organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1518

2-Tri­fluoro­methyl-1H-benzimidazole

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jgsdxlml@163.com

(Received 12 April 2012; accepted 19 April 2012; online 25 April 2012)

The asymmetric unit of the title compound, C8H5F3N2, consists of two half-mol­ecules, one lies on a mirror plane and the other is generated by twofold rotation symmetry, with the axis running through the trifluoro­methyl C atom and the attached benzimidazole C atom. The two 2-trifluoro­methyl-1H-benzimidazole mol­ecules are connected by N—H⋯N hydrogen bonds involving the disordered NH H atoms into chains running parallel to the c axis. One of the trifluoro­methyl groups is disordered over two orientations of equal occupancy.

Related literature

For background to ferroelectric complexes, see: Fu et al. (2011[Fu, D. W., Zhang, W., Cai, H. L., Zhang, Y., Ge, J. Z., Xiong, R. G. & Huang, S. P. (2011). J. Am. Chem. Soc. 133, 12780-12786.]); Zhang et al. (2010[Zhang, W., Chen, L. Z., Gou, M., Li, Y. H., Fu, D. W. & Xiong, R. G. (2010). Cryst. Growth Des. 10, 1025-1027.]). For related structures, see: Liu (2011a[Liu, M.-L. (2011a). Acta Cryst. E67, o2821.],b[Liu, M.-L. (2011b). Acta Cryst. E67, o3473.], 2012a[Liu, M.-L. (2012a). Acta Cryst. E68, o342.],b[Liu, M.-L. (2012b). Acta Cryst. E68, o1012.],c[Liu, M.-L. (2012c). Acta Cryst. E68, o1076.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H5F3N2

  • Mr = 186.14

  • Orthorhombic, P b c m

  • a = 11.859 (2) Å

  • b = 7.2154 (14) Å

  • c = 19.508 (4) Å

  • V = 1669.2 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.36 × 0.32 × 0.28 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.952, Tmax = 0.962

  • 13301 measured reflections

  • 1523 independent reflections

  • 983 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.168

  • S = 1.04

  • 1523 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N4 0.86 2.03 2.891 (3) 173
N4—H4A⋯N1 0.86 2.03 2.891 (3) 174

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently much attention has been devoted to crystals containing organic ions and inorganic ions due to the possibility of tuning their special structural features and their potential ferroelectrics properties (Fu et al., 2011; Zhang et al., 2010.). In our laboratory, the title compound has been synthesized to investigate to its potential ferroelectric properties. However, it was found that the dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature (below the melting point).

The title compound has an asymmetric unit that consists of two half 2-trifluoromethyl-1H-benzimidazole molecules (Fig 1). In each of these molecules the H atoms attached to the N atoms are shared 50/50 over both sites.

One of these molecule sits on a mirror plane at c = 0.75 and the other sits on a 2-fold axis at b = 0.25 and c = 0.5 with the axis running through atoms C1 and C2 of the trifluoromethyl group.

The molecules of, I, are hydrogen bonded together to form C23(8) chain,(Bernstein et al., 1995), which run parallel to the c-axis. Half by N1···N4, N4···N1 and N1..N4 chains. and half by N4···N1, N1···N4 and N4···N1 chaims, (in each case the first atom is the donor and the second the acceptor).

One of the trifluoromethyl groups is disordered.

Related literature top

For background to ferroelectric complexes, see: Fu et al. (2011); Zhang et al. (2010). For related structures, see: Liu (2011a,b, 2012a,b,c). For graph-set analysis, see: Bernstein et al. (1995).

Experimental top

0.144 g (1 mmol) of 2-trifluoromethyl-1H-benzimidazole was dissolved in 30 ml of ethanol to give a solution at the ambient temperature. Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after 3 days in air.

Refinement top

H atoms were treated as riding atoms with N—H, 0.86Å, C—H(aromatic), 0.95 Å, with Uiso = 1.2Ueq(C) allowed to ride. An examination of a difference map along the line of the N1 to N2 vector showed an elongated density peak. This was found to be best modelled as two half-hydrogen atoms attached to N1 and N4. These positions were checked on the final difference map.

The disordered trifluoromethyl was modelled with restrained bonds and angles based on the average values found for the non-disordered trifluoromethyl group with initial positions being derived from a difference map. The action of the symmetry axis passing molecule produced a set of six F atoms spaced around a regular hexagon. Each of these F atoms was given a site occupancy of 0.5. In the final stages of refinement the group was refined as a riding and rotating group as for a methyl group. This model is not perfect and as a result there are several C Alerts.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.Both half hydrogens attached to N1 and N2 and the disordered fluorine atoms are included.
[Figure 2] Fig. 2. View of the C3 chain running parallel to the c-axis. For clarity all hydrogen atoms are omitted.
2-Trifluoromethyl-1H-benzimidazole top
Crystal data top
C8H5F3N2F(000) = 752
Mr = 186.14Dx = 1.481 Mg m3
Orthorhombic, PbcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2c 2bθ = 0–25°
a = 11.859 (2) ŵ = 0.14 mm1
b = 7.2154 (14) ÅT = 293 K
c = 19.508 (4) ÅBlock, colourless
V = 1669.2 (5) Å30.36 × 0.32 × 0.28 mm
Z = 8
Data collection top
Rigaku SCXmini
diffractometer
1523 independent reflections
Radiation source: fine-focus sealed tube983 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
CCD_Profile_fitting scansθmax = 25.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1414
Tmin = 0.952, Tmax = 0.962k = 88
13301 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0577P)2 + 1.2173P]
where P = (Fo2 + 2Fc2)/3
1523 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C8H5F3N2V = 1669.2 (5) Å3
Mr = 186.14Z = 8
Orthorhombic, PbcmMo Kα radiation
a = 11.859 (2) ŵ = 0.14 mm1
b = 7.2154 (14) ÅT = 293 K
c = 19.508 (4) Å0.36 × 0.32 × 0.28 mm
Data collection top
Rigaku SCXmini
diffractometer
1523 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
983 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.962Rint = 0.074
13301 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
1523 reflectionsΔρmin = 0.23 e Å3
129 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.2645 (4)0.25000.50000.0595 (12)
C10.14185 (18)0.25000.50000.101 (2)
F1A0.09271 (18)0.17700.55340.157 (4)0.50
F1B0.09835 (18)0.16550.44690.191 (5)0.50
F1C0.10542 (18)0.42100.49640.213 (5)0.50
N10.3246 (2)0.2091 (3)0.55507 (11)0.0576 (7)
H1A0.30000.17950.59510.069*0.50
C30.4353 (2)0.2242 (4)0.53443 (14)0.0495 (7)
C40.5347 (3)0.1964 (5)0.5697 (2)0.0760 (11)
H40.53500.16060.61550.091*
C50.6321 (3)0.2236 (6)0.5345 (2)0.0986 (16)
H50.70060.20670.55680.118*
F10A0.3495 (3)0.4573 (4)0.80332 (12)0.1403 (12)
F10B0.4734 (4)0.3146 (6)0.75000.1557 (19)
N40.2610 (2)0.1033 (4)0.69268 (12)0.0641 (8)
H4A0.27490.13640.65120.077*0.50
C90.3662 (6)0.3519 (8)0.75000.0806 (17)
C100.2953 (4)0.1861 (6)0.75000.0605 (12)
C120.1984 (3)0.0467 (5)0.71420 (15)0.0623 (9)
C130.1394 (3)0.1800 (6)0.6772 (2)0.0855 (12)
H130.13820.18000.62950.103*
C140.0830 (4)0.3113 (7)0.7148 (2)0.1073 (16)
H140.04340.40360.69170.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.059 (3)0.076 (3)0.044 (3)0.0000.0000.002 (2)
C10.066 (4)0.134 (6)0.102 (5)0.0000.0000.004 (4)
F1A0.078 (4)0.304 (13)0.088 (5)0.044 (9)0.024 (5)0.041 (5)
F1B0.075 (5)0.376 (17)0.121 (6)0.035 (10)0.039 (5)0.054 (7)
F1C0.089 (5)0.263 (10)0.288 (12)0.077 (6)0.034 (12)0.078 (11)
N10.0703 (17)0.0672 (18)0.0354 (13)0.0017 (13)0.0008 (13)0.0038 (11)
C30.0575 (18)0.0449 (17)0.0461 (15)0.0004 (14)0.0057 (14)0.0042 (13)
C40.082 (3)0.062 (2)0.084 (2)0.0088 (19)0.026 (2)0.0089 (19)
C50.070 (2)0.068 (3)0.158 (5)0.011 (2)0.030 (2)0.033 (3)
F10A0.216 (3)0.113 (2)0.0923 (18)0.069 (2)0.0224 (18)0.0384 (15)
F10B0.097 (3)0.117 (3)0.252 (6)0.040 (3)0.0000.000
N40.081 (2)0.0755 (19)0.0357 (13)0.0105 (15)0.0007 (13)0.0028 (13)
C90.117 (5)0.082 (4)0.043 (3)0.027 (4)0.0000.000
C100.076 (3)0.069 (3)0.037 (2)0.010 (3)0.0000.000
C120.059 (2)0.073 (2)0.0549 (17)0.0047 (17)0.0013 (15)0.0026 (16)
C130.076 (3)0.098 (3)0.083 (3)0.012 (2)0.001 (2)0.025 (2)
C140.087 (3)0.099 (3)0.135 (4)0.030 (2)0.005 (2)0.022 (3)
Geometric parameters (Å, º) top
C2—N1i1.323 (3)C5—H50.9300
C2—N11.323 (3)F10A—C91.303 (4)
C2—C11.454 (5)F10B—C91.300 (7)
C1—F1Ai1.3052N4—C101.331 (3)
C1—F1A1.3053N4—C121.378 (4)
C1—F1B1.3079N4—H4A0.8600
C1—F1Bi1.3079C9—F10Aii1.304 (4)
C1—F1Ci1.3095C9—C101.462 (7)
C1—F1C1.3095C10—N4ii1.331 (3)
N1—C31.377 (4)C12—C131.392 (5)
N1—H1A0.8600C12—C12ii1.397 (6)
C3—C41.380 (4)C13—C141.372 (6)
C3—C3i1.394 (5)C13—H130.9300
C4—C51.359 (5)C14—C14ii1.375 (9)
C4—H40.9300C14—H140.9300
C5—C5i1.399 (9)
N1i—C2—N1114.7 (4)C4—C5—C5i121.8 (2)
N1i—C2—C1122.6 (2)C4—C5—H5119.1
N1—C2—C1122.6 (2)C5i—C5—H5119.1
F1A—C1—F1B105.6C10—N4—C12105.1 (3)
F1Ai—C1—F1Bi105.6C10—N4—H4A127.4
F1Ai—C1—F1Ci106.0C12—N4—H4A127.4
F1Bi—C1—F1Ci105.4F10B—C9—F10A105.6 (4)
F1A—C1—F1C106.0F10B—C9—F10Aii105.6 (4)
F1B—C1—F1C105.4F10A—C9—F10Aii105.9 (5)
F1Ai—C1—C2116.522 (6)F10B—C9—C10113.1 (5)
F1A—C1—C2116.519 (5)F10A—C9—C10113.0 (3)
F1B—C1—C2113.229 (5)F10Aii—C9—C10113.0 (3)
F1Bi—C1—C2113.230 (5)N4—C10—N4ii114.3 (4)
F1Ci—C1—C2109.263 (5)N4—C10—C9122.9 (2)
F1C—C1—C2109.262 (5)N4ii—C10—C9122.9 (2)
C2—N1—C3105.0 (3)N4—C12—C13131.0 (3)
C2—N1—H1A127.5N4—C12—C12ii107.74 (16)
C3—N1—H1A127.5C13—C12—C12ii121.3 (2)
N1—C3—C4131.0 (3)C14—C13—C12116.4 (4)
N1—C3—C3i107.64 (15)C14—C13—H13121.8
C4—C3—C3i121.3 (2)C12—C13—H13121.8
C5—C4—C3116.9 (4)C13—C14—C14ii122.3 (2)
C5—C4—H4121.5C13—C14—H14118.9
C3—C4—H4121.5C14ii—C14—H14118.9
N1i—C2—C1—F1Ai11.43 (13)N1—C3—C4—C5179.7 (3)
N1—C2—C1—F1Ai168.57 (13)C3i—C3—C4—C50.7 (5)
N1i—C2—C1—F1A168.57 (13)C3—C4—C5—C5i0.4 (7)
N1—C2—C1—F1A11.43 (13)C12—N4—C10—N4ii0.2 (5)
N1i—C2—C1—F1B45.84 (13)C12—N4—C10—C9179.2 (5)
N1—C2—C1—F1B134.16 (13)F10B—C9—C10—N489.5 (4)
N1i—C2—C1—F1Bi134.16 (13)F10A—C9—C10—N4150.6 (4)
N1—C2—C1—F1Bi45.84 (13)F10Aii—C9—C10—N430.4 (8)
N1i—C2—C1—F1Ci108.66 (13)F10B—C9—C10—N4ii89.5 (4)
N1—C2—C1—F1Ci71.34 (13)F10A—C9—C10—N4ii30.4 (8)
N1i—C2—C1—F1C71.34 (13)F10Aii—C9—C10—N4ii150.6 (4)
N1—C2—C1—F1C108.66 (13)C10—N4—C12—C13178.1 (4)
N1i—C2—N1—C30.07 (14)C10—N4—C12—C12ii0.1 (3)
C1—C2—N1—C3179.93 (14)N4—C12—C13—C14178.8 (4)
C2—N1—C3—C4179.4 (3)C12ii—C12—C13—C140.8 (4)
C2—N1—C3—C3i0.2 (3)C12—C13—C14—C14ii0.8 (4)
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N40.862.032.891 (3)173
N4—H4A···N10.862.032.891 (3)174

Experimental details

Crystal data
Chemical formulaC8H5F3N2
Mr186.14
Crystal system, space groupOrthorhombic, Pbcm
Temperature (K)293
a, b, c (Å)11.859 (2), 7.2154 (14), 19.508 (4)
V3)1669.2 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.36 × 0.32 × 0.28
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.952, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
13301, 1523, 983
Rint0.074
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.168, 1.04
No. of reflections1523
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.23

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N40.862.032.891 (3)173
N4—H4A···N10.862.032.891 (3)174
 

Acknowledgements

The author thanks an anonymous advisor from the Ordered Matter Science Research Centre, Southeast University, for great help in the revision of this paper.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFu, D. W., Zhang, W., Cai, H. L., Zhang, Y., Ge, J. Z., Xiong, R. G. & Huang, S. P. (2011). J. Am. Chem. Soc. 133, 12780–12786.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, M.-L. (2011a). Acta Cryst. E67, o2821.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M.-L. (2011b). Acta Cryst. E67, o3473.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M.-L. (2012a). Acta Cryst. E68, o342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M.-L. (2012b). Acta Cryst. E68, o1012.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M.-L. (2012c). Acta Cryst. E68, o1076.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Chen, L. Z., Gou, M., Li, Y. H., Fu, D. W. & Xiong, R. G. (2010). Cryst. Growth Des. 10, 1025–1027.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1518
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds