7), 83.297 (6), 89.576 (7)
V3)1324.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.55 × 0.36 × 0.15
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.787, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
12971, 4803, 4095
Rint0.029
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.119, 1.09
No. of reflections4803
No. of parameters346
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.71

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31A···Cl10.992.833.571 (3)132
C28—H28···Cl1i0.952.793.520 (2)135
N5—H5···O1ii0.882.042.907 (2)167
N2—H2···N4iii0.882.182.989 (2)153
N1—H1A···O1iv0.882.042.834 (2)150
O1—H1···N3v0.841.962.791 (2)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z1; (iii) x, y1, z; (iv) x+1, y, z+1; (v) x, y, z+1.
 

Acknowledgements

This work was partially supported by the Open Foundation of the Key Laboratory of Cancer Biotherapy of Xuzhou Medical College (grant No. C0901), the Key Laboratory of Organic Synthesis of Jiangsu Province (grant No. KJS1010), the Natural Science Foundation of Higher Education Institutions of Jiangsu Province (grant No. 09KJB150012) and the Special Presidential Foundation of Xuzhou Medical College (grant Nos. 09KJZ19 and 2010KJZ20).

References

First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJanis, R. A. & Triggle, D. J. (1983). J. Med. Chem. 26, 775–785.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationJoshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1–12.  CAS PubMed Web of Science Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, S. L., Ji, S. J., Su, X. M., Sun, C. & Liu, Y. (2008). Tetrahedron Lett. 49, 1777–1781.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1300-o1301
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds