organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1370

1-[3-(Anthracen-9-yl)-5-(pyridin-2-yl)-4,5-di­hydro-1H-pyrazol-1-yl]ethanone

aChemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000, People's Republic of China
*Correspondence e-mail: qindabincwnu@yahoo.com.cn

(Received 16 March 2012; accepted 5 April 2012; online 13 April 2012)

In the title compound, C24H19N3O, the pyrazoline ring adopts an envelope conformation with the C atom linking to the pyridine ring as the flap. The mean plane of the pyrazoline ring makes dihedral angles of 85.54 (4) and 81.66 (3)° with the pyridine ring and the anthracene ring system, respectively. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds. In addition, weak ππ inter­actions [centroid–centroid distances = 3.695 (3)–3.850 (7) Å] are observed.

Related literature

For applications of pyrazoline derivitives, see: Amir et al. (2008[Amir, M., Kumar, H. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett. 18, 918-922.]); Stell (2005[Stell, P. J. (2005). Acc. Chem. Res. 38, 243-250.]). For the synthesis of the title compound, see: Lévai & Jekó (2006[Lévai, A. & Jekó, J. (2006). J. Heterocycl. Chem. 43, 111-115.]). For a related structure, see: Liu et al. (2008[Liu, C.-S., Sun, G.-H. & Guo, L.-Q. (2008). Acta Cryst. E64, m69.]).

[Scheme 1]

Experimental

Crystal data
  • C24H19N3O

  • Mr = 365.42

  • Monoclinic, P 21 /c

  • a = 10.1768 (8) Å

  • b = 23.6035 (18) Å

  • c = 7.9994 (7) Å

  • β = 109.134 (3)°

  • V = 1815.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.28 × 0.26 × 0.24 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.977, Tmax = 0.980

  • 10313 measured reflections

  • 3544 independent reflections

  • 3081 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.02

  • 3544 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.93 2.42 3.2745 (16) 153
C24—H24A⋯O1ii 0.96 2.58 3.5265 (16) 167
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+2, -z+2.

Data collection: CrystalClear (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nowdays pyrazoline and its derivatives attract much attention of scientists due to its application in medication and coordination chemistry. (Amir et al., 2008; Stell, 2005). Herein we report on the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The mean plane of the Pyrzoline ring makes dihedral angles with the mean planes of the pyridine and anthracene rings of 85.54 (4)° and 81.66 (3)°, respectively.

In the crystal there are weak ππ interactions involving the pyridine, Pyrazoline and anthracene rings with centroid-centroid distances, Cg1···Cg2i, Cg2···Cg3ii and Cg2···Cg4ii of 3.695 (3), 3.768 (0) and 3.850 (7) Å, respectively [symmetry codes: (i) x, y, z; (ii) 1-X,-Y,-Z. Cg1 centroid of the Pyrazoline ring (N1, N2, C15—C17); Cg2 centroid of the pyridine ring(N3,C18—C22,); Cg3 centroid of ring (C1—C6); Cg3 centroid of ring (C1/C6/c7/c8/c13/c14)]. In addition, weak C—H···O hydrogen bonds interactions are observed (Table 1 and Fig. 2).

Related literature top

For applications of pyrazoline derivitives, see: Amir et al. (2008); Stell (2005). For the synthesis of the title compound, see: Lévai & Jekó (2006). For a related structure, see: Liu et al. (2008).

Experimental top

The title compound was prepared according to the reported procedures (Lévai et al., 2006). Colourless prisms were obtained by recrystallization from ethyl acetate and petroleum ether (v:v = 1:1) solutoion.

Refinement top

H atoms were placed in calculated orientations and treated as riding atoms: C—H = 0.95 and 1.00 Å, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear (Rigaku/MSC, 2004); data reduction: CrystalClear (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of crystal packing of the title compound, showing the molecules linked via C—H···O interactions (dashed lines). H atoms not involved in these interactions have been omitted for clarity. [symmetry codes: (i) 1 - x,2.5 + y,1.5 - z; (ii) 1 - x,2.5 + y,2.5 - z].
1-[3-(Anthracen-9-yl)-5-(pyridin-2-yl)-4,5-dihydro-1H-pyrazol-1- yl]ethanone top
Crystal data top
C24H19N3OF(000) = 768
Mr = 365.42Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
a = 10.1768 (8) ÅCell parameters from 5004 reflections
b = 23.6035 (18) Åθ = 2.3–27.9°
c = 7.9994 (7) ŵ = 0.08 mm1
β = 109.134 (3)°T = 293 K
V = 1815.4 (3) Å3Prism, colorless
Z = 40.28 × 0.26 × 0.24 mm
Data collection top
Rigaku Saturn
diffractometer
3544 independent reflections
Radiation source: Rotating anode3081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 7.31 pixels mm-1θmax = 26.0°, θmin = 2.3°
ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
k = 2428
Tmin = 0.977, Tmax = 0.980l = 79
10313 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.4522P]
where P = (Fo2 + 2Fc2)/3
3544 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C24H19N3OV = 1815.4 (3) Å3
Mr = 365.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1768 (8) ŵ = 0.08 mm1
b = 23.6035 (18) ÅT = 293 K
c = 7.9994 (7) Å0.28 × 0.26 × 0.24 mm
β = 109.134 (3)°
Data collection top
Rigaku Saturn
diffractometer
3544 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
3081 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.980Rint = 0.033
10313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
3544 reflectionsΔρmin = 0.24 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56753 (10)1.02852 (4)0.79960 (12)0.0256 (2)
N10.71048 (10)0.91596 (4)0.62713 (13)0.0169 (2)
N20.67267 (10)0.97037 (4)0.66237 (13)0.0168 (2)
N30.96041 (11)1.02330 (5)0.76512 (14)0.0215 (2)
C10.96119 (13)0.85347 (5)0.51788 (16)0.0181 (3)
C21.05711 (13)0.88660 (5)0.65379 (17)0.0209 (3)
H21.02680.91960.69310.025*
C31.19243 (14)0.87026 (6)0.72619 (18)0.0254 (3)
H31.25280.89180.81630.030*
C41.24244 (14)0.82064 (6)0.66544 (19)0.0276 (3)
H41.33550.81040.71390.033*
C51.15428 (14)0.78817 (6)0.53671 (18)0.0256 (3)
H51.18830.75610.49710.031*
C61.01021 (13)0.80235 (5)0.46098 (16)0.0211 (3)
C70.91593 (14)0.76766 (5)0.33701 (17)0.0233 (3)
H70.94790.73450.30070.028*
C80.77543 (14)0.78134 (5)0.26632 (16)0.0212 (3)
C90.67714 (15)0.74428 (6)0.14834 (18)0.0271 (3)
H90.70730.70990.11730.033*
C100.54048 (15)0.75826 (6)0.08056 (18)0.0286 (3)
H100.47820.73360.00350.034*
C110.49232 (14)0.81050 (6)0.12697 (17)0.0245 (3)
H110.39870.82000.07870.029*
C120.58172 (13)0.84699 (5)0.24163 (16)0.0201 (3)
H120.54830.88090.27110.024*
C130.72615 (13)0.83364 (5)0.31691 (16)0.0180 (3)
C140.82019 (13)0.86851 (5)0.44328 (15)0.0169 (3)
C150.76793 (12)0.92032 (5)0.50670 (15)0.0158 (3)
C160.77237 (12)0.97959 (5)0.43933 (16)0.0168 (3)
H16A0.71020.98370.31870.020*
H16B0.86590.99000.44460.020*
C170.72303 (12)1.01539 (5)0.56842 (16)0.0161 (3)
H170.64601.04020.50300.019*
C180.83723 (12)1.04959 (5)0.69927 (15)0.0166 (3)
C190.81301 (14)1.10378 (5)0.74894 (17)0.0219 (3)
H190.72621.12060.70050.026*
C200.92081 (15)1.13239 (6)0.87233 (18)0.0268 (3)
H200.90771.16900.90690.032*
C211.04791 (14)1.10572 (6)0.94313 (17)0.0262 (3)
H211.12171.12371.02710.031*
C221.06228 (14)1.05162 (6)0.88576 (17)0.0250 (3)
H221.14791.03370.93370.030*
C230.59907 (12)0.97977 (5)0.77386 (16)0.0178 (3)
C240.55832 (13)0.92892 (6)0.85831 (17)0.0231 (3)
H24A0.50940.94100.93630.035*
H24B0.64030.90840.92450.035*
H24C0.49920.90480.76810.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0268 (5)0.0234 (5)0.0315 (5)0.0046 (4)0.0160 (4)0.0018 (4)
N10.0169 (5)0.0145 (5)0.0197 (5)0.0002 (4)0.0066 (4)0.0027 (4)
N20.0174 (5)0.0137 (5)0.0208 (5)0.0006 (4)0.0086 (4)0.0014 (4)
N30.0190 (5)0.0223 (6)0.0210 (5)0.0005 (4)0.0037 (4)0.0005 (4)
C10.0212 (6)0.0173 (6)0.0190 (6)0.0007 (5)0.0108 (5)0.0037 (5)
C20.0223 (6)0.0196 (7)0.0229 (6)0.0005 (5)0.0101 (5)0.0018 (5)
C30.0217 (7)0.0298 (8)0.0242 (7)0.0001 (5)0.0068 (5)0.0035 (6)
C40.0209 (7)0.0313 (8)0.0320 (7)0.0074 (6)0.0107 (6)0.0086 (6)
C50.0282 (7)0.0224 (7)0.0309 (7)0.0087 (6)0.0160 (6)0.0061 (6)
C60.0251 (7)0.0194 (7)0.0229 (6)0.0042 (5)0.0134 (5)0.0045 (5)
C70.0340 (8)0.0168 (7)0.0246 (7)0.0045 (5)0.0173 (6)0.0004 (5)
C80.0300 (7)0.0186 (7)0.0185 (6)0.0006 (5)0.0130 (5)0.0001 (5)
C90.0391 (8)0.0210 (7)0.0247 (7)0.0014 (6)0.0153 (6)0.0065 (5)
C100.0371 (8)0.0271 (8)0.0217 (7)0.0097 (6)0.0097 (6)0.0082 (6)
C110.0256 (7)0.0263 (7)0.0207 (6)0.0040 (5)0.0062 (5)0.0011 (5)
C120.0254 (7)0.0174 (6)0.0190 (6)0.0002 (5)0.0095 (5)0.0005 (5)
C130.0244 (6)0.0157 (6)0.0169 (6)0.0012 (5)0.0106 (5)0.0009 (5)
C140.0213 (6)0.0156 (6)0.0166 (6)0.0002 (5)0.0100 (5)0.0019 (5)
C150.0130 (5)0.0176 (6)0.0158 (6)0.0014 (4)0.0034 (4)0.0014 (5)
C160.0171 (6)0.0168 (6)0.0171 (6)0.0011 (5)0.0062 (5)0.0004 (5)
C170.0171 (6)0.0139 (6)0.0177 (6)0.0008 (5)0.0064 (5)0.0015 (5)
C180.0187 (6)0.0174 (6)0.0152 (6)0.0019 (5)0.0078 (5)0.0019 (5)
C190.0220 (6)0.0212 (7)0.0238 (6)0.0001 (5)0.0095 (5)0.0011 (5)
C200.0333 (8)0.0222 (7)0.0274 (7)0.0057 (6)0.0132 (6)0.0081 (6)
C210.0259 (7)0.0324 (8)0.0200 (6)0.0104 (6)0.0071 (5)0.0053 (6)
C220.0189 (7)0.0320 (8)0.0213 (6)0.0017 (5)0.0026 (5)0.0000 (6)
C230.0129 (6)0.0228 (7)0.0174 (6)0.0004 (5)0.0045 (5)0.0026 (5)
C240.0215 (6)0.0274 (7)0.0237 (6)0.0015 (5)0.0119 (5)0.0004 (5)
Geometric parameters (Å, º) top
O1—C231.2298 (15)C10—H100.9300
N1—C151.2844 (15)C11—C121.3651 (18)
N1—N21.3957 (13)C11—H110.9300
N2—C231.3578 (15)C12—C131.4290 (18)
N2—C171.4862 (15)C12—H120.9300
N3—C221.3406 (17)C13—C141.4075 (17)
N3—C181.3420 (16)C14—C151.4874 (16)
C1—C141.4071 (17)C15—C161.5052 (17)
C1—C21.4321 (18)C16—C171.5402 (16)
C1—C61.4355 (18)C16—H16A0.9700
C2—C31.3630 (18)C16—H16B0.9700
C2—H20.9300C17—C181.5168 (17)
C3—C41.4244 (19)C17—H170.9800
C3—H30.9300C18—C191.3852 (17)
C4—C51.359 (2)C19—C201.3871 (19)
C4—H40.9300C19—H190.9300
C5—C61.4305 (18)C20—C211.382 (2)
C5—H50.9300C20—H200.9300
C6—C71.3966 (19)C21—C221.3806 (19)
C7—C81.3923 (19)C21—H210.9300
C7—H70.9300C22—H220.9300
C8—C91.4274 (19)C23—C241.5009 (17)
C8—C131.4396 (17)C24—H24A0.9600
C9—C101.358 (2)C24—H24B0.9600
C9—H90.9300C24—H24C0.9600
C10—C111.420 (2)
C15—N1—N2107.53 (10)C12—C13—C8118.40 (11)
C23—N2—N1122.08 (10)C1—C14—C13121.05 (11)
C23—N2—C17124.83 (10)C1—C14—C15119.46 (11)
N1—N2—C17113.08 (9)C13—C14—C15119.39 (11)
C22—N3—C18117.04 (11)N1—C15—C14119.44 (11)
C14—C1—C2122.05 (11)N1—C15—C16114.67 (10)
C14—C1—C6119.33 (11)C14—C15—C16125.87 (10)
C2—C1—C6118.58 (11)C15—C16—C17102.42 (9)
C3—C2—C1120.69 (12)C15—C16—H16A111.3
C3—C2—H2119.7C17—C16—H16A111.3
C1—C2—H2119.7C15—C16—H16B111.3
C2—C3—C4120.79 (13)C17—C16—H16B111.3
C2—C3—H3119.6H16A—C16—H16B109.2
C4—C3—H3119.6N2—C17—C18110.17 (9)
C5—C4—C3120.07 (12)N2—C17—C16100.90 (9)
C5—C4—H4120.0C18—C17—C16114.22 (10)
C3—C4—H4120.0N2—C17—H17110.4
C4—C5—C6121.29 (12)C18—C17—H17110.4
C4—C5—H5119.4C16—C17—H17110.4
C6—C5—H5119.4N3—C18—C19123.05 (11)
C7—C6—C5122.26 (12)N3—C18—C17115.51 (10)
C7—C6—C1119.24 (12)C19—C18—C17121.42 (11)
C5—C6—C1118.48 (12)C18—C19—C20118.69 (12)
C8—C7—C6121.84 (12)C18—C19—H19120.7
C8—C7—H7119.1C20—C19—H19120.7
C6—C7—H7119.1C21—C20—C19119.04 (13)
C7—C8—C9122.02 (12)C21—C20—H20120.5
C7—C8—C13119.38 (12)C19—C20—H20120.5
C9—C8—C13118.57 (12)C22—C21—C20118.17 (12)
C10—C9—C8121.28 (12)C22—C21—H21120.9
C10—C9—H9119.4C20—C21—H21120.9
C8—C9—H9119.4N3—C22—C21124.00 (12)
C9—C10—C11120.18 (12)N3—C22—H22118.0
C9—C10—H10119.9C21—C22—H22118.0
C11—C10—H10119.9O1—C23—N2119.56 (11)
C12—C11—C10120.81 (13)O1—C23—C24123.16 (11)
C12—C11—H11119.6N2—C23—C24117.27 (11)
C10—C11—H11119.6C23—C24—H24A109.5
C11—C12—C13120.73 (12)C23—C24—H24B109.5
C11—C12—H12119.6H24A—C24—H24B109.5
C13—C12—H12119.6C23—C24—H24C109.5
C14—C13—C12122.48 (11)H24A—C24—H24C109.5
C14—C13—C8119.07 (11)H24B—C24—H24C109.5
C15—N1—N2—C23174.55 (11)C8—C13—C14—C11.11 (17)
C15—N1—N2—C176.35 (13)C12—C13—C14—C152.16 (17)
C14—C1—C2—C3178.56 (12)C8—C13—C14—C15175.24 (10)
C6—C1—C2—C30.70 (18)N2—N1—C15—C14179.49 (10)
C1—C2—C3—C41.56 (19)N2—N1—C15—C161.87 (13)
C2—C3—C4—C51.6 (2)C1—C14—C15—N195.42 (14)
C3—C4—C5—C60.7 (2)C13—C14—C15—N180.99 (14)
C4—C5—C6—C7175.71 (12)C1—C14—C15—C1686.11 (15)
C4—C5—C6—C12.95 (19)C13—C14—C15—C1697.48 (14)
C14—C1—C6—C72.10 (18)N1—C15—C16—C178.65 (13)
C2—C1—C6—C7175.81 (11)C14—C15—C16—C17172.82 (11)
C14—C1—C6—C5179.20 (11)C23—N2—C17—C1869.14 (14)
C2—C1—C6—C52.89 (17)N1—N2—C17—C18109.93 (11)
C5—C6—C7—C8178.87 (12)C23—N2—C17—C16169.81 (11)
C1—C6—C7—C80.22 (19)N1—N2—C17—C1611.12 (12)
C6—C7—C8—C9175.89 (12)C15—C16—C17—N210.80 (11)
C6—C7—C8—C132.32 (19)C15—C16—C17—C18107.34 (11)
C7—C8—C9—C10179.99 (12)C22—N3—C18—C190.75 (18)
C13—C8—C9—C101.78 (19)C22—N3—C18—C17177.77 (10)
C8—C9—C10—C110.3 (2)N2—C17—C18—N373.20 (13)
C9—C10—C11—C120.9 (2)C16—C17—C18—N339.52 (14)
C10—C11—C12—C130.39 (19)N2—C17—C18—C19105.35 (12)
C11—C12—C13—C14176.25 (11)C16—C17—C18—C19141.94 (11)
C11—C12—C13—C81.16 (18)N3—C18—C19—C200.06 (19)
C7—C8—C13—C142.97 (17)C17—C18—C19—C20178.49 (11)
C9—C8—C13—C14175.30 (11)C18—C19—C20—C210.82 (19)
C7—C8—C13—C12179.53 (11)C19—C20—C21—C220.74 (19)
C9—C8—C13—C122.20 (17)C18—N3—C22—C210.84 (19)
C2—C1—C14—C13176.43 (11)C20—C21—C22—N30.1 (2)
C6—C1—C14—C131.41 (18)N1—N2—C23—O1179.52 (10)
C2—C1—C14—C150.08 (18)C17—N2—C23—O11.48 (18)
C6—C1—C14—C15177.76 (10)N1—N2—C23—C240.39 (16)
C12—C13—C14—C1178.50 (11)C17—N2—C23—C24179.38 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.423.2745 (16)153
C24—H24A···O1ii0.962.583.5265 (16)167
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC24H19N3O
Mr365.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.1768 (8), 23.6035 (18), 7.9994 (7)
β (°) 109.134 (3)
V3)1815.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.26 × 0.24
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2004)
Tmin, Tmax0.977, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
10313, 3544, 3081
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.02
No. of reflections3544
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: CrystalClear (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.423.2745 (16)153
C24—H24A···O1ii0.962.583.5265 (16)167
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z+2.
 

Acknowledgements

The authors thank the Scientific Research Fund Projects of China West Normal University (grant No. 06B003).

References

First citationAmir, M., Kumar, H. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett. 18, 918–922.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLévai, A. & Jekó, J. (2006). J. Heterocycl. Chem. 43, 111–115.  Google Scholar
First citationLiu, C.-S., Sun, G.-H. & Guo, L.-Q. (2008). Acta Cryst. E64, m69.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStell, P. J. (2005). Acc. Chem. Res. 38, 243–250.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1370
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds