organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1407

3-Ethyl-4-[(E)-(4-fluoro­benzyl­­idene)amino]-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka, India, and cDepartment of Chemistry, St. Philomena's College, Mysore 570 015, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 27 March 2012; accepted 7 April 2012; online 18 April 2012)

In the title compound, C11H11FN4S, the dihedral angle between the 1,2,4-triazole ring and the benzene ring is 25.04 (12)° and an intra­moleuclar C—H⋯S inter­action leads to an S(6) ring. In the crystal, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops.

Related literature

For a related structure and background references, see: Devarajegowda et al. (2010[Devarajegowda, H. C., Jeyaseelan, S., Sumangala, V., Bojapoojary, & Nayak, S. P. (2010). Acta Cryst. E66, o2512-o2513.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11FN4S

  • Mr = 250.30

  • Monoclinic, P 21 /c

  • a = 7.7967 (17) Å

  • b = 8.4205 (19) Å

  • c = 19.138 (4) Å

  • β = 99.780 (4)°

  • V = 1238.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: ψ scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 1.000

  • 11403 measured reflections

  • 2182 independent reflections

  • 1586 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.115

  • S = 1.02

  • 2182 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯S1i 0.86 2.48 3.3275 (19) 168
C11—H11⋯S1 0.93 2.55 3.222 (3) 129
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Earlier we reported the crystal structure of 1-{1-[2,8- Bis(trifluoromethyl)-4-quinolyl]-5-methyl-1H-1,2,3-triazol- 4-yl}ethanone (Devarajegowda et al.,2010). We report here the crystal structure of the title compound (Fig. 1). The packing of the molecules in the title structure is depicted in Fig. 2. The 1,2,4 triazole ring (N3 N4 N5 C9 C10 is not coplanar with the benzene ring (C12—C17) system; the dihedral angle between the two planes being 25.04 (12)°. The crystal structure is characterized by intermolecular N4—H4···S1 and intramolecular C11—H11···S1 interactions are observed (Table 1).

Related literature top

For a related structure and background references, see: Devarajegowda et al. (2010).

Experimental top

An equimolar mixture of the triazole (0.02 mol) and 4-fluorobenzaldehyde (0.02 mol) in absolute ethanol (30 ml) was refluxed with concentrated H2SO4 (0.5 ml) for 1–2 hrs. On cooling the reaction mixture, the solid product separated was crystallized from ethanol as colourless blocks. The synthesized compound was evaluated for antibacterial and antifungal activity by cup-plate diffusion method and used as the standard drugs for antibacterial and antifungal activity respectively.

Refinement top

All H atoms were placed at calculated positions and refined as riding, with N—H = 0.86 Å, Csp2—H = 0.93 Å, C(methylene)—H = 0.97 and C(methyl)—H = 0.96 Å. Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Paciking of the molecules.
3-Ethyl-4-[(E)-(4-fluorobenzylidene)amino]-1H-1,2,4-triazole- 5(4H)-thione top
Crystal data top
C11H11FN4SF(000) = 520
Mr = 250.30Dx = 1.343 Mg m3
Monoclinic, P21/cMelting point: 414 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.7967 (17) ÅCell parameters from 2182 reflections
b = 8.4205 (19) Åθ = 2.2–25.0°
c = 19.138 (4) ŵ = 0.26 mm1
β = 99.780 (4)°T = 293 K
V = 1238.2 (5) Å3Block, colourless
Z = 40.20 × 0.20 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
2182 independent reflections
Radiation source: fine-focus sealed tube1586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω and ϕ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
h = 99
Tmin = 0.770, Tmax = 1.000k = 1010
11403 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.1712P]
where P = (Fo2 + 2Fc2)/3
2182 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C11H11FN4SV = 1238.2 (5) Å3
Mr = 250.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7967 (17) ŵ = 0.26 mm1
b = 8.4205 (19) ÅT = 293 K
c = 19.138 (4) Å0.20 × 0.20 × 0.15 mm
β = 99.780 (4)°
Data collection top
Bruker SMART CCD
diffractometer
2182 independent reflections
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
1586 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.050
11403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
2182 reflectionsΔρmin = 0.19 e Å3
154 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22343 (8)0.61721 (9)0.07429 (3)0.0711 (3)
F21.1525 (2)1.1308 (2)0.18960 (8)0.0886 (5)
N30.2231 (2)0.5813 (2)0.12894 (9)0.0579 (5)
N40.1651 (2)0.5520 (2)0.06628 (9)0.0542 (5)
H40.07290.49740.06410.065*
N50.3973 (2)0.6845 (2)0.03736 (9)0.0492 (5)
N60.5370 (2)0.7802 (2)0.00763 (10)0.0536 (5)
C70.4043 (4)0.7150 (5)0.23453 (15)0.1142 (13)
H7A0.48260.76240.26220.171*
H7B0.29320.76690.24490.171*
H7C0.39060.60430.24600.171*
C80.4763 (3)0.7329 (4)0.15769 (12)0.0706 (8)
H8A0.58960.68220.14800.085*
H8B0.49290.84500.14690.085*
C90.3637 (3)0.6635 (3)0.11018 (12)0.0529 (6)
C100.2640 (3)0.6153 (3)0.00883 (11)0.0512 (6)
C110.5946 (3)0.7675 (3)0.05793 (13)0.0555 (6)
H110.54330.69570.08500.067*
C120.7417 (3)0.8648 (3)0.09174 (11)0.0499 (6)
C130.8090 (3)0.8408 (3)0.16278 (12)0.0648 (7)
H130.76070.76340.18810.078*
C140.9473 (3)0.9307 (3)0.19634 (12)0.0689 (7)
H140.99200.91550.24410.083*
C151.0162 (3)1.0415 (3)0.15780 (13)0.0594 (6)
C160.9559 (3)1.0674 (3)0.08733 (12)0.0569 (6)
H161.00781.14290.06230.068*
C170.8163 (3)0.9789 (3)0.05422 (12)0.0521 (6)
H170.77230.99600.00650.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0555 (4)0.1101 (6)0.0457 (4)0.0195 (4)0.0028 (3)0.0027 (3)
F20.0719 (10)0.1093 (13)0.0787 (11)0.0335 (9)0.0044 (8)0.0223 (9)
N30.0501 (11)0.0773 (14)0.0440 (11)0.0060 (10)0.0019 (9)0.0030 (10)
N40.0456 (10)0.0688 (13)0.0461 (11)0.0116 (9)0.0020 (8)0.0004 (9)
N50.0397 (10)0.0599 (12)0.0443 (11)0.0034 (9)0.0035 (8)0.0005 (9)
N60.0432 (10)0.0618 (12)0.0517 (12)0.0058 (9)0.0035 (9)0.0017 (9)
C70.093 (2)0.192 (4)0.059 (2)0.030 (2)0.0190 (17)0.000 (2)
C80.0578 (15)0.099 (2)0.0547 (16)0.0130 (14)0.0075 (12)0.0037 (14)
C90.0456 (13)0.0638 (15)0.0466 (14)0.0002 (11)0.0002 (10)0.0019 (11)
C100.0416 (12)0.0599 (14)0.0488 (13)0.0004 (11)0.0023 (10)0.0010 (11)
C110.0431 (12)0.0637 (16)0.0551 (15)0.0021 (11)0.0050 (11)0.0101 (12)
C120.0409 (11)0.0600 (15)0.0462 (13)0.0001 (11)0.0002 (10)0.0006 (11)
C130.0508 (14)0.0891 (19)0.0507 (15)0.0103 (13)0.0026 (11)0.0105 (13)
C140.0545 (14)0.103 (2)0.0444 (14)0.0125 (14)0.0050 (11)0.0015 (14)
C150.0436 (13)0.0717 (17)0.0591 (15)0.0072 (12)0.0017 (11)0.0137 (13)
C160.0531 (13)0.0570 (15)0.0601 (15)0.0048 (11)0.0082 (11)0.0028 (12)
C170.0516 (13)0.0573 (14)0.0449 (12)0.0041 (11)0.0007 (10)0.0003 (11)
Geometric parameters (Å, º) top
S1—C101.674 (2)C8—H8A0.9700
F2—C151.358 (3)C8—H8B0.9700
N3—C91.295 (3)C11—C121.467 (3)
N3—N41.374 (2)C11—H110.9300
N4—C101.341 (3)C12—C171.385 (3)
N4—H40.8600C12—C131.387 (3)
N5—C101.382 (3)C13—C141.383 (3)
N5—C91.385 (3)C13—H130.9300
N5—N61.396 (2)C14—C151.355 (3)
N6—C111.263 (3)C14—H140.9300
C7—C81.490 (4)C15—C161.368 (3)
C7—H7A0.9600C16—C171.381 (3)
C7—H7B0.9600C16—H160.9300
C7—H7C0.9600C17—H170.9300
C8—C91.487 (3)
C9—N3—N4104.05 (17)N4—C10—S1127.43 (17)
C10—N4—N3114.55 (18)N5—C10—S1130.33 (17)
C10—N4—H4122.7N6—C11—C12120.7 (2)
N3—N4—H4122.7N6—C11—H11119.7
C10—N5—C9108.50 (18)C12—C11—H11119.7
C10—N5—N6132.02 (18)C17—C12—C13119.1 (2)
C9—N5—N6118.99 (18)C17—C12—C11121.6 (2)
C11—N6—N5118.52 (19)C13—C12—C11119.2 (2)
C8—C7—H7A109.5C14—C13—C12120.7 (2)
C8—C7—H7B109.5C14—C13—H13119.6
H7A—C7—H7B109.5C12—C13—H13119.6
C8—C7—H7C109.5C15—C14—C13118.3 (2)
H7A—C7—H7C109.5C15—C14—H14120.9
H7B—C7—H7C109.5C13—C14—H14120.9
C9—C8—C7113.6 (2)C14—C15—F2119.3 (2)
C9—C8—H8A108.8C14—C15—C16123.0 (2)
C7—C8—H8A108.8F2—C15—C16117.7 (2)
C9—C8—H8B108.8C15—C16—C17118.6 (2)
C7—C8—H8B108.8C15—C16—H16120.7
H8A—C8—H8B107.7C17—C16—H16120.7
N3—C9—N5110.71 (19)C16—C17—C12120.3 (2)
N3—C9—C8126.9 (2)C16—C17—H17119.9
N5—C9—C8122.3 (2)C12—C17—H17119.9
N4—C10—N5102.12 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···S1i0.862.483.3275 (19)168
C11—H11···S10.932.553.222 (3)129
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H11FN4S
Mr250.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.7967 (17), 8.4205 (19), 19.138 (4)
β (°) 99.780 (4)
V3)1238.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionψ scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.770, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11403, 2182, 1586
Rint0.050
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 1.02
No. of reflections2182
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···S1i0.862.483.3275 (19)168
C11—H11···S10.932.553.222 (3)129
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank Professor T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for the data collection.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevarajegowda, H. C., Jeyaseelan, S., Sumangala, V., Bojapoojary, & Nayak, S. P. (2010). Acta Cryst. E66, o2512–o2513.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1407
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds