organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1481

2,4,6,8-Tetra­kis(4-chloro­phen­yl)-3,7-di­aza­bi­cyclo­[3.3.1]nonan-9-one O-benzyl­oxime acetone monosolvate

aDepartment of Biomedicinal Chemistry, Inje University, Gimhae, Gyeongnam 621 749, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai 600 036, TamilNadu, India
*Correspondence e-mail: parthisivam@yahoo.co.in

(Received 17 March 2012; accepted 16 April 2012; online 21 April 2012)

In the title compound, C38H31Cl4N3O·C3H6O, the 3,7-diaza-bicycle exists in a chair–boat conformation. The 4-chloro­phenyl groups attached to the chair form are equatorially oriented at an angle of 18.15 (3)° with respect to each other, whereas the 4-chloro­phenyl groups attached to the boat form are oriented at an angle of 32.64 (3)°. In the crystal, mol­ecules are linked by N—H⋯π and C—H⋯O inter­actions.

Related literature

For the synthesis and stereochemistry of 3,7-diaza­bicyclo­[3.3.1]nonan-9-one derivatives, see: Parthiban et al. (2008[Parthiban, P., Ramachandran, R., Aridoss, G. & Kabilan, S. (2008). Magn. Reson. Chem. 46, 780-785.]). For the biological activity of 3,7-diaza­bicyclo­[3.3.1]nonan-9-one derivatives and related structures, see: Parthiban et al. (2009[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981-6985.], 2010[Parthiban, P., Kabilan, S., Ramkumar, V. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett. 20, 6452-6458.]); Asakawa (1995[Asakawa, Y. (1995). In Progress in the Chemistry of Organic Natural Products, edited by G. W. Moore, R. E. Steglich & W. Tamm. New York: Springer-Verlag.]); Jayaraman & Avila (1981[Jayaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]); Luger & Bülow (1983[Luger, P. & Bülow, R. (1983). J. Appl. Cryst. 16, 431-432.]).

[Scheme 1]

Experimental

Crystal data
  • C38H31Cl4N3O·C3H6O

  • Mr = 745.54

  • Monoclinic, P 21 /n

  • a = 14.9237 (5) Å

  • b = 10.5064 (3) Å

  • c = 24.6015 (7) Å

  • β = 93.116 (1)°

  • V = 3851.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.934, Tmax = 0.947

  • 35931 measured reflections

  • 7173 independent reflections

  • 4263 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.188

  • S = 1.03

  • 7173 reflections

  • 475 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2 0.93 2.52 3.441 (6) 172
N2—H2ACg3i 0.88 (3) 2.85 (3) 3.637 (3) 150 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1993)[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The 3,7-diazabicyclo[3.3.1] nonan-9-one nucleus is widely present in Lupin alkaloids and are displaying various biological actions (Parthiban et al., 2009, 2010, Asakawa, 1995, Jayaraman & Avila, 1981). In fact, the biological activities mainly depends on the nature of the substituents and their positions on the nucleus. Since C=N—O-R is an important class of pharmacophore by displaying biological actions, we have synthesized the title molcule by the condensation of 3,7-diazabicyclo[3.3.1]nonan-9-one and O-benzyl moiety to make the biologically potent oxime derivative. Because the biological actions mainly depend on the stereochemistry of the molecule, we undertaken the title molecule for the present study to explore its stereochemistry.

The crystallographic parameters viz., torsion angles, asymmetry parameters and ring puckering parameters calculated for the title compound shows that one of the piperidone rings, N(1)—C(1)—C(2)—C(7)—C(5)—C(6) adopts a near ideal chair conformation, according to Cremer & Pople and Nardelli. The total puckering amplitude, QT is 0.606 (3) Å, the phase angle θ is 2.7 (3)° and phi is 261 (6)° (Cremer & Pople, 1975). The smallest displacement asymmetry parameters q2 and q3 are 0.031 (3) and 0.605 (3) Å, respectively (Nardelli, 1983). On the otherhand, another piperidone ring N(2)—C(3)—C(2)—C(7)—C(5)—C(4) exists in the boat conformation according to C&P by QT = 0.764 (3), θ = 91.9 (2)° and phi = 357.0 (3)° as well as Nardelli by q2 = 0.764 (3) and q3 = -0.025 (3)°.

An equatorial orientation of the 4-chlorophenyl groups attached on the chair form piperidone is supported by the angles of C(1)—C(8) and C(6)—C(26) on the C&P plane normal as 70.85 (19) and 75.04 (19)°, respectively (Luger & Bülow, 1983). The equatorial orientations of the aryl groups are further supported by thier torsion angles; the C8—C1—C2—C7 is 178.4 (3)° and C26—C6—C5—C7 is 177.0 (3)°. The 4-chlorophenyl groups attached on the boat form of the piperidone have angles with C&P plane normal are C(3)—C(14) = 57.34 (19)° and C(4)—C(20) = 61.70 (19)°, they are respectively in bisectional and equatorial orientations according to Luger & Bulow. In fact, both lies on the boundary of bisectional and this is further supported by their torsion angles as follows: C7—C2—C3—C14 = 115.5 (3)° and C20—C4—C5—C7 = -121.6 (3)°.

The 4-chlorophenyl groups attached on the chair form are equatorially oriented at an angle of 18.15°, respect to each other, whereas, the 4-chlorophenyl groups attached to the boat form are oriented at an angle of 32.64° between them.

Based on the above analysis, it is clear that the title compound exists in the chair-boat conformation with an equatorial orientation of the 4-chlorophenyl groups on both sides of the secondary amino group of the piperidone in the chair conformation.

The crystal packing is stabilized by weak intermolecular N—H···π (C14—C19) and C—H···O interactions.

Related literature top

For the synthesis and stereochemistry of 3,7-diazabicyclo[3.3.1]nonan-9-one derivatives, see: Parthiban et al. (2008). For the biological activity of 3,7-diazabicyclo[3.3.1]nonan-9-one derivatives and related structures, see: Parthiban et al. (2009, 2010); Asakawa (1995); Jayaraman & Avila (1981). For ring puckering parameters, see: Cremer & Pople (1975); Nardelli (1983); Luger & Bülow (1983).

Experimental top

The 2,4,6,8-tetrakis(4-chlorophenyl)-3,7-diazabicyclo[3.3.1]nonan-9-one was synthesized by a modified Mannich condensation in one-pot, using 4-chlorobenzaldehyde (0.2 mol, 28.12 g), acetone (0.05 mol, 3.7 ml) and ammonium acetate (0.1 mol, 7.7 g) in a 50 ml of absolute ethanol (Parthiban et al., 2008). The mixture was gently warmed on a hot plate at 303 K (30° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude 3,7-diazabicycle was separated by filtration and gently washed with 1:5 cold ethanol-ether mixture. The pure 2,4,6,8-tetrakis(4-chlorophenyl)-3,7-diazabicyclo[3.3.1]nonan-9-one (0.01 mol, 5.823 g) was condensed with O-benzylhydroxylamine hydrochloride (0.012 mol, 1.915 g) using sodium acetate trihydrate (0.03 mol, 3.06 g) as base in ethanol-chloroform 1:1 mixture to obtain the title oxime ether. Colourless prisms were obtained by slow evaporation of an acetone solution.

Refinement top

The nitrogen H atom was located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and for methyl H atoms at Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anistropic displacement representation of the molecule with atoms represented with 30% probability ellipsoids (H atoms are removed for clarity).
2,4,6,8-Tetrakis(4-chlorophenyl)-3,7-diazabicyclo[3.3.1]nonan-9-one O-benzyloxime acetone monosolvate top
Crystal data top
C38H31Cl4N3O·C3H6OF(000) = 1552
Mr = 745.54Dx = 1.286 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6628 reflections
a = 14.9237 (5) Åθ = 1.6–25.0°
b = 10.5064 (3) ŵ = 0.35 mm1
c = 24.6015 (7) ÅT = 293 K
β = 93.116 (1)°Prism, colourless
V = 3851.7 (2) Å30.20 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
7173 independent reflections
Radiation source: fine-focus sealed tube4263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω and ϕ scanθmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1818
Tmin = 0.934, Tmax = 0.947k = 128
35931 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0699P)2 + 3.3824P]
where P = (Fo2 + 2Fc2)/3
7173 reflections(Δ/σ)max = 0.005
475 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C38H31Cl4N3O·C3H6OV = 3851.7 (2) Å3
Mr = 745.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.9237 (5) ŵ = 0.35 mm1
b = 10.5064 (3) ÅT = 293 K
c = 24.6015 (7) Å0.20 × 0.16 × 0.16 mm
β = 93.116 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
7173 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4263 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.947Rint = 0.040
35931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.89 e Å3
7173 reflectionsΔρmin = 0.29 e Å3
475 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2859 (2)0.4608 (3)0.27681 (13)0.0522 (8)
C20.2691 (2)0.3992 (3)0.33290 (12)0.0485 (7)
H20.21240.43080.34600.058*
C30.2670 (2)0.2506 (3)0.33063 (13)0.0482 (7)
C40.4313 (2)0.2457 (3)0.34865 (14)0.0484 (7)
C50.4330 (2)0.3935 (3)0.35421 (12)0.0495 (7)
H50.48030.41920.38120.059*
C60.4467 (2)0.4608 (3)0.29906 (13)0.0537 (8)
C70.3440 (2)0.4355 (3)0.37191 (12)0.0505 (8)
C80.2128 (2)0.4241 (3)0.23443 (12)0.0500 (8)
C90.2286 (2)0.3441 (3)0.19141 (13)0.0576 (8)
H90.28650.31490.18680.069*
C100.1592 (2)0.3064 (3)0.15477 (14)0.0627 (9)
H100.17040.25310.12570.075*
C110.0742 (2)0.3494 (4)0.16243 (14)0.0602 (9)
C120.0572 (2)0.4299 (4)0.20424 (14)0.0640 (9)
H120.00080.45920.20850.077*
C130.1257 (2)0.4674 (3)0.23989 (14)0.0603 (9)
H130.11390.52260.26820.072*
C140.1801 (2)0.2023 (3)0.35236 (13)0.0499 (7)
C150.1040 (2)0.1871 (3)0.31863 (14)0.0596 (9)
H150.10710.20260.28160.072*
C160.0231 (2)0.1492 (4)0.33852 (17)0.0721 (10)
H160.02780.14080.31530.086*
C170.0193 (2)0.1245 (4)0.39275 (18)0.0756 (11)
C180.0929 (3)0.1397 (4)0.42751 (16)0.0820 (12)
H180.08910.12410.46450.098*
C190.1732 (2)0.1785 (4)0.40740 (14)0.0676 (10)
H190.22330.18890.43120.081*
C200.5042 (2)0.1854 (3)0.38518 (13)0.0513 (8)
C210.4914 (2)0.1632 (3)0.43962 (14)0.0597 (9)
H210.43580.18040.45340.072*
C220.5599 (3)0.1161 (4)0.47385 (15)0.0685 (10)
H220.55110.10330.51060.082*
C230.6403 (2)0.0886 (4)0.45328 (17)0.0688 (10)
C240.6552 (2)0.1077 (4)0.39992 (17)0.0744 (11)
H240.71050.08780.38650.089*
C250.5870 (2)0.1571 (4)0.36575 (15)0.0645 (9)
H250.59720.17150.32930.077*
C260.5374 (2)0.4319 (3)0.27753 (13)0.0559 (8)
C270.6118 (3)0.4936 (4)0.29977 (17)0.0784 (11)
H270.60510.55330.32710.094*
C280.6954 (3)0.4685 (5)0.2823 (2)0.0986 (15)
H280.74540.51040.29780.118*
C290.7049 (3)0.3807 (5)0.2415 (2)0.0927 (14)
C300.6326 (3)0.3186 (5)0.21902 (17)0.0860 (13)
H300.63950.25870.19170.103*
C310.5497 (3)0.3444 (4)0.23664 (15)0.0698 (10)
H310.50010.30210.22080.084*
C320.3717 (4)0.5788 (5)0.49734 (18)0.1062 (16)
H32A0.34460.65900.48580.127*
H32B0.42420.59790.52080.127*
C330.3056 (4)0.5049 (6)0.52925 (17)0.0944 (14)
C340.2425 (5)0.5741 (8)0.5549 (2)0.136 (2)
H340.24180.66240.55220.163*
C350.1807 (6)0.5133 (14)0.5844 (4)0.194 (5)
H350.13750.56120.60100.233*
C360.1804 (9)0.3853 (15)0.5902 (4)0.198 (6)
H360.13800.34570.61070.238*
C370.2455 (9)0.3128 (11)0.5645 (4)0.198 (5)
H370.24640.22450.56710.238*
C380.3095 (5)0.3786 (6)0.5345 (2)0.1211 (19)
H380.35450.33340.51830.145*
C390.0817 (4)0.6394 (6)0.4002 (2)0.1086 (17)
C400.0896 (7)0.7529 (8)0.4329 (3)0.213 (4)
H40A0.09210.82600.40960.320*
H40B0.14330.74860.45610.320*
H40C0.03850.75980.45480.320*
C410.0762 (4)0.5122 (7)0.4283 (3)0.142 (2)
H41A0.07140.44580.40150.213*
H41B0.02450.51060.44980.213*
H41C0.12930.49930.45140.213*
N10.37419 (18)0.4222 (3)0.26073 (11)0.0534 (7)
N20.34337 (17)0.2004 (3)0.36383 (11)0.0519 (7)
N30.3236 (2)0.4941 (3)0.41573 (12)0.0745 (9)
O10.39933 (19)0.5102 (3)0.44974 (12)0.0930 (9)
O20.0791 (4)0.6448 (5)0.35250 (17)0.1589 (19)
Cl10.01371 (7)0.29806 (12)0.11818 (4)0.0871 (4)
Cl20.08182 (8)0.07631 (17)0.41840 (6)0.1228 (5)
Cl30.72648 (8)0.03096 (14)0.49745 (6)0.1128 (5)
Cl40.81177 (10)0.3490 (2)0.21892 (8)0.1549 (7)
H10.286 (2)0.557 (3)0.2824 (12)0.060 (9)*
H1A0.386 (2)0.453 (3)0.2293 (14)0.060 (10)*
H2A0.343 (2)0.117 (3)0.3623 (13)0.059 (10)*
H30.2687 (19)0.225 (3)0.2914 (13)0.050 (8)*
H40.4428 (18)0.225 (3)0.3110 (12)0.042 (8)*
H60.4450 (19)0.551 (3)0.3059 (12)0.049 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.060 (2)0.0453 (19)0.0517 (19)0.0018 (16)0.0036 (15)0.0040 (15)
C20.0522 (18)0.0474 (18)0.0463 (17)0.0051 (15)0.0063 (14)0.0020 (14)
C30.0505 (18)0.0478 (18)0.0461 (18)0.0029 (15)0.0002 (14)0.0030 (14)
C40.0481 (18)0.0472 (18)0.0501 (19)0.0000 (15)0.0030 (14)0.0009 (15)
C50.0553 (19)0.0464 (18)0.0464 (17)0.0041 (15)0.0011 (14)0.0015 (14)
C60.061 (2)0.048 (2)0.0523 (19)0.0040 (16)0.0021 (16)0.0021 (15)
C70.066 (2)0.0440 (18)0.0410 (17)0.0014 (15)0.0035 (15)0.0010 (14)
C80.0557 (19)0.0471 (18)0.0470 (17)0.0019 (15)0.0010 (14)0.0087 (14)
C90.057 (2)0.063 (2)0.0536 (19)0.0061 (17)0.0057 (16)0.0036 (17)
C100.068 (2)0.067 (2)0.0526 (19)0.0004 (19)0.0006 (17)0.0006 (17)
C110.059 (2)0.068 (2)0.052 (2)0.0034 (18)0.0042 (16)0.0173 (17)
C120.053 (2)0.074 (2)0.065 (2)0.0100 (18)0.0030 (17)0.0140 (19)
C130.064 (2)0.061 (2)0.056 (2)0.0126 (18)0.0047 (17)0.0060 (16)
C140.0512 (18)0.0451 (17)0.0533 (18)0.0049 (14)0.0008 (14)0.0026 (14)
C150.059 (2)0.063 (2)0.0567 (19)0.0010 (17)0.0018 (16)0.0045 (17)
C160.052 (2)0.080 (3)0.083 (3)0.0030 (19)0.0057 (19)0.008 (2)
C170.052 (2)0.085 (3)0.091 (3)0.004 (2)0.011 (2)0.010 (2)
C180.064 (2)0.114 (4)0.068 (2)0.002 (2)0.010 (2)0.029 (2)
C190.052 (2)0.090 (3)0.060 (2)0.0023 (19)0.0036 (16)0.0198 (19)
C200.0519 (19)0.0467 (18)0.0549 (19)0.0043 (15)0.0009 (15)0.0033 (15)
C210.056 (2)0.062 (2)0.061 (2)0.0026 (17)0.0039 (16)0.0051 (17)
C220.069 (2)0.073 (2)0.062 (2)0.009 (2)0.0059 (19)0.0179 (19)
C230.053 (2)0.067 (2)0.084 (3)0.0034 (18)0.0143 (19)0.022 (2)
C240.049 (2)0.087 (3)0.086 (3)0.0041 (19)0.0024 (19)0.008 (2)
C250.054 (2)0.077 (2)0.063 (2)0.0012 (18)0.0042 (17)0.0065 (18)
C260.058 (2)0.058 (2)0.0521 (19)0.0079 (17)0.0031 (15)0.0050 (16)
C270.063 (2)0.082 (3)0.091 (3)0.016 (2)0.009 (2)0.016 (2)
C280.066 (3)0.111 (4)0.119 (4)0.026 (3)0.008 (3)0.014 (3)
C290.069 (3)0.112 (4)0.100 (3)0.008 (3)0.028 (2)0.000 (3)
C300.080 (3)0.101 (3)0.080 (3)0.006 (3)0.023 (2)0.022 (2)
C310.064 (2)0.085 (3)0.060 (2)0.010 (2)0.0076 (18)0.010 (2)
C320.141 (5)0.107 (4)0.071 (3)0.015 (3)0.002 (3)0.039 (3)
C330.118 (4)0.111 (4)0.053 (2)0.005 (3)0.004 (3)0.016 (3)
C340.138 (5)0.175 (7)0.094 (4)0.021 (5)0.004 (4)0.004 (4)
C350.111 (6)0.358 (17)0.116 (6)0.002 (8)0.022 (4)0.019 (9)
C360.222 (12)0.281 (17)0.090 (6)0.079 (11)0.007 (6)0.065 (8)
C370.296 (15)0.192 (10)0.102 (6)0.072 (10)0.037 (7)0.038 (6)
C380.171 (6)0.104 (5)0.087 (4)0.008 (4)0.010 (4)0.011 (3)
C390.116 (4)0.124 (5)0.086 (4)0.021 (3)0.013 (3)0.010 (3)
C400.314 (12)0.155 (7)0.170 (7)0.005 (7)0.010 (7)0.062 (6)
C410.126 (5)0.164 (6)0.138 (5)0.017 (4)0.038 (4)0.031 (5)
N10.0511 (16)0.0626 (18)0.0465 (16)0.0030 (13)0.0039 (13)0.0057 (14)
N20.0484 (16)0.0447 (17)0.0623 (17)0.0005 (13)0.0006 (12)0.0088 (13)
N30.090 (2)0.072 (2)0.0593 (18)0.0117 (18)0.0146 (17)0.0008 (16)
O10.0775 (19)0.116 (2)0.0848 (19)0.0107 (17)0.0013 (15)0.0291 (17)
O20.234 (5)0.156 (4)0.087 (3)0.043 (4)0.015 (3)0.002 (3)
Cl10.0746 (7)0.1043 (8)0.0801 (7)0.0127 (6)0.0181 (5)0.0094 (6)
Cl20.0633 (7)0.1634 (14)0.1442 (12)0.0164 (8)0.0286 (7)0.0234 (10)
Cl30.0765 (8)0.1344 (11)0.1236 (10)0.0078 (7)0.0308 (7)0.0487 (8)
Cl40.0784 (9)0.1845 (17)0.2077 (18)0.0109 (10)0.0618 (10)0.0301 (14)
Geometric parameters (Å, º) top
C1—N11.454 (4)C21—H210.9300
C1—C81.517 (4)C22—C231.358 (5)
C1—C21.557 (4)C22—H220.9300
C1—H11.02 (3)C23—C241.358 (5)
C2—C71.482 (4)C23—Cl31.746 (3)
C2—C31.562 (4)C24—C251.385 (5)
C2—H20.9800C24—H240.9300
C3—N21.465 (4)C25—H250.9300
C3—C141.516 (4)C26—C271.373 (5)
C3—H31.00 (3)C26—C311.383 (5)
C4—N21.463 (4)C27—C281.368 (6)
C4—C201.513 (4)C27—H270.9300
C4—C51.558 (4)C28—C291.375 (6)
C4—H40.98 (3)C28—H280.9300
C5—C71.488 (4)C29—C301.354 (6)
C5—C61.553 (4)C29—Cl41.750 (4)
C5—H50.9800C30—C311.360 (5)
C6—N11.454 (4)C30—H300.9300
C6—C261.510 (5)C31—H310.9300
C6—H60.97 (3)C32—O11.454 (5)
C7—N31.292 (4)C32—C331.508 (7)
C8—C91.382 (4)C32—H32A0.9700
C8—C131.391 (4)C32—H32B0.9700
C9—C101.393 (5)C33—C381.334 (7)
C9—H90.9300C33—C341.371 (8)
C10—C111.369 (5)C34—C351.363 (11)
C10—H100.9300C34—H340.9300
C11—C121.366 (5)C35—C361.353 (15)
C11—Cl11.744 (4)C35—H350.9300
C12—C131.369 (5)C36—C371.410 (14)
C12—H120.9300C36—H360.9300
C13—H130.9300C37—C381.418 (11)
C14—C151.379 (4)C37—H370.9300
C14—C191.386 (5)C38—H380.9300
C15—C161.386 (5)C39—O21.173 (6)
C15—H150.9300C39—C401.441 (9)
C16—C171.363 (5)C39—C411.509 (8)
C16—H160.9300C40—H40A0.9600
C17—C181.364 (5)C40—H40B0.9600
C17—Cl21.743 (4)C40—H40C0.9600
C18—C191.382 (5)C41—H41A0.9600
C18—H180.9300C41—H41B0.9600
C19—H190.9300C41—H41C0.9600
C20—C251.382 (5)N1—H1A0.86 (3)
C20—C211.383 (5)N2—H2A0.88 (4)
C21—C221.381 (5)N3—O11.380 (4)
N1—C1—C8111.7 (3)C22—C21—H21119.5
N1—C1—C2108.5 (3)C20—C21—H21119.5
C8—C1—C2111.0 (3)C23—C22—C21119.3 (3)
N1—C1—H1108.4 (18)C23—C22—H22120.4
C8—C1—H1110.1 (18)C21—C22—H22120.4
C2—C1—H1106.9 (18)C24—C23—C22121.5 (3)
C7—C2—C1108.3 (3)C24—C23—Cl3119.9 (3)
C7—C2—C3107.1 (2)C22—C23—Cl3118.5 (3)
C1—C2—C3112.8 (3)C23—C24—C25119.3 (4)
C7—C2—H2109.5C23—C24—H24120.4
C1—C2—H2109.5C25—C24—H24120.4
C3—C2—H2109.5C20—C25—C24120.8 (3)
N2—C3—C14109.7 (3)C20—C25—H25119.6
N2—C3—C2109.1 (3)C24—C25—H25119.6
C14—C3—C2109.8 (3)C27—C26—C31117.8 (3)
N2—C3—H3112.2 (17)C27—C26—C6119.1 (3)
C14—C3—H3108.4 (17)C31—C26—C6123.1 (3)
C2—C3—H3107.7 (17)C28—C27—C26121.1 (4)
N2—C4—C20109.8 (3)C28—C27—H27119.5
N2—C4—C5108.3 (3)C26—C27—H27119.5
C20—C4—C5110.9 (3)C27—C28—C29119.3 (4)
N2—C4—H4112.1 (17)C27—C28—H28120.3
C20—C4—H4108.2 (16)C29—C28—H28120.3
C5—C4—H4107.6 (17)C30—C29—C28120.7 (4)
C7—C5—C6106.4 (3)C30—C29—Cl4119.9 (4)
C7—C5—C4108.1 (3)C28—C29—Cl4119.4 (4)
C6—C5—C4112.3 (3)C29—C30—C31119.5 (4)
C7—C5—H5110.0C29—C30—H30120.3
C6—C5—H5110.0C31—C30—H30120.3
C4—C5—H5110.0C30—C31—C26121.6 (4)
N1—C6—C26111.5 (3)C30—C31—H31119.2
N1—C6—C5108.1 (3)C26—C31—H31119.2
C26—C6—C5112.2 (3)O1—C32—C33112.7 (4)
N1—C6—H6111.3 (18)O1—C32—H32A109.0
C26—C6—H6106.9 (18)C33—C32—H32A109.0
C5—C6—H6106.8 (18)O1—C32—H32B109.0
N3—C7—C2117.4 (3)C33—C32—H32B109.0
N3—C7—C5129.8 (3)H32A—C32—H32B107.8
C2—C7—C5112.8 (3)C38—C33—C34120.7 (6)
C9—C8—C13118.1 (3)C38—C33—C32122.4 (6)
C9—C8—C1122.4 (3)C34—C33—C32116.8 (6)
C13—C8—C1119.4 (3)C35—C34—C33119.9 (9)
C8—C9—C10121.2 (3)C35—C34—H34120.1
C8—C9—H9119.4C33—C34—H34120.1
C10—C9—H9119.4C36—C35—C34121.9 (11)
C11—C10—C9118.6 (3)C36—C35—H35119.1
C11—C10—H10120.7C34—C35—H35119.1
C9—C10—H10120.7C35—C36—C37118.9 (12)
C12—C11—C10121.3 (3)C35—C36—H36120.5
C12—C11—Cl1119.8 (3)C37—C36—H36120.5
C10—C11—Cl1118.9 (3)C36—C37—C38118.0 (11)
C11—C12—C13119.8 (3)C36—C37—H37121.0
C11—C12—H12120.1C38—C37—H37121.0
C13—C12—H12120.1C33—C38—C37120.6 (8)
C12—C13—C8120.9 (3)C33—C38—H38119.7
C12—C13—H13119.5C37—C38—H38119.7
C8—C13—H13119.5O2—C39—C40121.1 (7)
C15—C14—C19117.6 (3)O2—C39—C41120.1 (6)
C15—C14—C3121.2 (3)C40—C39—C41118.8 (6)
C19—C14—C3121.1 (3)C39—C40—H40A109.5
C14—C15—C16121.7 (3)C39—C40—H40B109.5
C14—C15—H15119.1H40A—C40—H40B109.5
C16—C15—H15119.1C39—C40—H40C109.5
C17—C16—C15118.9 (3)H40A—C40—H40C109.5
C17—C16—H16120.5H40B—C40—H40C109.5
C15—C16—H16120.5C39—C41—H41A109.5
C16—C17—C18121.1 (4)C39—C41—H41B109.5
C16—C17—Cl2119.5 (3)H41A—C41—H41B109.5
C18—C17—Cl2119.4 (3)C39—C41—H41C109.5
C17—C18—C19119.6 (4)H41A—C41—H41C109.5
C17—C18—H18120.2H41B—C41—H41C109.5
C19—C18—H18120.2C1—N1—C6113.5 (3)
C18—C19—C14121.0 (3)C1—N1—H1A112 (2)
C18—C19—H19119.5C6—N1—H1A107 (2)
C14—C19—H19119.5C4—N2—C3114.9 (3)
C25—C20—C21118.2 (3)C4—N2—H2A109 (2)
C25—C20—C4120.9 (3)C3—N2—H2A109 (2)
C21—C20—C4120.8 (3)C7—N3—O1110.0 (3)
C22—C21—C20120.9 (3)N3—O1—C32106.9 (3)
N1—C1—C2—C755.2 (3)C3—C14—C19—C18177.2 (4)
C8—C1—C2—C7178.4 (3)N2—C4—C20—C25146.8 (3)
N1—C1—C2—C363.2 (3)C5—C4—C20—C2593.6 (4)
C8—C1—C2—C360.0 (3)N2—C4—C20—C2136.6 (4)
C7—C2—C3—N24.7 (3)C5—C4—C20—C2183.0 (4)
C1—C2—C3—N2114.4 (3)C25—C20—C21—C221.0 (5)
C7—C2—C3—C14115.5 (3)C4—C20—C21—C22175.6 (3)
C1—C2—C3—C14125.4 (3)C20—C21—C22—C231.5 (6)
N2—C4—C5—C71.1 (3)C21—C22—C23—C240.7 (6)
C20—C4—C5—C7121.6 (3)C21—C22—C23—Cl3179.2 (3)
N2—C4—C5—C6118.2 (3)C22—C23—C24—C250.4 (6)
C20—C4—C5—C6121.4 (3)Cl3—C23—C24—C25178.0 (3)
C7—C5—C6—N159.7 (3)C21—C20—C25—C240.1 (5)
C4—C5—C6—N158.4 (3)C4—C20—C25—C24176.8 (3)
C7—C5—C6—C26177.0 (3)C23—C24—C25—C200.9 (6)
C4—C5—C6—C2665.0 (4)N1—C6—C26—C27161.1 (3)
C1—C2—C7—N3122.5 (3)C5—C6—C26—C2777.5 (4)
C3—C2—C7—N3115.5 (3)N1—C6—C26—C3119.9 (5)
C1—C2—C7—C559.2 (3)C5—C6—C26—C31101.6 (4)
C3—C2—C7—C562.7 (3)C31—C26—C27—C280.5 (6)
C6—C5—C7—N3121.0 (4)C6—C26—C27—C28178.7 (4)
C4—C5—C7—N3118.3 (4)C26—C27—C28—C290.5 (7)
C6—C5—C7—C261.1 (3)C27—C28—C29—C300.5 (8)
C4—C5—C7—C259.7 (3)C27—C28—C29—Cl4179.7 (4)
N1—C1—C8—C910.8 (4)C28—C29—C30—C310.6 (8)
C2—C1—C8—C9110.5 (3)Cl4—C29—C30—C31179.7 (4)
N1—C1—C8—C13172.1 (3)C29—C30—C31—C260.7 (7)
C2—C1—C8—C1366.6 (4)C27—C26—C31—C300.6 (6)
C13—C8—C9—C100.7 (5)C6—C26—C31—C30178.5 (4)
C1—C8—C9—C10176.4 (3)O1—C32—C33—C3835.3 (7)
C8—C9—C10—C110.6 (5)O1—C32—C33—C34147.2 (5)
C9—C10—C11—C121.5 (5)C38—C33—C34—C352.5 (9)
C9—C10—C11—Cl1177.7 (3)C32—C33—C34—C35179.9 (6)
C10—C11—C12—C131.0 (5)C33—C34—C35—C361.2 (13)
Cl1—C11—C12—C13178.2 (3)C34—C35—C36—C370.6 (16)
C11—C12—C13—C80.4 (5)C35—C36—C37—C381.1 (15)
C9—C8—C13—C121.2 (5)C34—C33—C38—C373.2 (9)
C1—C8—C13—C12176.0 (3)C32—C33—C38—C37179.4 (5)
N2—C3—C14—C15151.8 (3)C36—C37—C38—C332.5 (12)
C2—C3—C14—C1588.3 (4)C8—C1—N1—C6177.3 (3)
N2—C3—C14—C1931.7 (4)C2—C1—N1—C660.0 (3)
C2—C3—C14—C1988.1 (4)C26—C6—N1—C1173.5 (3)
C19—C14—C15—C160.1 (5)C5—C6—N1—C162.8 (4)
C3—C14—C15—C16176.7 (3)C20—C4—N2—C3179.0 (3)
C14—C15—C16—C171.1 (6)C5—C4—N2—C359.8 (3)
C15—C16—C17—C181.7 (6)C14—C3—N2—C4176.9 (3)
C15—C16—C17—Cl2179.8 (3)C2—C3—N2—C456.6 (4)
C16—C17—C18—C191.2 (7)C2—C7—N3—O1174.4 (3)
Cl2—C17—C18—C19179.7 (3)C5—C7—N3—O13.5 (5)
C17—C18—C19—C140.0 (7)C7—N3—O1—C32178.8 (3)
C15—C14—C19—C180.7 (6)C33—C32—O1—N363.3 (5)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O20.932.523.441 (6)172
N2—H2A···Cg3i0.88 (3)2.85 (3)3.637 (3)150 (3)
Symmetry code: (i) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC38H31Cl4N3O·C3H6O
Mr745.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.9237 (5), 10.5064 (3), 24.6015 (7)
β (°) 93.116 (1)
V3)3851.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.20 × 0.16 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.934, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
35931, 7173, 4263
Rint0.040
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.188, 1.03
No. of reflections7173
No. of parameters475
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.89, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O20.932.523.441 (6)172
N2—H2A···Cg3i0.88 (3)2.85 (3)3.637 (3)150 (3)
Symmetry code: (i) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

This research was supported by the National Research Foundation (NRF) of Korea.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAsakawa, Y. (1995). In Progress in the Chemistry of Organic Natural Products, edited by G. W. Moore, R. E. Steglich & W. Tamm. New York: Springer-Verlag.  Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJayaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  Google Scholar
First citationLuger, P. & Bülow, R. (1983). J. Appl. Cryst. 16, 431–432.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981–6985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Kabilan, S., Ramkumar, V. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett. 20, 6452–6458.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParthiban, P., Ramachandran, R., Aridoss, G. & Kabilan, S. (2008). Magn. Reson. Chem. 46, 780–785.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1481
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds