organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1500

2,4-Di­iodo-3-nitro­anisole

aCollege of Science, Northwest Agriculture and Forest University, Yangling 712100, People's Republic of China, bCollege of Life Science, Northwest Agriculture and Forest University, Yangling 712100, People's Republic of China, cZhengzhou University, People's Republic of China, and dCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: zhoulechem@yahoo.com.cn

(Received 27 February 2012; accepted 4 March 2012; online 21 April 2012)

In the title compound (systematic name: 1,3-diiodo-4-meth­oxy-2-nitro­benzene), C7H5I2NO3, the dihedral angle between the benzene ring and the nitro group is 88.0 (3)°, and the methyl group lies almost in the same plane as the ring [deviation = 0.034 (6) Å]. In the crystal, aromatic ππ stacking occurs between inversion-related rings [centroid–centroid separation = 3.865 (3) Å and slippage = 0.642 Å]. A possible weak C—I⋯π inter­action occurs [I⋯π = 3.701 (2) Å and C—I⋯π = 130.18 (13)°], but there are no significant inter­molecular I⋯I contacts.

Related literature

For the crystal structures of isomers of the title compound, see: Garden et al. (2002[Garden, S. J., Cunha, F. R. da, Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. C58, o463-o466.], 2004[Garden, S. J., Cunha, F. R. da, Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o12-o14.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5I2NO3

  • Mr = 404.92

  • Monoclinic, P 21 /c

  • a = 9.264 (2) Å

  • b = 8.756 (2) Å

  • c = 13.549 (3) Å

  • β = 108.835 (2)°

  • V = 1040.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.02 mm−1

  • T = 296 K

  • 0.36 × 0.33 × 0.14 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.220, Tmax = 0.486

  • 7459 measured reflections

  • 1937 independent reflections

  • 1712 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.065

  • S = 1.00

  • 2689 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 1.06 e Å−3

  • Δρmin = −1.25 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We report here the molecular and supramolecular structures of the title compound, (I), which is isomeric with 2,6-diiodo-4-nitroanisole (Garden etal., 2002) and 2,4-diiodo-6-nitroanisole (Garden et al., 2003). The changed position of iodo, nitro and methoxy may lead to different interactions such as iodo-nitro interactions, and aromatic π···π stacking interactions.

The asymmetric unit of the title compound comprise a whole molecule of 2,4-diiodo-3-nitroanisole (Fig. 1). Atoms I1, I2, C7 and O3 are almost coplanar with the benzene ring. On the contrary, the plane defined by the nitro group is almost perpendicular to the plane of the aromatic ring and form a dihedral angle of 88.0 (4)°. In contrast with 2,6-diiodo-4-nitroanisole (Garden et al., 2002) and 2,4-diiodo-6-nitroanisole (Garden et al., 2003), there is no iodo-nitro interaction in the compound, each molecule link three others by π···π stacking interaction and C—I···π interaction, leading to the formation of a sheet (Fig. 2). The aryl ring planes (centroid Cg1) of two molecules are parallel, show a π···π stacking interaction Cg1···Cg1viii [symmetry codes: (viii) 1 - x, 2 - y, -z), and the centroid distance is 3.865 (3) Å. C—I···π interaction also occurs in the compound, I1 aim to the phenyl ring [I1···Cg1ix 3.701 (2) Å, C2—I1···Cg1ix 130.1 (1)°; symmetry code: (ix) 1 - x, 1/2 + y, 1/2 - z].

Related literature top

For the crystal structures of isomers of the title compound, see: Garden et al. (2002, 2004).

Experimental top

The title compound was obtained from 2-iodo-3-nitrophenol, a solution of 2-iodo-3-nitrophenol (2 mmol) in acetone (20 ml) was added K2CO3 (5 mmol). The mixture was stirred at room temperature for 30 min, then CH3I (5 mmol) was added at once. The resulting solution was then stirred at 343 K for 3 h. The addition of ice (20 g) prompted the precipitation of the title compound, which was collected by filtration and crystallized from ethyl acetate as yellow blocks (yield 90%, m.p. 406–408 K).

Refinement top

All H atoms were located from difference maps and were treated as riding atoms with C—H distances of 0.93 Å (aromatic) and 0.96 Å (methyl).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The moleuclar sturcture of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing formation of a sheet built from π···π stacking interactions, and C—I···π interactions.
1,3-diiodo-4-methoxy-2-nitrobenzene top
Crystal data top
C7H5I2NO3F(000) = 736
Mr = 404.92Dx = 2.586 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.264 (2) ÅCell parameters from 3452 reflections
b = 8.756 (2) Åθ = 2.8–27.0°
c = 13.549 (3) ŵ = 6.02 mm1
β = 108.835 (2)°T = 296 K
V = 1040.2 (4) Å3Block, yellow
Z = 40.36 × 0.33 × 0.14 mm
Data collection top
Bruker SMART CCD
diffractometer
1937 independent reflections
Radiation source: fine-focus sealed tube1712 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
phi and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1111
Tmin = 0.220, Tmax = 0.486k = 1010
7459 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0264P)2 + 3.0364P]
where P = (Fo2 + 2Fc2)/3
2689 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 1.06 e Å3
0 restraintsΔρmin = 1.25 e Å3
Crystal data top
C7H5I2NO3V = 1040.2 (4) Å3
Mr = 404.92Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.264 (2) ŵ = 6.02 mm1
b = 8.756 (2) ÅT = 296 K
c = 13.549 (3) Å0.36 × 0.33 × 0.14 mm
β = 108.835 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1937 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1712 reflections with I > 2σ(I)
Tmin = 0.220, Tmax = 0.486Rint = 0.018
7459 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.00Δρmax = 1.06 e Å3
2689 reflectionsΔρmin = 1.25 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3646 (5)0.8010 (5)0.0510 (3)0.0431 (10)
C20.4466 (5)0.8963 (5)0.1324 (3)0.0391 (9)
C30.6036 (5)0.9031 (5)0.1575 (3)0.0405 (9)
C40.6821 (5)0.8208 (6)0.1041 (3)0.0465 (11)
C50.5990 (6)0.7285 (6)0.0233 (3)0.0519 (12)
H50.64900.67240.01410.062*
C60.4412 (6)0.7182 (6)0.0030 (3)0.0488 (11)
H60.38700.65490.05740.059*
C70.1252 (6)0.7011 (7)0.0503 (4)0.0659 (15)
H7A0.14570.72380.11380.099*
H7B0.01850.71520.06070.099*
H7C0.15290.59710.03060.099*
N10.6918 (5)1.0000 (5)0.2475 (3)0.0507 (10)
O10.7319 (6)0.9427 (5)0.3316 (3)0.0860 (14)
O20.7193 (5)1.1291 (5)0.2286 (3)0.0831 (13)
O30.2116 (4)0.8002 (4)0.0299 (2)0.0571 (9)
I10.33063 (4)1.02858 (4)0.21050 (3)0.05654 (12)
I20.91883 (4)0.82973 (6)0.14145 (3)0.08415 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.048 (2)0.046 (2)0.034 (2)0.002 (2)0.0103 (18)0.0012 (19)
C20.047 (2)0.037 (2)0.034 (2)0.0034 (19)0.0143 (18)0.0028 (18)
C30.048 (2)0.039 (2)0.032 (2)0.0018 (19)0.0096 (18)0.0047 (18)
C40.044 (2)0.056 (3)0.041 (2)0.007 (2)0.0163 (19)0.009 (2)
C50.067 (3)0.054 (3)0.040 (2)0.009 (2)0.024 (2)0.002 (2)
C60.062 (3)0.049 (3)0.033 (2)0.000 (2)0.011 (2)0.0057 (19)
C70.054 (3)0.093 (4)0.046 (3)0.021 (3)0.009 (2)0.017 (3)
N10.050 (2)0.056 (3)0.043 (2)0.0101 (19)0.0105 (18)0.0048 (18)
O10.119 (4)0.081 (3)0.039 (2)0.024 (3)0.001 (2)0.005 (2)
O20.105 (3)0.064 (3)0.065 (2)0.034 (2)0.007 (2)0.000 (2)
O30.0453 (18)0.070 (2)0.0505 (19)0.0050 (16)0.0083 (15)0.0121 (17)
I10.0635 (2)0.0536 (2)0.0582 (2)0.00317 (16)0.02756 (16)0.01141 (15)
I20.0470 (2)0.1373 (4)0.0684 (3)0.0114 (2)0.01898 (18)0.0001 (2)
Geometric parameters (Å, º) top
C1—O31.353 (5)C5—C61.391 (7)
C1—C61.378 (6)C5—H50.9300
C1—C21.396 (6)C6—H60.9300
C2—C31.384 (6)C7—O31.419 (6)
C2—I12.086 (4)C7—H7A0.9600
C3—C41.382 (6)C7—H7B0.9600
C3—N11.493 (6)C7—H7C0.9600
C4—C51.379 (7)N1—O11.189 (5)
C4—I22.087 (5)N1—O21.205 (5)
O3—C1—C6124.7 (4)C6—C5—H5119.6
O3—C1—C2115.9 (4)C1—C6—C5120.6 (4)
C6—C1—C2119.4 (4)C1—C6—H6119.7
C3—C2—C1118.7 (4)C5—C6—H6119.7
C3—C2—I1121.6 (3)O3—C7—H7A109.5
C1—C2—I1119.6 (3)O3—C7—H7B109.5
C4—C3—C2122.5 (4)H7A—C7—H7B109.5
C4—C3—N1118.9 (4)O3—C7—H7C109.5
C2—C3—N1118.6 (4)H7A—C7—H7C109.5
C5—C4—C3117.9 (4)H7B—C7—H7C109.5
C5—C4—I2119.2 (3)O1—N1—O2125.2 (4)
C3—C4—I2122.9 (3)O1—N1—C3117.6 (4)
C4—C5—C6120.8 (4)O2—N1—C3117.2 (4)
C4—C5—H5119.6C1—O3—C7117.3 (4)
O3—C1—C2—C3179.6 (4)C3—C4—C5—C60.4 (7)
C6—C1—C2—C31.0 (6)I2—C4—C5—C6179.2 (4)
O3—C1—C2—I11.1 (5)O3—C1—C6—C5178.8 (4)
C6—C1—C2—I1177.5 (3)C2—C1—C6—C50.3 (7)
C1—C2—C3—C41.0 (6)C4—C5—C6—C10.4 (7)
I1—C2—C3—C4177.5 (3)C4—C3—N1—O190.3 (6)
C1—C2—C3—N1177.4 (4)C2—C3—N1—O188.1 (6)
I1—C2—C3—N14.2 (5)C4—C3—N1—O288.1 (6)
C2—C3—C4—C50.3 (7)C2—C3—N1—O293.5 (5)
N1—C3—C4—C5178.0 (4)C6—C1—O3—C73.3 (7)
C2—C3—C4—I2179.9 (3)C2—C1—O3—C7178.2 (4)
N1—C3—C4—I21.5 (6)

Experimental details

Crystal data
Chemical formulaC7H5I2NO3
Mr404.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.264 (2), 8.756 (2), 13.549 (3)
β (°) 108.835 (2)
V3)1040.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)6.02
Crystal size (mm)0.36 × 0.33 × 0.14
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.220, 0.486
No. of measured, independent and
observed [I > 2σ(I)] reflections
7459, 1937, 1712
Rint0.018
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.065, 1.00
No. of reflections2689
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.06, 1.25

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21072089)

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarden, S. J., Cunha, F. R. da, Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o12–o14.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGarden, S. J., Cunha, F. R. da, Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. C58, o463–o466.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1500
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds