organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1338

N′-(3-Fluoro­benzyl­­idene)-4-hy­dr­oxy-3-meth­­oxy­benzohydrazide methanol monosolvate

aCollege of Biology and Chemical Engineering, Jiaxing University, Jiaxing Zhejiang 314001, People's Republic of China, and School of Pharmaceutical Sciences, Zhejiang University, Hangzhou Zhejiang 310058, People's Republic of China
*Correspondence e-mail: zongqs@iccas.ac.cn

(Received 20 March 2012; accepted 21 March 2012; online 6 April 2012)

In the title compound, C15H13FN2O3·CH3OH, the dihedral angle between the benzene rings of the benzohydrazone mol­ecule is 5.3 (3)°. The C atom of the meth­oxy group is almost coplanar with its attached ring [deviation = 0.017 (2) Å]. The r.m.s. deviation of the 21 non-H atoms of the hydrazone mol­ecule is 0.106 Å. In the crystal, the components are linked by Om—H⋯Oh, Nh—H⋯Om and Oh—H⋯Oh (m = methanol and h = hydrazone) hydrogen bonds, forming (001) layers.

Related literature

For related structures, see: Horkaew et al. (2012)[Horkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069-o1070.]; Fun et al. (2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]); Zhang (2011[Zhang, Z. (2011). Acta Cryst. E67, o1630.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13FN2O3·CH4O

  • Mr = 320.32

  • Orthorhombic, P b c a

  • a = 14.9566 (18) Å

  • b = 11.1123 (16) Å

  • c = 19.351 (2) Å

  • V = 3216.1 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.983

  • 22845 measured reflections

  • 3270 independent reflections

  • 2588 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.161

  • S = 1.12

  • 3270 reflections

  • 215 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.91 (1) 2.03 (1) 2.916 (2) 164 (2)
O4—H4⋯O3 0.82 1.95 2.772 (2) 176
O1—H1A⋯O3ii 0.82 1.94 2.7504 (17) 168
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In this paper, the title new benzohydrazide compound, (I), which crystallised as a methanol solvate, is reported.

The dihedral angle between the benzene rings C1–C6 and C9–C14 of the benzohydrazone molecule is 5.3 (3)°. The bond lengths in the benzohydrazone molecule are comparable to those in similar benzohydrazone compounds (Horkaew et al., 2012; Fun et al., 2011; Zhang, 2011). In the crystal, the benzohydrazone molecules are linked by methanol molecules through hydrogen bonds (Table 1), to form layers parallel to the ab plane (Fig. 2).

Related literature top

For related structures, see: Horkaew et al. (2012); Fun et al. (2011); Zhang (2011).

Experimental top

3-Fluorobenzaldehyde (0.124 g, 1 mmol) and 4-hydroxy-3-methoxybenzohydrazide (0.182 g, 1 mmol) were mixed in methanol. The mixture was stirred at room temperature for 1 h to give a colorless solution. Colourless blocks were obtained by slow evaporation from the solution in air.

Refinement top

H1 was located from an electronic map and restrained with N—H distance of 0.90 (1) Å. All other H atoms were placed at calculated positions and refined using a riding model approximation, with C—H = 0.93 or 0.96 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C and O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of the title compound with displacement ellipsoids drawn at the 30% probability level. Hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along a axis. Hydrogen bonds are shown as dashed lines.
N'-(3-Fluorobenzylidene)-4-hydroxy-3-methoxybenzohydrazide methanol monosolvate top
Crystal data top
C15H13FN2O3·CH4ODx = 1.323 Mg m3
Mr = 320.32Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 8503 reflections
a = 14.9566 (18) Åθ = 2.5–26.0°
b = 11.1123 (16) ŵ = 0.10 mm1
c = 19.351 (2) ÅT = 298 K
V = 3216.1 (7) Å3Block, colorless
Z = 80.20 × 0.18 × 0.17 mm
F(000) = 1344
Data collection top
Bruker APEXII CCD
diffractometer
3270 independent reflections
Radiation source: fine-focus sealed tube2588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1817
Tmin = 0.980, Tmax = 0.983k = 1313
22845 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0956P)2 + 0.5869P]
where P = (Fo2 + 2Fc2)/3
3270 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
C15H13FN2O3·CH4OV = 3216.1 (7) Å3
Mr = 320.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.9566 (18) ŵ = 0.10 mm1
b = 11.1123 (16) ÅT = 298 K
c = 19.351 (2) Å0.20 × 0.18 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
3270 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2588 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.983Rint = 0.030
22845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.28 e Å3
3270 reflectionsΔρmin = 0.34 e Å3
215 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.62214 (8)1.20264 (15)0.71230 (10)0.0899 (5)
N10.27077 (9)0.93828 (13)0.59540 (8)0.0396 (4)
N20.33902 (9)1.00033 (12)0.62766 (8)0.0390 (3)
O10.02644 (7)0.56459 (11)0.42821 (6)0.0430 (3)
H1A0.02360.59330.43320.064*
O20.19271 (8)0.52220 (13)0.40048 (7)0.0540 (4)
O30.37143 (7)0.80593 (11)0.55390 (8)0.0497 (4)
O40.39737 (10)0.57101 (14)0.59772 (13)0.0833 (6)
H40.39170.64160.58620.125*
C10.38310 (11)1.16625 (15)0.69775 (9)0.0397 (4)
C20.35539 (13)1.26065 (17)0.73975 (10)0.0500 (5)
H20.29461.27470.74600.060*
C30.41710 (15)1.33379 (19)0.77229 (11)0.0585 (5)
H30.39761.39640.80040.070*
C40.50739 (14)1.31446 (19)0.76342 (12)0.0601 (6)
H4A0.54941.36290.78540.072*
C50.53336 (13)1.22155 (18)0.72118 (11)0.0533 (5)
C60.47444 (12)1.14675 (16)0.68772 (10)0.0449 (4)
H60.49471.08510.65930.054*
C70.31604 (11)1.09122 (16)0.66320 (9)0.0419 (4)
H70.25581.11050.66740.050*
C80.29236 (10)0.84020 (15)0.55851 (9)0.0361 (4)
C90.21891 (10)0.77204 (14)0.52525 (9)0.0351 (4)
C100.24240 (10)0.68253 (15)0.47763 (9)0.0383 (4)
H100.30230.66980.46700.046*
C110.17751 (10)0.61309 (15)0.44635 (9)0.0371 (4)
C120.08669 (10)0.63371 (14)0.46134 (8)0.0341 (4)
C130.06435 (10)0.72117 (16)0.50909 (9)0.0381 (4)
H130.00460.73370.52010.046*
C140.12929 (10)0.79028 (15)0.54072 (9)0.0379 (4)
H140.11290.84920.57240.046*
C150.28296 (14)0.4987 (2)0.38116 (13)0.0658 (6)
H15A0.30770.56850.35910.099*
H15B0.28470.43180.34980.099*
H15C0.31730.47980.42160.099*
C160.48620 (15)0.5484 (2)0.61393 (16)0.0715 (7)
H16A0.51450.62180.62830.107*
H16B0.51640.51710.57400.107*
H16C0.48920.49060.65070.107*
H10.2134 (9)0.965 (2)0.5972 (14)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0391 (7)0.0999 (11)0.1307 (13)0.0092 (7)0.0109 (7)0.0398 (10)
N10.0252 (6)0.0355 (8)0.0580 (9)0.0004 (5)0.0071 (6)0.0071 (6)
N20.0296 (7)0.0345 (7)0.0529 (8)0.0032 (5)0.0072 (6)0.0026 (6)
O10.0290 (6)0.0475 (7)0.0524 (7)0.0020 (5)0.0040 (5)0.0134 (6)
O20.0345 (7)0.0598 (9)0.0676 (8)0.0074 (6)0.0031 (6)0.0287 (7)
O30.0231 (6)0.0446 (7)0.0815 (9)0.0013 (5)0.0042 (5)0.0166 (6)
O40.0364 (8)0.0443 (9)0.169 (2)0.0031 (6)0.0031 (9)0.0085 (10)
C10.0402 (9)0.0368 (9)0.0422 (9)0.0020 (7)0.0044 (7)0.0019 (7)
C20.0479 (10)0.0492 (10)0.0528 (11)0.0004 (8)0.0039 (8)0.0106 (9)
C30.0659 (13)0.0514 (12)0.0583 (12)0.0030 (10)0.0009 (10)0.0193 (9)
C40.0610 (13)0.0533 (12)0.0659 (13)0.0158 (10)0.0114 (10)0.0157 (10)
C50.0407 (10)0.0546 (12)0.0646 (12)0.0063 (8)0.0064 (9)0.0086 (10)
C60.0410 (9)0.0414 (9)0.0524 (10)0.0009 (7)0.0061 (8)0.0082 (8)
C70.0318 (8)0.0421 (9)0.0519 (10)0.0004 (7)0.0022 (7)0.0057 (8)
C80.0257 (7)0.0332 (8)0.0494 (9)0.0012 (6)0.0016 (6)0.0000 (7)
C90.0266 (7)0.0331 (8)0.0456 (9)0.0006 (6)0.0026 (6)0.0007 (7)
C100.0241 (7)0.0397 (9)0.0511 (9)0.0034 (6)0.0009 (7)0.0044 (7)
C110.0301 (8)0.0390 (9)0.0421 (9)0.0038 (6)0.0014 (6)0.0065 (7)
C120.0263 (7)0.0354 (8)0.0407 (8)0.0018 (6)0.0038 (6)0.0006 (7)
C130.0233 (7)0.0430 (10)0.0480 (9)0.0009 (6)0.0005 (6)0.0063 (7)
C140.0281 (8)0.0375 (9)0.0482 (9)0.0011 (6)0.0001 (6)0.0074 (7)
C150.0436 (11)0.0745 (15)0.0794 (14)0.0136 (10)0.0079 (10)0.0270 (12)
C160.0519 (13)0.0620 (14)0.1007 (19)0.0047 (10)0.0152 (12)0.0040 (13)
Geometric parameters (Å, º) top
F1—C51.355 (2)C4—H4A0.9300
N1—C81.342 (2)C5—C61.374 (3)
N1—N21.3809 (19)C6—H60.9300
N1—H10.910 (10)C7—H70.9300
N2—C71.269 (2)C8—C91.481 (2)
O1—C121.3465 (19)C9—C141.388 (2)
O1—H1A0.8200C9—C101.401 (2)
O2—C111.364 (2)C10—C111.380 (2)
O2—C151.425 (2)C10—H100.9300
O3—C81.2456 (19)C11—C121.408 (2)
O4—C161.388 (3)C12—C131.382 (2)
O4—H40.8200C13—C141.381 (2)
C1—C21.390 (3)C13—H130.9300
C1—C61.397 (2)C14—H140.9300
C1—C71.466 (2)C15—H15A0.9600
C2—C31.382 (3)C15—H15B0.9600
C2—H20.9300C15—H15C0.9600
C3—C41.378 (3)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.373 (3)C16—H16C0.9600
C8—N1—N2117.91 (13)C14—C9—C10119.18 (14)
C8—N1—H1121.0 (17)C14—C9—C8123.21 (15)
N2—N1—H1121.0 (17)C10—C9—C8117.57 (14)
C7—N2—N1116.24 (14)C11—C10—C9120.62 (14)
C12—O1—H1A109.5C11—C10—H10119.7
C11—O2—C15117.69 (14)C9—C10—H10119.7
C16—O4—H4109.5O2—C11—C10125.62 (14)
C2—C1—C6119.33 (16)O2—C11—C12114.55 (14)
C2—C1—C7119.46 (16)C10—C11—C12119.83 (15)
C6—C1—C7121.18 (16)O1—C12—C13123.90 (14)
C3—C2—C1120.74 (18)O1—C12—C11117.05 (14)
C3—C2—H2119.6C13—C12—C11119.04 (14)
C1—C2—H2119.6C14—C13—C12121.15 (14)
C4—C3—C2120.40 (19)C14—C13—H13119.4
C4—C3—H3119.8C12—C13—H13119.4
C2—C3—H3119.8C13—C14—C9120.15 (15)
C5—C4—C3117.95 (18)C13—C14—H14119.9
C5—C4—H4A121.0C9—C14—H14119.9
C3—C4—H4A121.0O2—C15—H15A109.5
F1—C5—C4117.99 (17)O2—C15—H15B109.5
F1—C5—C6118.35 (18)H15A—C15—H15B109.5
C4—C5—C6123.66 (19)O2—C15—H15C109.5
C5—C6—C1117.91 (17)H15A—C15—H15C109.5
C5—C6—H6121.0H15B—C15—H15C109.5
C1—C6—H6121.0O4—C16—H16A109.5
N2—C7—C1120.97 (15)O4—C16—H16B109.5
N2—C7—H7119.5H16A—C16—H16B109.5
C1—C7—H7119.5O4—C16—H16C109.5
O3—C8—N1120.98 (15)H16A—C16—H16C109.5
O3—C8—C9121.10 (15)H16B—C16—H16C109.5
N1—C8—C9117.89 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.91 (1)2.03 (1)2.916 (2)164 (2)
O4—H4···O30.821.952.772 (2)176
O1—H1A···O3ii0.821.942.7504 (17)168
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC15H13FN2O3·CH4O
Mr320.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)14.9566 (18), 11.1123 (16), 19.351 (2)
V3)3216.1 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.980, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
22845, 3270, 2588
Rint0.030
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.161, 1.12
No. of reflections3270
No. of parameters215
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.34

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.910 (10)2.031 (12)2.916 (2)164 (2)
O4—H4···O30.821.952.772 (2)176
O1—H1A···O3ii0.821.942.7504 (17)168
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+3/2, z+1.
 

Acknowledgements

The author thanks the Excellent Yong Teachers Program (No. 00511024) and the China Postdoctoral Science Foundation (No. 2011M500989) for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069–o1070.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z. (2011). Acta Cryst. E67, o1630.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1338
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds