organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1579

Bis(cyclo­hexyl­ammonium) terephthalate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: saltfish777@gmail.com

(Received 17 March 2012; accepted 18 April 2012; online 28 April 2012)

In the title mol­ecular salt, 2C6H11NH3+·C8H4O42−, the terephthalate dianion is close to being planar (r.m.s. deviation = 0.049 Å). In the crystal, the cations and anions are linked by N—H⋯O hydrogen bonds into (010) sheets. Of the four terephthalate O atoms, two accept two hydrogen bonds each and two accept one hydrogen bond each.

Related literature

For background to mol­ecular ferroelectric materials, see: Haertling et al. (1999[Haertling, G. H. (1999). J. Am. Ceram. Soc. A82, 797-810.]); Homes et al. (2001[Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. (2001). Science, 293, 673-676.]). For the synthesis of related compounds, see: Fu et al. (2009[Fu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. & Qu, Z. R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Hang et al. (2009[Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 9, 2026-2029.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H14N+·C8H4O42−

  • Mr = 364.48

  • Monoclinic, C c

  • a = 11.572 (2) Å

  • b = 22.820 (5) Å

  • c = 8.5426 (17) Å

  • β = 117.03 (3)°

  • V = 2009.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.33 × 0.28 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.973, Tmax = 0.984

  • 8521 measured reflections

  • 2294 independent reflections

  • 2074 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.171

  • S = 1.03

  • 2294 reflections

  • 235 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.89 1.88 2.753 (5) 168
N1—H1B⋯O3ii 0.89 1.90 2.778 (5) 167
N1—H1D⋯O4 0.89 1.89 2.766 (5) 168
N2—H2C⋯O1iii 0.89 1.92 2.786 (5) 162
N2—H2D⋯O1iv 0.89 2.01 2.827 (5) 152
N2—H2E⋯O3v 0.89 1.97 2.785 (5) 151
Symmetry codes: (i) x-1, y, z; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

At present, much attention in ferroelectric material field is focused on developing ferroelectric pure organic or inorganic compounds (Haertling et al. 1999; Homes et al. 2001). Recently we have reported the synthesis of a variety of compounds(Fu et al., 2009; Hang et al., 2009), which have potential piezoelectric and ferroelectric properties. In order to find more dielectric ferroelectric materials, we investigate the physical properties of the title compound(Fig. 1). The dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent (dielectric constant equaling to 0.26 to 0.79), suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (higher than 533 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomalyobserved (dielectric constant equaling to 0.26 to 0.79). Herein, we report the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. There are one C8H4O42- anion and two cyclohexanamine cation in the asymmetric unit. All cyclohexanamine rings are, of course, chair conformation. As can be seen from the packing diagram (Fig. 2), molecules are connected via intermolecular N—H···O hydrogen bonds to form a twodimensional plane. Dipole–dipole and van der Waals interactions are effective in the molecular packing.

Related literature top

For background to molecular ferroelectric materials, see: Haertling et al. (1999); Homes et al. (2001). For the synthesis of related compounds, see: Fu et al. (2009); Hang et al. (2009).

Experimental top

A mix of cyclohexylamine (0.461 g, 0.01 mol) and terephthalic acid (0.8307 g, 0.005 mol) in water (20 ml) was stirred until clear. After several days, the title compound was formed and recrystallized from solution to afford colourless prisms.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H(aromatic) = 0.93 and 0.97 (methylene) Å, N—H = 0.89 Å and with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis showing the hydrogen bondings network. Some of the H atoms have been ommitted for clarity.
Bis(cyclohexylammonium) terephthalate top
Crystal data top
2C6H14N+·C8H4O42F(000) = 792
Mr = 364.48Dx = 1.205 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 4397 reflections
a = 11.572 (2) Åθ = 2.3–27.5°
b = 22.820 (5) ŵ = 0.08 mm1
c = 8.5426 (17) ÅT = 293 K
β = 117.03 (3)°Prism, colourless
V = 2009.5 (7) Å30.33 × 0.28 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2074 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.083
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
ω scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2929
Tmin = 0.973, Tmax = 0.984l = 1111
8521 measured reflections2 standard reflections every 150 reflections
2294 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.9408P]
where P = (Fo2 + 2Fc2)/3
2294 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.29 e Å3
Crystal data top
2C6H14N+·C8H4O42V = 2009.5 (7) Å3
Mr = 364.48Z = 4
Monoclinic, CcMo Kα radiation
a = 11.572 (2) ŵ = 0.08 mm1
b = 22.820 (5) ÅT = 293 K
c = 8.5426 (17) Å0.33 × 0.28 × 0.20 mm
β = 117.03 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2074 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
Rint = 0.083
Tmin = 0.973, Tmax = 0.9842 standard reflections every 150 reflections
8521 measured reflections intensity decay: none
2294 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0842 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
2294 reflectionsΔρmin = 0.29 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0562 (3)0.01965 (14)0.2071 (4)0.0459 (9)
O21.1042 (3)0.09972 (18)0.3698 (5)0.0703 (13)
O30.4191 (3)0.03397 (15)0.1026 (5)0.0587 (11)
O40.4746 (3)0.11090 (15)0.2780 (5)0.0534 (10)
C131.0266 (5)0.0614 (2)0.2818 (7)0.0415 (13)
C140.8887 (4)0.0637 (2)0.2555 (6)0.0310 (11)
C150.8548 (4)0.1042 (2)0.3456 (6)0.0369 (12)
H15A0.91680.13060.41960.044*
C160.7307 (5)0.1067 (2)0.3288 (6)0.0395 (13)
H16A0.71010.13420.39240.047*
C170.6362 (4)0.06814 (19)0.2172 (6)0.0292 (11)
C180.6711 (4)0.0271 (2)0.1269 (6)0.0392 (13)
H18A0.60940.00050.05330.047*
C190.7956 (4)0.0247 (2)0.1436 (6)0.0380 (12)
H19A0.81680.00280.08040.046*
C200.4989 (5)0.0710 (2)0.1974 (7)0.0377 (13)
N10.3672 (3)0.08243 (16)0.4988 (5)0.0406 (10)
H1A0.28110.08280.45350.061*
H1B0.39650.04640.53550.061*
H1D0.39030.09340.41690.061*
C10.4234 (4)0.1238 (2)0.6496 (6)0.0383 (12)
H1C0.39640.11150.73790.046*
C20.3719 (5)0.1835 (2)0.5880 (8)0.0530 (15)
H2A0.27820.18310.54130.064*
H2B0.39220.19490.49390.064*
C30.4286 (5)0.2279 (3)0.7349 (8)0.0670 (18)
H3A0.39930.21940.82230.080*
H3B0.39810.26680.68840.080*
C40.5761 (5)0.2269 (3)0.8212 (7)0.0594 (16)
H4A0.60580.24010.73770.071*
H4B0.61000.25350.92040.071*
C50.6263 (6)0.1663 (3)0.8828 (7)0.0693 (18)
H5A0.60360.15460.97450.083*
H5B0.72010.16620.93210.083*
C60.5696 (5)0.1222 (2)0.7315 (7)0.0562 (15)
H6A0.59800.13180.64380.067*
H6B0.60030.08310.77530.067*
N20.6584 (3)0.43904 (15)0.4889 (5)0.0374 (10)
H2C0.61720.45770.54040.056*
H2D0.63970.45600.38630.056*
H2E0.74360.44080.55780.056*
C70.6162 (4)0.37641 (19)0.4591 (6)0.0324 (11)
H7A0.63780.35840.57320.039*
C80.4710 (4)0.3733 (2)0.3475 (7)0.0457 (13)
H8A0.44760.39290.23630.055*
H8B0.42830.39360.40670.055*
C90.4243 (5)0.3097 (2)0.3133 (8)0.0601 (17)
H9A0.43640.29200.42290.072*
H9B0.33220.30910.23310.072*
C100.4958 (6)0.2740 (2)0.2362 (7)0.0650 (18)
H10A0.47200.28760.11790.078*
H10B0.47000.23330.22920.078*
C110.6422 (5)0.2788 (2)0.3465 (9)0.0646 (17)
H11A0.68510.25810.28830.078*
H11B0.66740.26040.45980.078*
C120.6860 (5)0.3432 (2)0.3739 (8)0.0565 (15)
H12A0.77900.34520.44810.068*
H12B0.66700.36090.26150.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.042 (2)0.047 (2)0.055 (2)0.0090 (18)0.0274 (19)0.0070 (19)
O20.034 (2)0.070 (3)0.101 (4)0.014 (2)0.026 (2)0.027 (3)
O30.031 (2)0.043 (2)0.104 (3)0.0052 (18)0.031 (2)0.021 (2)
O40.049 (2)0.056 (2)0.073 (3)0.0003 (18)0.043 (2)0.011 (2)
C130.032 (3)0.042 (3)0.052 (4)0.004 (3)0.019 (3)0.012 (3)
C140.027 (3)0.039 (3)0.030 (3)0.004 (2)0.015 (2)0.005 (2)
C150.033 (3)0.040 (3)0.036 (3)0.008 (2)0.014 (2)0.008 (2)
C160.039 (3)0.040 (3)0.045 (3)0.004 (2)0.024 (3)0.012 (3)
C170.024 (2)0.028 (3)0.039 (3)0.001 (2)0.018 (2)0.001 (2)
C180.031 (3)0.033 (3)0.049 (3)0.007 (2)0.013 (3)0.008 (2)
C190.028 (3)0.041 (3)0.044 (3)0.001 (2)0.015 (2)0.004 (2)
C200.033 (3)0.036 (3)0.049 (4)0.000 (3)0.023 (3)0.003 (3)
N10.033 (2)0.039 (2)0.054 (3)0.0005 (19)0.023 (2)0.002 (2)
C10.035 (3)0.039 (3)0.039 (3)0.006 (2)0.016 (2)0.001 (2)
C20.037 (3)0.038 (3)0.068 (4)0.001 (2)0.009 (3)0.016 (3)
C30.058 (4)0.057 (4)0.082 (5)0.004 (3)0.028 (4)0.015 (4)
C40.070 (4)0.061 (4)0.050 (4)0.025 (3)0.030 (3)0.017 (3)
C50.050 (4)0.087 (5)0.046 (4)0.009 (3)0.001 (3)0.006 (4)
C60.038 (3)0.060 (4)0.057 (4)0.006 (3)0.010 (3)0.012 (3)
N20.032 (2)0.037 (2)0.045 (3)0.0012 (19)0.020 (2)0.000 (2)
C70.033 (3)0.033 (3)0.034 (3)0.001 (2)0.016 (2)0.001 (2)
C80.038 (3)0.052 (3)0.050 (3)0.000 (3)0.022 (3)0.005 (3)
C90.051 (3)0.046 (4)0.077 (5)0.014 (3)0.023 (3)0.009 (3)
C100.090 (5)0.050 (4)0.055 (4)0.017 (4)0.032 (4)0.009 (3)
C110.059 (4)0.045 (4)0.090 (5)0.002 (3)0.034 (4)0.013 (3)
C120.051 (3)0.048 (3)0.079 (4)0.002 (3)0.036 (3)0.008 (3)
Geometric parameters (Å, º) top
O1—C131.278 (6)C4—C51.500 (8)
O2—C131.234 (6)C4—H4A0.9700
O3—C201.242 (6)C4—H4B0.9700
O4—C201.249 (6)C5—C61.530 (7)
C13—C141.508 (6)C5—H5A0.9700
C14—C151.369 (6)C5—H5B0.9700
C14—C191.389 (6)C6—H6A0.9700
C15—C161.378 (6)C6—H6B0.9700
C15—H15A0.9300N2—C71.495 (5)
C16—C171.389 (6)N2—H2C0.8900
C16—H16A0.9300N2—H2D0.8900
C17—C181.385 (6)N2—H2E0.8900
C17—C201.521 (6)C7—C81.510 (6)
C18—C191.383 (6)C7—C121.515 (6)
C18—H18A0.9300C7—H7A0.9800
C19—H19A0.9300C8—C91.531 (6)
N1—C11.487 (5)C8—H8A0.9700
N1—H1A0.8900C8—H8B0.9700
N1—H1B0.8900C9—C101.509 (7)
N1—H1D0.8900C9—H9A0.9700
C1—C21.485 (6)C9—H9B0.9700
C1—C61.509 (7)C10—C111.523 (7)
C1—H1C0.9800C10—H10A0.9700
C2—C31.511 (7)C10—H10B0.9700
C2—H2A0.9700C11—C121.537 (7)
C2—H2B0.9700C11—H11A0.9700
C3—C41.520 (7)C11—H11B0.9700
C3—H3A0.9700C12—H12A0.9700
C3—H3B0.9700C12—H12B0.9700
O2—C13—O1123.1 (5)C4—C5—C6111.2 (4)
O2—C13—C14119.6 (5)C4—C5—H5A109.4
O1—C13—C14117.2 (5)C6—C5—H5A109.4
C15—C14—C19119.2 (4)C4—C5—H5B109.4
C15—C14—C13119.6 (4)C6—C5—H5B109.4
C19—C14—C13121.2 (4)H5A—C5—H5B108.0
C14—C15—C16121.4 (5)C1—C6—C5109.6 (5)
C14—C15—H15A119.3C1—C6—H6A109.7
C16—C15—H15A119.3C5—C6—H6A109.7
C15—C16—C17120.2 (4)C1—C6—H6B109.7
C15—C16—H16A119.9C5—C6—H6B109.7
C17—C16—H16A119.9H6A—C6—H6B108.2
C18—C17—C16118.2 (4)C7—N2—H2C109.5
C18—C17—C20121.4 (4)C7—N2—H2D109.5
C16—C17—C20120.4 (4)H2C—N2—H2D109.5
C19—C18—C17121.5 (4)C7—N2—H2E109.5
C19—C18—H18A119.2H2C—N2—H2E109.5
C17—C18—H18A119.2H2D—N2—H2E109.5
C18—C19—C14119.5 (4)N2—C7—C8109.6 (3)
C18—C19—H19A120.3N2—C7—C12110.9 (4)
C14—C19—H19A120.3C8—C7—C12110.9 (4)
O3—C20—O4124.7 (5)N2—C7—H7A108.5
O3—C20—C17118.2 (4)C8—C7—H7A108.5
O4—C20—C17117.1 (4)C12—C7—H7A108.5
C1—N1—H1A109.5C7—C8—C9111.1 (4)
C1—N1—H1B109.5C7—C8—H8A109.4
H1A—N1—H1B109.5C9—C8—H8A109.4
C1—N1—H1D109.5C7—C8—H8B109.4
H1A—N1—H1D109.5C9—C8—H8B109.4
H1B—N1—H1D109.5H8A—C8—H8B108.0
C2—C1—N1109.2 (4)C10—C9—C8112.3 (5)
C2—C1—C6111.8 (4)C10—C9—H9A109.1
N1—C1—C6110.1 (4)C8—C9—H9A109.1
C2—C1—H1C108.6C10—C9—H9B109.1
N1—C1—H1C108.6C8—C9—H9B109.1
C6—C1—H1C108.6H9A—C9—H9B107.9
C1—C2—C3111.6 (5)C9—C10—C11111.6 (5)
C1—C2—H2A109.3C9—C10—H10A109.3
C3—C2—H2A109.3C11—C10—H10A109.3
C1—C2—H2B109.3C9—C10—H10B109.3
C3—C2—H2B109.3C11—C10—H10B109.3
H2A—C2—H2B108.0H10A—C10—H10B108.0
C2—C3—C4111.1 (5)C10—C11—C12111.1 (5)
C2—C3—H3A109.4C10—C11—H11A109.4
C4—C3—H3A109.4C12—C11—H11A109.4
C2—C3—H3B109.4C10—C11—H11B109.4
C4—C3—H3B109.4C12—C11—H11B109.4
H3A—C3—H3B108.0H11A—C11—H11B108.0
C5—C4—C3110.8 (5)C7—C12—C11109.9 (4)
C5—C4—H4A109.5C7—C12—H12A109.7
C3—C4—H4A109.5C11—C12—H12A109.7
C5—C4—H4B109.5C7—C12—H12B109.7
C3—C4—H4B109.5C11—C12—H12B109.7
H4A—C4—H4B108.1H12A—C12—H12B108.2
O2—C13—C14—C157.4 (7)C16—C17—C20—O43.6 (7)
O1—C13—C14—C15174.0 (4)N1—C1—C2—C3178.4 (4)
O2—C13—C14—C19173.7 (5)C6—C1—C2—C356.4 (6)
O1—C13—C14—C194.9 (7)C1—C2—C3—C454.8 (7)
C19—C14—C15—C160.7 (7)C2—C3—C4—C554.9 (7)
C13—C14—C15—C16178.2 (4)C3—C4—C5—C656.3 (7)
C14—C15—C16—C170.8 (7)C2—C1—C6—C556.7 (6)
C15—C16—C17—C181.1 (7)N1—C1—C6—C5178.2 (4)
C15—C16—C17—C20179.6 (5)C4—C5—C6—C156.9 (6)
C16—C17—C18—C191.2 (7)N2—C7—C8—C9179.7 (4)
C20—C17—C18—C19179.5 (4)C12—C7—C8—C956.9 (6)
C17—C18—C19—C141.1 (7)C7—C8—C9—C1053.9 (6)
C15—C14—C19—C180.8 (7)C8—C9—C10—C1152.6 (7)
C13—C14—C19—C18178.1 (4)C9—C10—C11—C1254.3 (7)
C18—C17—C20—O32.5 (7)N2—C7—C12—C11179.3 (4)
C16—C17—C20—O3176.7 (5)C8—C7—C12—C1158.6 (6)
C18—C17—C20—O4177.1 (5)C10—C11—C12—C757.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.891.882.753 (5)168
N1—H1B···O3ii0.891.902.778 (5)167
N1—H1D···O40.891.892.766 (5)168
N2—H2C···O1iii0.891.922.786 (5)162
N2—H2D···O1iv0.892.012.827 (5)152
N2—H2E···O3v0.891.972.785 (5)151
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2C6H14N+·C8H4O42
Mr364.48
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)11.572 (2), 22.820 (5), 8.5426 (17)
β (°) 117.03 (3)
V3)2009.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.33 × 0.28 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.973, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8521, 2294, 2074
Rint0.083
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.171, 1.03
No. of reflections2294
No. of parameters235
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.29

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.891.882.753 (5)168
N1—H1B···O3ii0.891.902.778 (5)167
N1—H1D···O40.891.892.766 (5)168
N2—H2C···O1iii0.891.922.786 (5)162
N2—H2D···O1iv0.892.012.827 (5)152
N2—H2E···O3v0.891.972.785 (5)151
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z; (v) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationFu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. & Qu, Z. R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaertling, G. H. (1999). J. Am. Ceram. Soc. A82, 797–810.  CrossRef Google Scholar
First citationHang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 9, 2026–2029.  Web of Science CSD CrossRef CAS Google Scholar
First citationHomes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. (2001). Science, 293, 673–676.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1579
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds