organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1409

(1H-1,2,3-Benzotriazol-1-yl)methyl benzoate

aDepartment of Stomatology, Nanjing Jinling Hospital, Nanjing University School of Medicine, 305, East Zhongshan Road, 210002 Nanjing, Jiangsu Province, People's Republic of China, and bDepartment of Applied Chemistry, School of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu Province 210016, People's Republic of China
*Correspondence e-mail: caogang69@163.com

(Received 26 March 2012; accepted 5 April 2012; online 18 April 2012)

In the title compound, C14H11N3O2, the dihedral angle between the phenyl ring and the benzotriazole ring system is 76.80 (19)° and the mol­ecule has an L-shaped conformation. In the crystal, weak aromatic ππ stacking is observed, the closest centroid–centroid distance being 3.754 (2) Å.

Related literature

For related structures and the synthesis, see: Xu & Shen (2012)[Xu, S. & Shen, Y. (2012). Acta Cryst. E68, o1066.]; Zeng & Jian (2009[Zeng, W.-L. & Jian, F.-F. (2009). Acta Cryst. E65, o2165.]). For applications of benzotriazole derivatives, see: Wan & Lv (2010[Wan, J. & Lv, P.-C. (2010). J. Chem. Inf. Comput. Sci. 122, 597-606.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O2

  • Mr = 253.26

  • Monoclinic, P 21 /c

  • a = 10.7181 (4) Å

  • b = 6.4826 (2) Å

  • c = 18.7076 (7) Å

  • β = 96.773 (3)°

  • V = 1290.75 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.984

  • 9412 measured reflections

  • 2268 independent reflections

  • 1352 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.162

  • S = 1.06

  • 2268 reflections

  • 181 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Benzotriazole derivatives have been broadly researched due to their potential applications (Wan & Lv, 2010). Herein, we have synthesized a new benzotriazole derivative(Fig. 1), C12H15N3O2. Bond lengths and angles are comparable to other reported benzotriazol-1-yl intermediate derivatives (Zeng & Jian, 2009; Xu & Shen, 2012). Furthermore, the dihedral angle between the mean planes of the phenyl and benzotriazole rings is 76.80 (19)°. In the crystal, ππ stacking is observed between the inversion related phenyl rings of benzotriazolyl, the closest centroid-centroid distance being 3.754 (2)Å.

Related literature top

For related structures and the synthesis, see: Xu & Shen (2012); Zeng & Jian (2009). For applications of benzotriazole derivatives, see: Wan & Lv (2010).

Experimental top

The title compound synthesis method is similar to that reported by Xu & Shen (2012), but methylene chloride was replaced by benzoyl chloride

Refinement top

The H atoms on the CH2 group were located by difference maps and freely refined without constraints. H atoms bonded to the remaining C atoms were included in calculated positions and treated as riding with C–H =0.93Å and Uiso(H)=1.2Ueq(aromatic C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
(1H-1,2,3-Benzotriazol-1-yl)methyl benzoate top
Crystal data top
C14H11N3O2F(000) = 528
Mr = 253.26Dx = 1.303 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1419 reflections
a = 10.7181 (4) Åθ = 2.7–21.6°
b = 6.4826 (2) ŵ = 0.09 mm1
c = 18.7076 (7) ÅT = 296 K
β = 96.773 (3)°Block, colorless
V = 1290.75 (8) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2268 independent reflections
Radiation source: fine-focus sealed tube1352 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 2.2°
phi and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 77
Tmin = 0.982, Tmax = 0.984l = 2222
9412 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.4539P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2268 reflectionsΔρmax = 0.14 e Å3
181 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0073 (18)
Crystal data top
C14H11N3O2V = 1290.75 (8) Å3
Mr = 253.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7181 (4) ŵ = 0.09 mm1
b = 6.4826 (2) ÅT = 296 K
c = 18.7076 (7) Å0.20 × 0.20 × 0.18 mm
β = 96.773 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2268 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1352 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.984Rint = 0.057
9412 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.14 e Å3
2268 reflectionsΔρmin = 0.17 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7169 (3)0.5849 (5)0.27655 (16)0.0599 (8)
C20.8234 (3)0.7177 (6)0.30445 (18)0.0672 (9)
C30.9100 (4)0.6382 (8)0.3586 (2)0.1029 (14)
H30.89980.50620.37650.123*
C41.0110 (5)0.7578 (13)0.3853 (3)0.145 (2)
H41.06960.70620.42150.174*
C51.0258 (6)0.9545 (14)0.3586 (4)0.157 (3)
H51.09441.03420.37690.189*
C60.9397 (5)1.0320 (8)0.3054 (3)0.1179 (18)
H60.94971.16450.28780.141*
C70.8391 (3)0.9146 (6)0.2781 (2)0.0814 (11)
H70.78100.96710.24180.098*
C80.5351 (3)0.5700 (6)0.19118 (18)0.0614 (9)
C90.6278 (3)0.2459 (5)0.05103 (16)0.0564 (8)
C100.6200 (3)0.4440 (4)0.07805 (14)0.0505 (7)
C110.6600 (3)0.6164 (5)0.04401 (16)0.0608 (9)
H110.65430.74850.06280.073*
C120.7088 (3)0.5800 (5)0.01930 (17)0.0726 (10)
H120.73800.69110.04410.087*
C130.7165 (3)0.3815 (6)0.04810 (17)0.0724 (10)
H130.75040.36490.09130.087*
C140.6758 (3)0.2130 (5)0.01465 (17)0.0686 (9)
H140.67960.08170.03430.082*
H1M0.482 (3)0.679 (5)0.1671 (18)0.078 (11)*
H2M0.491 (3)0.493 (5)0.2271 (18)0.087 (11)*
N10.5679 (2)0.4166 (4)0.14069 (12)0.0571 (7)
N20.5446 (3)0.2141 (4)0.15102 (14)0.0729 (8)
N30.5796 (3)0.1092 (4)0.09718 (15)0.0752 (9)
O10.64454 (19)0.6783 (3)0.22152 (10)0.0584 (6)
O20.6951 (2)0.4154 (4)0.29774 (13)0.0830 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.065 (2)0.067 (2)0.0494 (17)0.0088 (18)0.0141 (16)0.0005 (16)
C20.055 (2)0.090 (3)0.057 (2)0.0006 (19)0.0115 (17)0.0160 (19)
C30.071 (3)0.155 (4)0.080 (3)0.016 (3)0.003 (2)0.014 (3)
C40.075 (4)0.240 (8)0.114 (5)0.002 (5)0.015 (3)0.043 (5)
C50.075 (4)0.228 (8)0.170 (7)0.039 (5)0.018 (4)0.089 (7)
C60.085 (3)0.125 (4)0.152 (5)0.041 (3)0.050 (3)0.057 (4)
C70.072 (3)0.089 (3)0.088 (3)0.018 (2)0.030 (2)0.026 (2)
C80.061 (2)0.070 (2)0.0534 (19)0.0043 (19)0.0083 (18)0.0129 (18)
C90.064 (2)0.0560 (17)0.0497 (17)0.0003 (15)0.0079 (16)0.0034 (14)
C100.0551 (19)0.0539 (17)0.0423 (15)0.0009 (14)0.0045 (14)0.0016 (13)
C110.076 (2)0.0547 (18)0.0516 (17)0.0021 (16)0.0078 (17)0.0012 (14)
C120.085 (3)0.079 (2)0.0553 (19)0.0057 (19)0.0155 (19)0.0080 (18)
C130.081 (3)0.092 (3)0.0465 (18)0.006 (2)0.0182 (17)0.0043 (18)
C140.081 (2)0.070 (2)0.0552 (19)0.0090 (18)0.0105 (18)0.0145 (17)
N10.0712 (18)0.0564 (15)0.0454 (13)0.0007 (13)0.0136 (13)0.0026 (12)
N20.103 (2)0.0594 (17)0.0583 (17)0.0114 (15)0.0191 (16)0.0007 (14)
N30.110 (2)0.0569 (16)0.0611 (17)0.0071 (15)0.0225 (17)0.0055 (14)
O10.0718 (15)0.0583 (12)0.0450 (11)0.0001 (11)0.0064 (11)0.0033 (10)
O20.0905 (19)0.0774 (16)0.0804 (17)0.0015 (13)0.0077 (14)0.0232 (13)
Geometric parameters (Å, º) top
C1—O21.200 (3)C8—H1M0.98 (3)
C1—O11.356 (3)C8—H2M1.00 (3)
C1—C21.476 (5)C9—N31.379 (4)
C2—C71.385 (5)C9—C101.386 (4)
C2—C31.389 (5)C9—C141.404 (4)
C3—C41.377 (7)C10—N11.367 (3)
C3—H30.9300C10—C111.380 (4)
C4—C51.385 (9)C11—C121.371 (4)
C4—H40.9300C11—H110.9300
C5—C61.371 (8)C12—C131.401 (4)
C5—H50.9300C12—H120.9300
C6—C71.369 (6)C13—C141.357 (4)
C6—H60.9300C13—H130.9300
C7—H70.9300C14—H140.9300
C8—O11.426 (4)N1—N21.355 (3)
C8—N11.443 (4)N2—N31.306 (3)
O2—C1—O1122.9 (3)H1M—C8—H2M112 (3)
O2—C1—C2126.1 (3)N3—C9—C10108.9 (3)
O1—C1—C2111.0 (3)N3—C9—C14130.8 (3)
C7—C2—C3120.2 (4)C10—C9—C14120.3 (3)
C7—C2—C1122.2 (3)N1—C10—C11133.0 (3)
C3—C2—C1117.6 (4)N1—C10—C9103.9 (2)
C4—C3—C2119.0 (5)C11—C10—C9123.1 (3)
C4—C3—H3120.5C12—C11—C10115.5 (3)
C2—C3—H3120.5C12—C11—H11122.3
C3—C4—C5120.4 (7)C10—C11—H11122.3
C3—C4—H4119.8C11—C12—C13122.4 (3)
C5—C4—H4119.8C11—C12—H12118.8
C6—C5—C4120.2 (7)C13—C12—H12118.8
C6—C5—H5119.9C14—C13—C12121.7 (3)
C4—C5—H5119.9C14—C13—H13119.1
C7—C6—C5120.0 (6)C12—C13—H13119.1
C7—C6—H6120.0C13—C14—C9116.9 (3)
C5—C6—H6120.0C13—C14—H14121.6
C6—C7—C2120.2 (5)C9—C14—H14121.6
C6—C7—H7119.9N2—N1—C10110.4 (2)
C2—C7—H7119.9N2—N1—C8120.7 (3)
O1—C8—N1110.3 (3)C10—N1—C8128.8 (3)
O1—C8—H1M103.6 (18)N3—N2—N1108.6 (2)
N1—C8—H1M111.5 (19)N2—N3—C9108.1 (2)
O1—C8—H2M114.3 (19)C1—O1—C8116.9 (3)
N1—C8—H2M105.7 (19)
O2—C1—C2—C7177.9 (3)C11—C12—C13—C140.1 (6)
O1—C1—C2—C73.0 (4)C12—C13—C14—C91.2 (5)
O2—C1—C2—C32.5 (5)N3—C9—C14—C13179.8 (3)
O1—C1—C2—C3176.6 (3)C10—C9—C14—C131.9 (5)
C7—C2—C3—C40.1 (6)C11—C10—N1—N2180.0 (3)
C1—C2—C3—C4179.5 (4)C9—C10—N1—N20.4 (3)
C2—C3—C4—C50.1 (8)C11—C10—N1—C81.9 (6)
C3—C4—C5—C60.1 (10)C9—C10—N1—C8178.5 (3)
C4—C5—C6—C70.4 (9)O1—C8—N1—N2119.7 (3)
C5—C6—C7—C20.4 (6)O1—C8—N1—C1062.3 (4)
C3—C2—C7—C60.1 (5)C10—N1—N2—N30.1 (4)
C1—C2—C7—C6179.7 (3)C8—N1—N2—N3178.3 (3)
N3—C9—C10—N10.7 (3)N1—N2—N3—C90.5 (4)
C14—C9—C10—N1179.0 (3)C10—C9—N3—N20.8 (4)
N3—C9—C10—C11179.7 (3)C14—C9—N3—N2178.9 (3)
C14—C9—C10—C111.3 (5)O2—C1—O1—C83.2 (4)
N1—C10—C11—C12179.6 (3)C2—C1—O1—C8177.7 (2)
C9—C10—C11—C120.0 (5)N1—C8—O1—C181.1 (3)
C10—C11—C12—C130.7 (5)

Experimental details

Crystal data
Chemical formulaC14H11N3O2
Mr253.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.7181 (4), 6.4826 (2), 18.7076 (7)
β (°) 96.773 (3)
V3)1290.75 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.982, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
9412, 2268, 1352
Rint0.057
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.162, 1.06
No. of reflections2268
No. of parameters181
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.17

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Surface Project Foundation of Nanjing Military Region (10MA095), the Jinling Hospital Foundation of Nanjing Province of China (2009Q021) and the Surface Project Foundation of Nanjing Military Region (11MA099).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, J. & Lv, P.-C. (2010). J. Chem. Inf. Comput. Sci. 122, 597–606.  CAS Google Scholar
First citationXu, S. & Shen, Y. (2012). Acta Cryst. E68, o1066.  CSD CrossRef IUCr Journals Google Scholar
First citationZeng, W.-L. & Jian, F.-F. (2009). Acta Cryst. E65, o2165.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1409
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds