organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1348

N-(3-Chloro-4-fluoro­phen­yl)acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 26 March 2012; accepted 1 April 2012; online 13 April 2012)

In the title compound, C8H7ClFNO, the dihedral angle between the benzene ring and the acetamide side chain is 5.47 (6)°. An S(6) ring motif is formed via an intra­molecular C—H⋯O hydrogen bond. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into C(4) chains along [001].

Related literature

For background to acetamides, see: Khan et al. (2010[Khan, F. N., Roopan, S. M., Malathi, N., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o2043-o2044.]); Tahir & Shad (2011[Tahir, M. N. & Shad, H. A. (2011). Acta Cryst. E67, o443.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure, see: Rosli et al. (2007[Rosli, M. M., Karthikeyan, M. S., Fun, H.-K., Razak, I. A. & Patil, P. S. (2007). Acta Cryst. E63, o67-o68.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7ClFNO

  • Mr = 187.60

  • Monoclinic, P 21 /c

  • a = 7.6776 (4) Å

  • b = 12.7671 (7) Å

  • c = 9.8130 (4) Å

  • β = 124.432 (3)°

  • V = 793.35 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 100 K

  • 0.33 × 0.29 × 0.15 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.869, Tmax = 0.937

  • 14562 measured reflections

  • 3971 independent reflections

  • 3173 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.143

  • S = 1.09

  • 3971 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 1.32 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 2.00 2.8996 (12) 174
C1—H1A⋯O1 0.95 2.20 2.8222 (14) 122
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

To complement earlier studies of acetamides (Khan et al., 2010; Tahir & Shad, 2011), we report herein the crystal structure of the title compound.

In the title compound (Fig. 1), an S(6) ring motif (Bernstein et al., 1995) is formed via intramolecular C1—H1A···O1 hydrogen bond (Table 1). Bond lengths and angles are within the normal ranges and are comparable with the related structure (Rosli et al., 2007).

In the crystal (Fig. 2), N1—H1···O1 hydrogen bonds (Table 1) link the molecules to form chains along the c axis.

Related literature top

For background to acetamides, see: Khan et al. (2010); Tahir & Shad (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: Rosli et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

3-Chloro-4-fluoro aniline (0.145 g, 1 mmol) was dissolved in acetic acid (20 mL) and refluxed for 4 h. The solution was then cooled and poured into 100 ml of ice-cold water with stirring. The precipitate obtained was filtered, washed with water and dried. Orange blocks were grown from DMF solution by the slow evaporation method. M. P.: 384 K.

Refinement top

N-bound H atoms were located from the difference Fourier map and were refined with a riding model with Uiso(H) = 1.2 Ueq(N) [N–H = 0.9003 Å]. The remaining H atoms were positioned geometrically and refined with a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.95 or 0.98 Å]. A rotating group model was applied to the methyl groups. In the final refinement, five outliners were omitted, -3 8 2, -1 0 1, -3 8 1, 1 0 0 and -1 0 4. In the final difference Fourier map, the highest peak and the deepest hole are 0.83 and 0.71Å from atom Cl1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing the chains along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
N-(3-Chloro-4-fluorophenyl)acetamide top
Crystal data top
C8H7ClFNOF(000) = 384
Mr = 187.60Dx = 1.571 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5541 reflections
a = 7.6776 (4) Åθ = 3.0–36.8°
b = 12.7671 (7) ŵ = 0.44 mm1
c = 9.8130 (4) ÅT = 100 K
β = 124.432 (3)°Block, orange
V = 793.35 (7) Å30.33 × 0.29 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3971 independent reflections
Radiation source: fine-focus sealed tube3173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 36.9°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.869, Tmax = 0.937k = 2117
14562 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0844P)2 + 0.1402P]
where P = (Fo2 + 2Fc2)/3
3971 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 1.32 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C8H7ClFNOV = 793.35 (7) Å3
Mr = 187.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6776 (4) ŵ = 0.44 mm1
b = 12.7671 (7) ÅT = 100 K
c = 9.8130 (4) Å0.33 × 0.29 × 0.15 mm
β = 124.432 (3)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3971 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3173 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.937Rint = 0.035
14562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.09Δρmax = 1.32 e Å3
3971 reflectionsΔρmin = 0.50 e Å3
110 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32215 (5)0.12199 (2)0.38846 (3)0.02251 (9)
F10.31780 (12)0.24025 (5)0.13350 (9)0.02207 (16)
O10.18905 (15)0.24972 (7)0.21236 (10)0.02070 (17)
N10.20506 (15)0.18521 (7)0.00234 (11)0.01588 (16)
H10.19790.20070.09020.019*
C10.27231 (17)0.03769 (8)0.18824 (12)0.01625 (18)
H1A0.27660.08310.26680.019*
C20.29704 (17)0.06971 (8)0.21576 (13)0.01634 (18)
C30.29615 (17)0.13592 (8)0.10379 (13)0.01655 (18)
C40.27098 (18)0.09670 (9)0.03746 (13)0.01834 (19)
H4A0.27330.14230.11290.022*
C50.24229 (17)0.01024 (9)0.06795 (13)0.01731 (19)
H5A0.22330.03770.16550.021*
C60.24111 (16)0.07801 (8)0.04398 (12)0.01421 (17)
C70.17661 (17)0.26277 (8)0.08257 (13)0.01566 (18)
C80.1266 (2)0.36891 (9)0.00122 (14)0.0196 (2)
H8A0.24670.41600.06870.029*
H8B0.00130.39770.00910.029*
H8C0.09920.36190.10880.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03690 (18)0.01515 (13)0.02113 (14)0.00050 (9)0.01980 (13)0.00337 (8)
F10.0318 (4)0.0111 (3)0.0247 (3)0.0014 (2)0.0167 (3)0.0004 (2)
O10.0340 (4)0.0164 (4)0.0183 (3)0.0011 (3)0.0188 (3)0.0001 (3)
N10.0246 (4)0.0120 (3)0.0155 (3)0.0003 (3)0.0140 (3)0.0001 (3)
C10.0230 (5)0.0126 (4)0.0160 (4)0.0006 (3)0.0128 (4)0.0006 (3)
C20.0214 (4)0.0136 (4)0.0162 (4)0.0009 (3)0.0120 (3)0.0003 (3)
C30.0204 (4)0.0116 (4)0.0183 (4)0.0000 (3)0.0114 (4)0.0005 (3)
C40.0243 (5)0.0152 (4)0.0180 (4)0.0002 (3)0.0134 (4)0.0029 (3)
C50.0238 (5)0.0153 (4)0.0165 (4)0.0002 (3)0.0136 (4)0.0011 (3)
C60.0183 (4)0.0122 (4)0.0148 (4)0.0007 (3)0.0109 (3)0.0003 (3)
C70.0201 (4)0.0134 (4)0.0159 (4)0.0007 (3)0.0116 (3)0.0003 (3)
C80.0281 (5)0.0136 (4)0.0211 (5)0.0011 (3)0.0163 (4)0.0019 (3)
Geometric parameters (Å, º) top
Cl1—C21.7278 (11)C3—C41.3807 (15)
F1—C31.3535 (12)C4—C51.3884 (15)
O1—C71.2335 (13)C4—H4A0.9500
N1—C71.3573 (14)C5—C61.4023 (14)
N1—C61.4102 (14)C5—H5A0.9500
N1—H10.9003C7—C81.5081 (15)
C1—C21.3896 (15)C8—H8A0.9800
C1—C61.3938 (14)C8—H8B0.9800
C1—H1A0.9500C8—H8C0.9800
C2—C31.3832 (15)
C7—N1—C6127.56 (9)C4—C5—C6120.56 (10)
C7—N1—H1119.1C4—C5—H5A119.7
C6—N1—H1113.3C6—C5—H5A119.7
C2—C1—C6119.21 (9)C1—C6—C5119.61 (10)
C2—C1—H1A120.4C1—C6—N1123.06 (9)
C6—C1—H1A120.4C5—C6—N1117.32 (9)
C3—C2—C1120.66 (10)O1—C7—N1123.81 (10)
C3—C2—Cl1119.39 (8)O1—C7—C8121.05 (10)
C1—C2—Cl1119.93 (8)N1—C7—C8115.14 (9)
F1—C3—C4120.24 (9)C7—C8—H8A109.5
F1—C3—C2119.04 (10)C7—C8—H8B109.5
C4—C3—C2120.71 (10)H8A—C8—H8B109.5
C3—C4—C5119.22 (10)C7—C8—H8C109.5
C3—C4—H4A120.4H8A—C8—H8C109.5
C5—C4—H4A120.4H8B—C8—H8C109.5
C6—C1—C2—C31.61 (16)C2—C1—C6—C52.14 (16)
C6—C1—C2—Cl1176.64 (8)C2—C1—C6—N1177.04 (10)
C1—C2—C3—F1179.12 (10)C4—C5—C6—C11.00 (16)
Cl1—C2—C3—F10.85 (14)C4—C5—C6—N1178.22 (10)
C1—C2—C3—C40.09 (16)C7—N1—C6—C16.20 (17)
Cl1—C2—C3—C4178.35 (9)C7—N1—C6—C5172.99 (10)
F1—C3—C4—C5177.95 (10)C6—N1—C7—O13.71 (18)
C2—C3—C4—C51.24 (17)C6—N1—C7—C8176.05 (10)
C3—C4—C5—C60.69 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.902.002.8996 (12)174
C1—H1A···O10.952.202.8222 (14)122
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H7ClFNO
Mr187.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.6776 (4), 12.7671 (7), 9.8130 (4)
β (°) 124.432 (3)
V3)793.35 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.33 × 0.29 × 0.15
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.869, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
14562, 3971, 3173
Rint0.035
(sin θ/λ)max1)0.845
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.143, 1.09
No. of reflections3971
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.32, 0.50

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.902.002.8996 (12)174
C1—H1A···O10.952.202.8222 (14)122
Symmetry code: (i) x, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Grant (1001/PFIZIK/811160). BN thanks the UGC SAP for financial assistance for the purchase of chemicals. DNS thanks Mangalore University for research facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhan, F. N., Roopan, S. M., Malathi, N., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o2043–o2044.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRosli, M. M., Karthikeyan, M. S., Fun, H.-K., Razak, I. A. & Patil, P. S. (2007). Acta Cryst. E63, o67–o68.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N. & Shad, H. A. (2011). Acta Cryst. E67, o443.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1348
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds