organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1342

2-(Ethyl­sulfin­yl)imidazo[1,2-a]pyridine-3-sulfonamide

aInstitute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: lxf7777@sxu.edu.cn

(Received 23 March 2012; accepted 31 March 2012; online 13 April 2012)

The supra­molecular structure of the title compound, C9H11N3O3S2, is defined by two inter­molecular hydrogen bonds. Pairs of N—H⋯N hydrogen bonds link the mol­ecules into centrosymmetric dimers and N—H⋯O hydrogen bonds link the dimers into a tubular chain structure running parallel to the a axis.

Related literature

The title compound is a derivative of sulfosulfuron [systematic name: 1-(4,6-dimeth­oxy­pyrimidin-2-yl)-3-(2-ethyl­sulfonyl­imid­azo[1,2-a]pyridin-3-ylsulfon­yl)urea], a high-performance sulfonyl­urea herbicide used to control several grassy weeds in wheat, see: Maxwell et al. (2005[Maxwell, B. D., Boyé, O. G. & Ohta, K. (2005). J. Label. Compd Radiopharm., 48, 397-406.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O3S2

  • Mr = 273.33

  • Triclinic, [P \overline 1]

  • a = 8.3761 (9) Å

  • b = 8.5438 (9) Å

  • c = 9.1083 (10) Å

  • α = 88.832 (2)°

  • β = 75.376 (1)°

  • γ = 65.170 (1)°

  • V = 569.67 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.873, Tmax = 0.912

  • 6015 measured reflections

  • 2001 independent reflections

  • 1793 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.068

  • S = 1.06

  • 2001 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.83 2.07 2.888 (2) 171
N3—H3B⋯N1ii 0.82 2.24 3.026 (2) 161
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Sulfosulfuron,1-(4,6-dimethoxypyrimidin-2-yl)-3-(2-ethylsulfonylimidazo [1,2-a]pyridin-3-ylsulfonyl)urea, is high-performance sulfonylurea herbicide, and can effectively control several grassy weeds in wheat (Maxwell, et al.2005). In the course of exploring its derivatives, we obtained the compound C9H11N3O3S2, Figure, 1.

The supramolecular structure is defined by the N3—H3B···N1 hydrogen bond which links the molecules into centrosymmetric dimers lying across the centre-of-symmetry at (0.5,0.5,0.5) and the N3–H3B···O1 hydrogen bond which links the dimers into tubular chains which run parallel to the a-axis, Table 1 and Figure 2.

Related literature top

The title compound is a derivative of sulfosulfuron [systematic name: 1-(4,6-dimethoxypyrimidin-2-yl)-3-(2-ethylsulfonylimidazo[1,2-a]pyridin-3-ylsulfonyl)urea], a high-performance sulfonylurea herbicide used to control several grassy weeds in wheat, see: Maxwell et al. (2005).

Experimental top

m-chloroperoxybenzoic acid (1.88 g, 8.22 mmol) in 100 ml CH2Cl2 was added dropwise to a solution of 2-ethylthioimidazo[1,2-a]pyridine-3-sulfonamide (2.2 g, 8.22 mmol) in 200 ml CH2Cl2 in an ice water bath. The suspension was stirred at 0–5°C for more than 3 h, and filtered. After removing the solvent, and the crude product was recrystallized in MeOH to give white crystalline product (1.24 g, 55% yield)). The melting point of the product was 203–205°C.

Refinement top

H atoms were treated as riding atoms with C—H(aromatic), 0.93 Å, and C—H(CH2), 0.97\$A with Uiso = 1.2Ueq(C) and CH(methyl), 0.96 Å, with Uiso =1.5Ueq(C).

The hydrogen atoms attached to N3 were located on a difference Fourier map and allowed to ride at these positions. These positions were confirmed in a final difference Fourier map.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (1) with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of compound, showing the tubular chain structure which runs parallel to the a-axis. Hydrogen atoms not involved in the motifs are not included.
2-(Ethylsulfinyl)imidazo[1,2-a]pyridine-3-sulfonamide top
Crystal data top
C9H11N3O3S2Z = 2
Mr = 273.33F(000) = 284
Triclinic, P1Dx = 1.593 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3761 (9) ÅCell parameters from 3732 reflections
b = 8.5438 (9) Åθ = 2.6–30.8°
c = 9.1083 (10) ŵ = 0.47 mm1
α = 88.832 (2)°T = 296 K
β = 75.376 (1)°Block, colourless
γ = 65.170 (1)°0.30 × 0.20 × 0.20 mm
V = 569.67 (11) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2001 independent reflections
Radiation source: fine-focus sealed tube1793 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
phi and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.873, Tmax = 0.912k = 1010
6015 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.3093P]
where P = (Fo2 + 2Fc2)/3
2001 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C9H11N3O3S2γ = 65.170 (1)°
Mr = 273.33V = 569.67 (11) Å3
Triclinic, P1Z = 2
a = 8.3761 (9) ÅMo Kα radiation
b = 8.5438 (9) ŵ = 0.47 mm1
c = 9.1083 (10) ÅT = 296 K
α = 88.832 (2)°0.30 × 0.20 × 0.20 mm
β = 75.376 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2001 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1793 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.912Rint = 0.017
6015 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
2001 reflectionsΔρmin = 0.30 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.85430 (6)0.27576 (6)0.34364 (5)0.02656 (13)
S20.45246 (6)0.23968 (6)0.29742 (5)0.02731 (13)
O10.96772 (17)0.30562 (18)0.43380 (16)0.0388 (3)
O20.59485 (18)0.2537 (2)0.18084 (15)0.0431 (4)
O30.4246 (2)0.08604 (17)0.29993 (17)0.0435 (4)
N10.64659 (19)0.30840 (18)0.63394 (16)0.0267 (3)
N20.39592 (19)0.28563 (17)0.61067 (15)0.0235 (3)
N30.2631 (2)0.39803 (19)0.29715 (17)0.0303 (3)
H3A0.17350.38150.34360.036*
H3B0.26340.49220.31300.036*
C10.4861 (2)0.3112 (2)0.7099 (2)0.0255 (4)
C20.4020 (3)0.3362 (2)0.8674 (2)0.0335 (4)
H2B0.45930.35400.93640.040*
C30.2362 (3)0.3342 (3)0.9171 (2)0.0373 (4)
H3D0.17910.35121.02100.045*
C40.1494 (3)0.3065 (3)0.8128 (2)0.0355 (4)
H4A0.03540.30600.84900.043*
C50.2291 (2)0.2807 (2)0.6613 (2)0.0292 (4)
H5A0.17260.26010.59300.035*
C60.5075 (2)0.2671 (2)0.46454 (19)0.0240 (4)
C70.6586 (2)0.2806 (2)0.48511 (19)0.0241 (4)
C80.9606 (2)0.0468 (2)0.2813 (2)0.0322 (4)
H8A0.99660.01940.36460.039*
H8B0.87380.01510.25170.039*
C91.1260 (3)0.0039 (3)0.1481 (2)0.0439 (5)
H9A1.17910.11730.11440.066*
H9B1.21380.03090.17870.066*
H9C1.09040.07070.06630.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0231 (2)0.0276 (2)0.0309 (2)0.01298 (18)0.00662 (17)0.00240 (17)
S20.0250 (2)0.0318 (2)0.0257 (2)0.01139 (19)0.00860 (17)0.00373 (17)
O10.0293 (7)0.0504 (8)0.0445 (8)0.0243 (6)0.0095 (6)0.0045 (6)
O20.0311 (7)0.0691 (10)0.0259 (7)0.0202 (7)0.0042 (6)0.0020 (6)
O30.0475 (8)0.0297 (7)0.0593 (9)0.0152 (6)0.0261 (7)0.0046 (6)
N10.0272 (8)0.0276 (8)0.0286 (8)0.0128 (6)0.0113 (6)0.0025 (6)
N20.0234 (7)0.0236 (7)0.0245 (7)0.0107 (6)0.0071 (6)0.0021 (6)
N30.0278 (8)0.0316 (8)0.0358 (9)0.0140 (7)0.0134 (7)0.0019 (6)
C10.0273 (9)0.0232 (8)0.0282 (9)0.0106 (7)0.0118 (7)0.0031 (7)
C20.0408 (11)0.0353 (10)0.0262 (9)0.0162 (9)0.0121 (8)0.0028 (8)
C30.0425 (11)0.0388 (11)0.0262 (10)0.0176 (9)0.0019 (8)0.0022 (8)
C40.0298 (10)0.0388 (11)0.0366 (11)0.0174 (8)0.0023 (8)0.0050 (8)
C50.0259 (9)0.0302 (9)0.0343 (10)0.0145 (8)0.0087 (7)0.0044 (7)
C60.0233 (8)0.0267 (9)0.0234 (9)0.0116 (7)0.0066 (7)0.0012 (7)
C70.0231 (8)0.0228 (8)0.0269 (9)0.0095 (7)0.0082 (7)0.0016 (7)
C80.0314 (10)0.0276 (9)0.0356 (10)0.0109 (8)0.0084 (8)0.0000 (8)
C90.0352 (11)0.0488 (13)0.0414 (12)0.0154 (10)0.0033 (9)0.0085 (9)
Geometric parameters (Å, º) top
S1—O11.4993 (13)C2—C31.355 (3)
S1—C71.7965 (17)C2—H2B0.9300
S1—C81.8082 (18)C3—C41.410 (3)
S2—O31.4255 (14)C3—H3D0.9300
S2—O21.4281 (14)C4—C51.349 (3)
S2—N31.5954 (15)C4—H4A0.9300
S2—C61.7448 (17)C5—H5A0.9300
N1—C11.338 (2)C6—C71.376 (2)
N1—C71.352 (2)C8—C91.506 (3)
N2—C51.375 (2)C8—H8A0.9700
N2—C11.388 (2)C8—H8B0.9700
N2—C61.388 (2)C9—H9A0.9600
N3—H3A0.83C9—H9B0.9600
N3—H3B0.82C9—H9C0.9600
C1—C21.406 (2)
O1—S1—C7104.42 (8)C5—C4—C3121.08 (17)
O1—S1—C8106.98 (8)C5—C4—H4A119.5
C7—S1—C897.74 (8)C3—C4—H4A119.5
O3—S2—O2120.44 (9)C4—C5—N2118.26 (17)
O3—S2—N3107.20 (8)C4—C5—H5A120.9
O2—S2—N3108.79 (9)N2—C5—H5A120.9
O3—S2—C6108.41 (8)C7—C6—N2104.92 (14)
O2—S2—C6103.09 (8)C7—C6—S2130.38 (13)
N3—S2—C6108.43 (8)N2—C6—S2124.68 (12)
C1—N1—C7105.05 (14)N1—C7—C6112.36 (15)
C5—N2—C1122.26 (14)N1—C7—S1118.80 (12)
C5—N2—C6131.29 (15)C6—C7—S1128.78 (13)
C1—N2—C6106.45 (13)C9—C8—S1110.33 (14)
S2—N3—H3A112.6C9—C8—H8A109.6
S2—N3—H3B112.2S1—C8—H8A109.6
H3A—N3—H3B118.8C9—C8—H8B109.6
N1—C1—N2111.22 (14)S1—C8—H8B109.6
N1—C1—C2130.02 (16)H8A—C8—H8B108.1
N2—C1—C2118.76 (15)C8—C9—H9A109.5
C3—C2—C1118.91 (17)C8—C9—H9B109.5
C3—C2—H2B120.5H9A—C9—H9B109.5
C1—C2—H2B120.5C8—C9—H9C109.5
C2—C3—C4120.71 (17)H9A—C9—H9C109.5
C2—C3—H3D119.6H9B—C9—H9C109.5
C4—C3—H3D119.6
C7—N1—C1—N20.09 (18)O2—S2—C6—C76.34 (19)
C7—N1—C1—C2179.63 (18)N3—S2—C6—C7121.56 (17)
C5—N2—C1—N1179.11 (15)O3—S2—C6—N259.80 (16)
C6—N2—C1—N10.39 (18)O2—S2—C6—N2171.48 (14)
C5—N2—C1—C21.3 (2)N3—S2—C6—N256.26 (16)
C6—N2—C1—C2179.21 (15)C1—N1—C7—C60.56 (19)
N1—C1—C2—C3179.69 (18)C1—N1—C7—S1177.83 (12)
N2—C1—C2—C30.2 (3)N2—C6—C7—N10.79 (19)
C1—C2—C3—C40.3 (3)S2—C6—C7—N1177.35 (13)
C2—C3—C4—C50.3 (3)N2—C6—C7—S1177.72 (12)
C3—C4—C5—N21.3 (3)S2—C6—C7—S10.4 (3)
C1—N2—C5—C41.9 (3)O1—S1—C7—N10.33 (15)
C6—N2—C5—C4178.78 (17)C8—S1—C7—N1110.16 (14)
C5—N2—C6—C7178.75 (16)O1—S1—C7—C6177.09 (16)
C1—N2—C6—C70.69 (17)C8—S1—C7—C673.08 (17)
C5—N2—C6—S23.0 (3)O1—S1—C8—C977.41 (15)
C1—N2—C6—S2177.60 (12)C7—S1—C8—C9174.87 (14)
O3—S2—C6—C7122.38 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.832.072.888 (2)171
N3—H3B···N1ii0.822.243.026 (2)161
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H11N3O3S2
Mr273.33
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.3761 (9), 8.5438 (9), 9.1083 (10)
α, β, γ (°)88.832 (2), 75.376 (1), 65.170 (1)
V3)569.67 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.873, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
6015, 2001, 1793
Rint0.017
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.06
No. of reflections2001
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.30

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.832.072.888 (2)171
N3—H3B···N1ii0.822.243.026 (2)161
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to the National Science Foundation (YG, No. 81001364) for support of this work.

References

First citationMaxwell, B. D., Boyé, O. G. & Ohta, K. (2005). J. Label. Compd Radiopharm., 48, 397–406.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1342
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds