organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1472

4-Methyl-N-p-tolyl­piperidine-1-carbox­amide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 26 March 2012; accepted 14 April 2012; online 21 April 2012)

In the title mol­ecule, C14H20N2O, the piperidine ring has a chair conformation and its N atom is close to planar (bond-angle sum = 357.5°). The dihedral angle between the amide group and the aromatic ring is 47.43 (19)°. In the crystal, mol­ecules are linked into [100] C(4) chains by N—H⋯O hydrogen bonds.

Related literature

For the medicinal properties of related compounds, see: Yang et al. (1997[Yang, D., Soulier, J. L., Sicsic, S., Mathe-Allainmat, M., Bremont, B., Croci, T., Cardamone, R., Aureggi, G. & Langlois, M. (1997). J. Med. Chem. 40, 608-621.]). For a related structure, see: Li (2011[Li, Y.-F. (2011). Acta Cryst. E67, o1792.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20N2O

  • Mr = 232.32

  • Orthorhombic, P b c a

  • a = 9.6192 (19) Å

  • b = 11.127 (2) Å

  • c = 26.574 (5) Å

  • V = 2844.3 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 21306 measured reflections

  • 2571 independent reflections

  • 1219 reflections with I > 2σ(I)

  • Rint = 0.115

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.220

  • S = 1.03

  • 2571 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.89 (3) 2.08 (3) 2.935 (3) 162 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some compounds which are related to the title compound have been shown to have medicinal properties (Yang et al., 1997). The structure of the title compound is shown in Fig. 1. The six-membered ring (C2—C6/N1) has a chair conformation. The bond lengths and angles can be compared to those within a related structure (Li, 2011). In the crystal, the molecules are linked into [100] chains by way of N—H···O hydrogen bonds.

Related literature top

For the medicinal properties of related compounds, see: Yang et al. (1997). For a related structure, see: Li (2011).

Experimental top

A mixture of 4-methylpiperidine (0.08 mol), and p-tolylcarbamic chloride (0.08 mol) was stirred in refluxing ethanol (18 ml) for 4 h to afford the title compound (0.056 mol, yield 70%). Colourless blocks of the title compound were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.97 Å; N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids.
4-Methyl-N-p-tolylpiperidine-1-carboxamide top
Crystal data top
C14H20N2OF(000) = 1008
Mr = 232.32Dx = 1.085 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1979 reflections
a = 9.6192 (19) Åθ = 3.1–27.5°
b = 11.127 (2) ŵ = 0.07 mm1
c = 26.574 (5) ÅT = 293 K
V = 2844.3 (9) Å3Block, colorless
Z = 80.25 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
1219 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.115
Graphite monochromatorθmax = 25.3°, θmin = 3.1°
ϕ and ω scansh = 1110
21306 measured reflectionsk = 1313
2571 independent reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.220H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1032P)2 + 0.1575P]
where P = (Fo2 + 2Fc2)/3
2571 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H20N2OV = 2844.3 (9) Å3
Mr = 232.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.6192 (19) ŵ = 0.07 mm1
b = 11.127 (2) ÅT = 293 K
c = 26.574 (5) Å0.25 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
1219 reflections with I > 2σ(I)
21306 measured reflectionsRint = 0.115
2571 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.220H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.16 e Å3
2571 reflectionsΔρmin = 0.20 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.3590 (3)0.2180 (2)0.24983 (9)0.0723 (7)
O10.1457 (2)0.2820 (2)0.27689 (8)0.0937 (8)
N10.3387 (3)0.3504 (2)0.31682 (9)0.0835 (8)
C80.3092 (3)0.1515 (3)0.20795 (11)0.0692 (8)
C70.2741 (3)0.2829 (3)0.28129 (11)0.0713 (8)
C130.3740 (3)0.1655 (3)0.16191 (12)0.0774 (9)
H13A0.44860.21800.15860.093*
C120.3270 (4)0.1007 (3)0.12054 (12)0.0900 (10)
H12A0.37140.11090.08970.108*
C90.2002 (3)0.0699 (3)0.21213 (12)0.0828 (10)
H9A0.15740.05770.24310.099*
C110.2162 (4)0.0217 (3)0.12365 (14)0.0927 (11)
C50.4786 (4)0.3297 (5)0.33540 (14)0.0885 (11)
C100.1556 (4)0.0073 (3)0.17043 (16)0.0964 (11)
H10A0.08220.04640.17390.116*
C140.1648 (5)0.0461 (4)0.07747 (15)0.1356 (17)
H14A0.21950.02380.04880.203*
H14B0.06910.02640.07140.203*
H14C0.17320.13100.08320.203*
C40.2562 (4)0.4264 (4)0.35029 (14)0.1071 (13)
H4A0.16370.43670.33640.129*
H4B0.29900.50510.35290.129*
C20.3901 (5)0.3450 (4)0.42415 (14)0.1255 (15)
H2B0.43660.42210.42990.151*
C60.4752 (4)0.2737 (4)0.38700 (14)0.1118 (13)
H6A0.43700.19330.38440.134*
H6B0.56960.26670.39950.134*
C30.2461 (4)0.3699 (4)0.40226 (15)0.1223 (15)
H3A0.19450.29510.40000.147*
H3B0.19570.42340.42450.147*
C10.3789 (9)0.2780 (8)0.47512 (19)0.254 (4)
H1A0.47030.26530.48860.381*
H1B0.33410.20190.47010.381*
H1C0.32540.32540.49830.381*
H2A0.448 (3)0.241 (3)0.2491 (11)0.088 (10)*
H5A0.532 (3)0.280 (3)0.3091 (13)0.101 (10)*
H5B0.525 (4)0.399 (4)0.3365 (12)0.115 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0617 (16)0.0876 (18)0.0677 (16)0.0074 (14)0.0034 (13)0.0075 (14)
O10.0612 (14)0.136 (2)0.0839 (16)0.0009 (13)0.0030 (11)0.0044 (13)
N10.0641 (16)0.114 (2)0.0720 (17)0.0103 (14)0.0053 (13)0.0237 (16)
C80.0735 (19)0.0647 (19)0.069 (2)0.0026 (16)0.0056 (15)0.0013 (15)
C70.0629 (19)0.085 (2)0.0656 (19)0.0019 (17)0.0031 (16)0.0086 (17)
C130.093 (2)0.0668 (19)0.073 (2)0.0078 (17)0.0045 (17)0.0032 (16)
C120.124 (3)0.075 (2)0.071 (2)0.006 (2)0.012 (2)0.0020 (18)
C90.086 (2)0.075 (2)0.087 (2)0.0111 (18)0.0064 (18)0.0081 (18)
C110.113 (3)0.067 (2)0.099 (3)0.004 (2)0.034 (2)0.0082 (19)
C50.071 (2)0.117 (3)0.078 (2)0.007 (2)0.0001 (17)0.025 (2)
C100.100 (3)0.068 (2)0.121 (3)0.0100 (18)0.027 (2)0.002 (2)
C140.170 (4)0.111 (3)0.126 (3)0.005 (3)0.058 (3)0.031 (3)
C40.090 (2)0.139 (3)0.093 (3)0.023 (2)0.002 (2)0.031 (2)
C20.142 (4)0.166 (4)0.069 (2)0.028 (3)0.000 (2)0.010 (2)
C60.113 (3)0.130 (3)0.092 (3)0.020 (3)0.017 (2)0.014 (2)
C30.108 (3)0.161 (4)0.097 (3)0.006 (3)0.029 (2)0.031 (3)
C10.344 (11)0.333 (10)0.084 (4)0.090 (8)0.026 (5)0.042 (5)
Geometric parameters (Å, º) top
N2—C71.374 (4)C5—H5B0.89 (4)
N2—C81.420 (4)C10—H10A0.9300
N2—H2A0.89 (3)C14—H14A0.9600
O1—C71.241 (3)C14—H14B0.9600
N1—C71.357 (4)C14—H14C0.9600
N1—C41.462 (4)C4—C31.521 (5)
N1—C51.452 (4)C4—H4A0.9700
C8—C131.382 (4)C4—H4B0.9700
C8—C91.391 (4)C2—C61.508 (5)
C13—C121.390 (4)C2—C31.528 (6)
C13—H13A0.9300C2—C11.550 (6)
C12—C111.384 (5)C2—H2B0.9800
C12—H12A0.9300C6—H6A0.9700
C9—C101.378 (4)C6—H6B0.9700
C9—H9A0.9300C3—H3A0.9700
C11—C101.382 (5)C3—H3B0.9700
C11—C141.524 (5)C1—H1A0.9600
C5—C61.506 (5)C1—H1B0.9600
C5—H5A1.03 (3)C1—H1C0.9600
C7—N2—C8123.4 (3)H14A—C14—H14B109.5
C7—N2—H2A116 (2)C11—C14—H14C109.5
C8—N2—H2A117 (2)H14A—C14—H14C109.5
C7—N1—C4119.7 (3)H14B—C14—H14C109.5
C7—N1—C5125.0 (3)N1—C4—C3110.4 (3)
C4—N1—C5112.8 (3)N1—C4—H4A109.6
C13—C8—C9119.0 (3)C3—C4—H4A109.6
C13—C8—N2118.9 (3)N1—C4—H4B109.6
C9—C8—N2122.1 (3)C3—C4—H4B109.6
O1—C7—N1121.7 (3)H4A—C4—H4B108.1
O1—C7—N2122.0 (3)C6—C2—C3109.8 (3)
N1—C7—N2116.2 (3)C6—C2—C1110.9 (4)
C8—C13—C12119.7 (3)C3—C2—C1110.9 (4)
C8—C13—H13A120.2C6—C2—H2B108.4
C12—C13—H13A120.2C3—C2—H2B108.4
C13—C12—C11122.2 (3)C1—C2—H2B108.4
C13—C12—H12A118.9C2—C6—C5112.9 (3)
C11—C12—H12A118.9C2—C6—H6A109.0
C10—C9—C8120.0 (3)C5—C6—H6A109.0
C10—C9—H9A120.0C2—C6—H6B109.0
C8—C9—H9A120.0C5—C6—H6B109.0
C10—C11—C12116.9 (3)H6A—C6—H6B107.8
C10—C11—C14122.0 (4)C4—C3—C2111.3 (3)
C12—C11—C14121.1 (4)C4—C3—H3A109.4
N1—C5—C6110.8 (3)C2—C3—H3A109.4
N1—C5—H5A108.7 (18)C4—C3—H3B109.4
C6—C5—H5A113.7 (18)C2—C3—H3B109.4
N1—C5—H5B110 (2)H3A—C3—H3B108.0
C6—C5—H5B110 (2)C2—C1—H1A109.5
H5A—C5—H5B104 (3)C2—C1—H1B109.5
C9—C10—C11122.2 (3)H1A—C1—H1B109.5
C9—C10—H10A118.9C2—C1—H1C109.5
C11—C10—H10A118.9H1A—C1—H1C109.5
C11—C14—H14A109.5H1B—C1—H1C109.5
C11—C14—H14B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.89 (3)2.08 (3)2.935 (3)162 (3)
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H20N2O
Mr232.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)9.6192 (19), 11.127 (2), 26.574 (5)
V3)2844.3 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21306, 2571, 1219
Rint0.115
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.220, 1.03
No. of reflections2571
No. of parameters166
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.89 (3)2.08 (3)2.935 (3)162 (3)
Symmetry code: (i) x+1/2, y, z+1/2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F. (2011). Acta Cryst. E67, o1792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D., Soulier, J. L., Sicsic, S., Mathe-Allainmat, M., Bremont, B., Croci, T., Cardamone, R., Aureggi, G. & Langlois, M. (1997). J. Med. Chem. 40, 608–621.  CSD CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1472
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds