metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m641-m642

catena-Poly[[(2-amino-1,3-benzo­thia­zole-6-carboxyl­ato-κ2O,O′)(2,2′-bi­pyridyl-κ2N,N′)cadmium]-μ-2-amino-1,3-benzo­thia­zole-6-carboxyl­ato-κ3N1:O,O′]

aDepartment of Chemistry, University of Fuzhou, Fuzhou350108, People's Republic of China
*Correspondence e-mail: fangxin@fzu.edu.cn

(Received 29 March 2012; accepted 16 April 2012; online 21 April 2012)

In the title coordination polymer, [Cd(C8H5N2O2S)2(C10H8N2)]n, the CdII ion is coordinated by a bidentate 2,2-bipyridyl ligand, two O,O′-chelating 2-amino-1,3-benzothia­zole-6-carboxyl­ate (ABTC) ligands and one N-bonded ABTC ligand. The resulting CdN3O4 coordination polyhedron approximates to a very distorted penta­gonal bipramid with one O and one N atom in axial positions. One of the ABTC ligands is bridging to an adjacent metal atom, generating an infinite chain propagating in [100]. A three-dimensional network is constructed from N—H⋯O and N—H⋯N hydrogen bonds and aromatic ππ stacking inter­actions [centroid–centroid separations = 3.641 (2) and 3.682 (3) Å].

Related literature

For our recent work on the design and sythesis of benzothia­zole coordination networks, see: Fang et al. (2010[Fang, X., Lei, C., Yu, H.-Y., Huang, M.-D. & Wang, J.-D. (2010). Acta Cryst. E66, o1239-o1240.]); Lei et al. (2010[Lei, C., Fang, X., Yu, H.-Y., Huang, M.-D. & Wang, J.-D. (2010). Acta Cryst. E66, o914.]). For the synthesis of the ligand, see: Das et al. (2003[Das, J., Lin, J., Moquin, R. V., Shen, Z., Spergel, S. H., Wityak, J., Doweyko, A. M., DeFex, H. F., Fang, Q., Pang, S., Pitt, S., Shen, D. R., Schieven, G. L. & Barrish, J. C. (2003). Bioorg. Med. Chem. Lett. 13, 2145-2149.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H5N2O2S)2(C10H8N2)]

  • Mr = 640.87

  • Triclinic, [P \overline 1]

  • a = 9.977 (2) Å

  • b = 11.715 (2) Å

  • c = 11.734 (2) Å

  • α = 65.28 (3)°

  • β = 77.52 (3)°

  • γ = 77.15 (3)°

  • V = 1202.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 173 K

  • 0.27 × 0.18 × 0.13 mm

Data collection
  • Rigaku Saturn 724 CCD area-detector diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 2000[Higashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.837, Tmax = 1.000

  • 10158 measured reflections

  • 5296 independent reflections

  • 5015 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.088

  • S = 1.08

  • 5296 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 1.50 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N3 2.345 (3)
Cd1—O3i 2.372 (2)
Cd1—O1 2.381 (3)
Cd1—N1 2.391 (3)
Cd1—O2 2.415 (3)
Cd1—O4i 2.422 (2)
Cd1—N2 2.484 (3)
Symmetry code: (i) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯O3ii 0.88 2.10 2.917 (4) 155
N6—H6B⋯O3iii 0.88 2.12 2.996 (4) 173
N4—H4A⋯O4i 0.88 2.25 3.101 (4) 162
N4—H4B⋯N5iv 0.88 2.21 3.066 (4) 163
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+2, -z-1; (iii) x+1, y, z-1; (iv) x, y-1, z+1.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing studies of benzothiaole-based coordination networks (Fang et al., 2010; Lei et al., 2010), we now report the structure of a coordination polymer of cadmium and 2-amino-1,3-benzothiazole-6-carboxylate (ABTC) with 2,2'-bipyridine (bpy) as second ligand.

The polymer is a triclinic system crystal and it crystallizes in the space group of P-1. In the asymmetric unit (Fig. 1), center Cd (II) is seven-coordinated with (κ1, κ2)-µ2 coordination model, where one bpy provides two N atoms, one ABTC affords two O atoms, and the another ABTC affords two O atoms and one N atom of thiazole. The four Cd—O bonds are Cd1—O1, Cd1—O2, Cd1—O3, and Cd1—O4, with distance of 2.380 (7) Å, 2.415 (7) Å, 2.371 (3) Å, and 2.422 (6) Å, respectively. The three Cd—N bonds are Cd1—N1, Cd1—N2, and Cd1—N3, with distance of 2.390 (8) Å, 2.484 (1) Å, and 2.345 (6) Å, respectively, where the Cd1—N2 distance is slightly longer than common distance of Cd and N.

The asymmetric units are forming chains extending along the a axis (Fig. 2), through the one ABTC coordinated to two Cd(II) simultaneously by O from carboxylate and N from thiazole ring, respectively. Furthermore, three-dimensional supermolecular net (Fig. 3) are constructed by hydrogen bonds, as listed in Table 1, and π-π interactions [between thiazole and benzene rings (with certroid-centroid distance of 3.682 (3) Å and centroid-ring plane distance of 3.350 (9) and 3.404 (3) Å), and between the thiazole and bpy rings (with certroid-centroid distance of 3.641 (2) Å and centroid-ring plane distance of 3.478 (9) and 3.331 (7) Å)].

Related literature top

For our recent work on the design and sythesis of benzothiazole coordination networks, see: Fang et al. (2010); Lei et al. (2010). For the synthesis of the ligand, see: Das et al. (2003).

Experimental top

The 2-aminobenzothiazole-6-carboxylic acid ligand was obtained by hydrolyzing of ethyl-2-amion-1,3-benzothiazole-6-carboxylate (Das et al. 2003). The mixture of cadmium carbonate (0.0172 g, 0.1 mol), 2-aminobenzothiazole-6-carboxylic acid (0.0388 g, 0.2 mol), 2,2'-bipyridine (0.0160 g, 0.1 mol) and H2O (8 ml) was sealed in a 23 ml stainless-steel reactor with Teflon liner and heated (283 K per hour) from room temperature to 423 K and kept at 423 K for 4 days, then cooled (279 K per hour) to room temperature. Colorless prisms were obtained.

Refinement top

All hydrogen atoms were positioned geometrically and refined in a riding model approximation with Uiso (H) = 1.2 Ueq (C) or Ueq (N).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of Cd atom, drawn with 50% probability displacement ellipsoids. [Symmetry codes: (i)1 + x,y,z; (ii)-1 + x,y,z]
[Figure 2] Fig. 2. A Chain formed by Cd1—N3 bond. H atoms are omitted.
[Figure 3] Fig. 3. Three-dimensional net with hydrogen bonds and π-π interactions. H atoms are omitted except those forming hydrogen bonds.
catena-Poly[[(2-amino-1,3-benzothiazole-6-carboxylato- κ2O,O')(2,2'-bipyridyl-κ2N,N')cadmium]- µ-2-amino-1,3-benzothiazole-6-carboxylato-κ3N1:O,O'] top
Crystal data top
[Cd(C8H5N2O2S)2(C10H8N2)]Z = 2
Mr = 640.87F(000) = 656.0
Triclinic, P1Dx = 1.770 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.977 (2) ÅCell parameters from 4682 reflections
b = 11.715 (2) Åθ = 3.1–27.6°
c = 11.734 (2) ŵ = 1.13 mm1
α = 65.28 (3)°T = 173 K
β = 77.52 (3)°Prism, colourless
γ = 77.15 (3)°0.27 × 0.18 × 0.13 mm
V = 1202.8 (4) Å3
Data collection top
Rigaku Saturn 724 CCD area-detector
diffractometer
5296 independent reflections
Radiation source: fine-focus sealed tube5015 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 28.5714 pixels mm-1θmax = 27.6°, θmin = 3.6°
dtprofit.ref scansh = 1212
Absorption correction: numerical
(NUMABS; Higashi, 2000)
k = 1415
Tmin = 0.837, Tmax = 1.000l = 1415
10158 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0263P)2 + 2.5814P]
where P = (Fo2 + 2Fc2)/3
5296 reflections(Δ/σ)max = 0.001
352 parametersΔρmax = 1.50 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Cd(C8H5N2O2S)2(C10H8N2)]γ = 77.15 (3)°
Mr = 640.87V = 1202.8 (4) Å3
Triclinic, P1Z = 2
a = 9.977 (2) ÅMo Kα radiation
b = 11.715 (2) ŵ = 1.13 mm1
c = 11.734 (2) ÅT = 173 K
α = 65.28 (3)°0.27 × 0.18 × 0.13 mm
β = 77.52 (3)°
Data collection top
Rigaku Saturn 724 CCD area-detector
diffractometer
5296 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 2000)
5015 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 1.000Rint = 0.037
10158 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.08Δρmax = 1.50 e Å3
5296 reflectionsΔρmin = 0.72 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.30365 (2)0.70429 (2)0.09531 (2)0.01412 (8)
S20.41833 (9)0.83130 (8)0.62591 (8)0.01725 (17)
O10.3596 (3)0.7157 (2)0.1166 (2)0.0248 (6)
O20.2554 (3)0.8927 (3)0.0912 (2)0.0271 (6)
N10.1528 (3)0.8327 (3)0.1983 (3)0.0155 (6)
N20.2833 (3)0.5972 (3)0.3298 (3)0.0180 (6)
N50.3521 (3)1.0786 (3)0.6983 (3)0.0158 (6)
N60.4267 (3)1.0043 (3)0.8634 (3)0.0213 (6)
H6A0.41611.08130.92270.026*
H6B0.45670.93820.88440.026*
S10.06488 (8)0.34375 (7)0.19139 (8)0.01547 (16)
N30.1635 (3)0.5537 (3)0.1288 (3)0.0140 (5)
N40.3306 (3)0.3686 (3)0.1717 (3)0.0178 (6)
H4A0.39940.41100.15630.021*
H4B0.34710.28560.19400.021*
O40.4784 (2)0.5623 (2)0.1301 (2)0.0175 (5)
O30.4823 (2)0.7664 (2)0.0858 (2)0.0172 (5)
C10.1130 (3)0.9574 (3)0.1355 (3)0.0179 (7)
H10.13000.99110.04560.021*
C20.0484 (4)1.0395 (3)0.1951 (3)0.0196 (7)
H20.02241.12730.14700.023*
C30.0224 (4)0.9910 (3)0.3263 (3)0.0201 (7)
H30.01991.04520.36990.024*
C40.0592 (3)0.8621 (3)0.3925 (3)0.0195 (7)
H40.04000.82620.48240.023*
C50.1251 (3)0.7848 (3)0.3261 (3)0.0160 (6)
C60.1758 (4)0.6489 (3)0.3931 (3)0.0171 (7)
C70.1184 (4)0.5801 (4)0.5154 (3)0.0245 (8)
H70.04040.61790.55690.029*
C80.1773 (4)0.4542 (4)0.5763 (3)0.0267 (8)
H80.13920.40420.65960.032*
C90.2915 (4)0.4038 (3)0.5134 (3)0.0249 (8)
H90.33610.31950.55410.030*
C100.3402 (4)0.4771 (3)0.3908 (4)0.0236 (7)
H100.41780.44080.34750.028*
C110.0212 (3)0.5869 (3)0.1247 (3)0.0144 (6)
C120.0528 (3)0.7099 (3)0.0958 (3)0.0155 (6)
H120.00630.77950.07710.019*
C130.1952 (3)0.7287 (3)0.0949 (3)0.0163 (6)
H130.24610.81150.07770.020*
C140.2650 (3)0.6284 (3)0.1187 (3)0.0150 (6)
C150.1930 (3)0.5050 (3)0.1483 (3)0.0147 (6)
H150.23950.43600.16510.018*
C160.0512 (3)0.4864 (3)0.1522 (3)0.0135 (6)
C170.2006 (3)0.4302 (3)0.1613 (3)0.0139 (6)
C180.3359 (3)1.0268 (3)0.5664 (3)0.0163 (6)
C190.2953 (4)1.0964 (3)0.4897 (3)0.0193 (7)
H190.27351.18640.52640.023*
C200.2872 (3)1.0324 (3)0.3587 (3)0.0191 (7)
H200.26001.07960.30640.023*
C210.3182 (3)0.9002 (3)0.3027 (3)0.0176 (7)
C220.3572 (3)0.8301 (3)0.3795 (3)0.0183 (7)
H220.37740.74000.34260.022*
C230.3659 (3)0.8933 (3)0.5094 (3)0.0161 (6)
C240.3974 (3)0.9876 (3)0.7413 (3)0.0172 (7)
C250.3105 (3)0.8324 (3)0.1607 (3)0.0187 (7)
C260.4178 (3)0.6531 (3)0.1118 (3)0.0136 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01171 (12)0.01595 (13)0.01451 (12)0.00318 (9)0.00112 (8)0.00551 (9)
S20.0197 (4)0.0161 (4)0.0165 (4)0.0033 (3)0.0023 (3)0.0066 (3)
O10.0318 (15)0.0235 (13)0.0170 (12)0.0069 (11)0.0032 (11)0.0045 (10)
O20.0271 (14)0.0345 (15)0.0163 (12)0.0047 (12)0.0040 (11)0.0107 (11)
N10.0119 (13)0.0193 (14)0.0155 (13)0.0037 (11)0.0031 (11)0.0057 (11)
N20.0215 (15)0.0161 (14)0.0160 (13)0.0020 (11)0.0040 (11)0.0057 (11)
N50.0151 (14)0.0150 (13)0.0162 (13)0.0039 (11)0.0023 (11)0.0042 (11)
N60.0279 (16)0.0182 (14)0.0164 (14)0.0030 (12)0.0008 (12)0.0075 (12)
S10.0135 (4)0.0134 (4)0.0192 (4)0.0021 (3)0.0022 (3)0.0061 (3)
N30.0088 (13)0.0160 (13)0.0164 (13)0.0019 (10)0.0019 (10)0.0055 (11)
N40.0134 (13)0.0166 (14)0.0221 (14)0.0005 (11)0.0021 (11)0.0074 (11)
O40.0112 (11)0.0196 (12)0.0232 (12)0.0049 (9)0.0019 (9)0.0086 (10)
O30.0142 (11)0.0171 (11)0.0198 (12)0.0035 (9)0.0024 (9)0.0061 (9)
C10.0201 (17)0.0195 (16)0.0151 (15)0.0069 (14)0.0032 (13)0.0053 (13)
C20.0195 (17)0.0151 (16)0.0229 (17)0.0007 (13)0.0034 (14)0.0069 (13)
C30.0178 (17)0.0219 (17)0.0222 (17)0.0016 (14)0.0015 (14)0.0113 (14)
C40.0172 (17)0.0248 (18)0.0160 (16)0.0001 (14)0.0013 (13)0.0094 (14)
C50.0128 (15)0.0195 (16)0.0155 (15)0.0036 (13)0.0018 (12)0.0061 (13)
C60.0182 (17)0.0178 (16)0.0170 (16)0.0017 (13)0.0053 (13)0.0076 (13)
C70.028 (2)0.0244 (18)0.0159 (16)0.0004 (15)0.0001 (15)0.0068 (14)
C80.038 (2)0.0246 (19)0.0149 (16)0.0051 (16)0.0040 (15)0.0046 (14)
C90.033 (2)0.0175 (17)0.0215 (18)0.0008 (15)0.0111 (16)0.0038 (14)
C100.0255 (19)0.0206 (17)0.0261 (18)0.0006 (15)0.0077 (15)0.0105 (15)
C110.0148 (16)0.0154 (15)0.0126 (14)0.0040 (12)0.0028 (12)0.0038 (12)
C120.0189 (17)0.0134 (15)0.0138 (15)0.0058 (13)0.0024 (12)0.0034 (12)
C130.0179 (17)0.0167 (16)0.0132 (15)0.0043 (13)0.0015 (12)0.0042 (12)
C140.0142 (16)0.0186 (16)0.0120 (14)0.0039 (13)0.0017 (12)0.0054 (12)
C150.0176 (16)0.0155 (15)0.0129 (14)0.0064 (13)0.0005 (12)0.0066 (12)
C160.0139 (15)0.0133 (15)0.0117 (14)0.0019 (12)0.0014 (12)0.0034 (12)
C170.0119 (15)0.0186 (16)0.0116 (14)0.0017 (12)0.0017 (12)0.0065 (12)
C180.0146 (16)0.0208 (17)0.0151 (15)0.0058 (13)0.0010 (12)0.0075 (13)
C190.0180 (17)0.0204 (17)0.0215 (17)0.0031 (14)0.0025 (14)0.0101 (14)
C200.0171 (17)0.0240 (18)0.0190 (16)0.0027 (14)0.0013 (13)0.0118 (14)
C210.0128 (16)0.0245 (17)0.0153 (16)0.0021 (13)0.0012 (13)0.0083 (13)
C220.0168 (17)0.0170 (16)0.0164 (16)0.0034 (13)0.0006 (13)0.0024 (13)
C230.0160 (16)0.0172 (16)0.0159 (15)0.0028 (13)0.0026 (13)0.0066 (13)
C240.0157 (16)0.0204 (17)0.0177 (16)0.0067 (13)0.0042 (13)0.0066 (13)
C250.0097 (15)0.0285 (19)0.0176 (16)0.0045 (14)0.0020 (13)0.0077 (14)
C260.0128 (15)0.0168 (15)0.0104 (14)0.0022 (12)0.0010 (12)0.0046 (12)
Geometric parameters (Å, º) top
Cd1—N32.345 (3)C3—C41.384 (5)
Cd1—O3i2.372 (2)C3—H30.9500
Cd1—O12.381 (3)C4—C51.401 (5)
Cd1—N12.391 (3)C4—H40.9500
Cd1—O22.415 (3)C5—C61.474 (5)
Cd1—O4i2.422 (2)C6—C71.386 (5)
Cd1—N22.484 (3)C7—C81.395 (5)
S2—C231.739 (3)C7—H70.9500
S2—C241.763 (4)C8—C91.376 (5)
O1—C251.264 (4)C8—H80.9500
O2—C251.258 (4)C9—C101.376 (5)
N1—C11.342 (4)C9—H90.9500
N1—C51.352 (4)C10—H100.9500
N2—C101.339 (4)C11—C121.402 (5)
N2—C61.346 (4)C11—C161.404 (4)
N5—C241.316 (4)C12—C131.390 (5)
N5—C181.392 (4)C12—H120.9500
N6—C241.337 (4)C13—C141.396 (4)
N6—H6A0.8800C13—H130.9500
N6—H6B0.8800C14—C151.397 (5)
S1—C161.753 (3)C14—C261.500 (4)
S1—C171.758 (3)C15—C161.390 (4)
N3—C171.318 (4)C15—H150.9500
N3—C111.392 (4)C18—C191.396 (5)
N4—C171.340 (4)C18—C231.410 (5)
N4—H4A0.8800C19—C201.393 (5)
N4—H4B0.8800C19—H190.9500
O4—C261.258 (4)C20—C211.396 (5)
O4—Cd1ii2.422 (2)C20—H200.9500
O3—C261.279 (4)C21—C221.401 (5)
O3—Cd1ii2.372 (2)C21—C251.509 (5)
C1—C21.387 (5)C22—C231.380 (5)
C1—H10.9500C22—H220.9500
C2—C31.386 (5)C26—Cd1ii2.742 (3)
C2—H20.9500
N3—Cd1—O3i153.13 (9)N1—C5—C6116.9 (3)
N3—Cd1—O185.88 (10)C4—C5—C6121.3 (3)
O3i—Cd1—O192.07 (9)N2—C6—C7122.2 (3)
N3—Cd1—N1101.19 (9)N2—C6—C5116.1 (3)
O3i—Cd1—N199.05 (9)C7—C6—C5121.7 (3)
O1—Cd1—N1135.28 (9)C6—C7—C8118.7 (3)
N3—Cd1—O2110.44 (10)C6—C7—H7120.6
O3i—Cd1—O289.76 (9)C8—C7—H7120.6
O1—Cd1—O254.93 (9)C9—C8—C7118.7 (3)
N1—Cd1—O281.78 (9)C9—C8—H8120.6
N3—Cd1—O4i98.05 (9)C7—C8—H8120.6
O3i—Cd1—O4i55.09 (8)C8—C9—C10119.1 (3)
O1—Cd1—O4i85.33 (9)C8—C9—H9120.4
N1—Cd1—O4i135.73 (9)C10—C9—H9120.4
O2—Cd1—O4i127.19 (9)N2—C10—C9123.0 (3)
N3—Cd1—N280.49 (10)N2—C10—H10118.5
O3i—Cd1—N291.08 (9)C9—C10—H10118.5
O1—Cd1—N2155.59 (9)N3—C11—C12125.5 (3)
N1—Cd1—N267.79 (10)N3—C11—C16115.7 (3)
O2—Cd1—N2149.31 (9)C12—C11—C16118.8 (3)
O4i—Cd1—N276.72 (9)C13—C12—C11119.0 (3)
N3—Cd1—C2599.34 (10)C13—C12—H12120.5
O3i—Cd1—C2590.67 (9)C11—C12—H12120.5
O1—Cd1—C2527.53 (9)C12—C13—C14121.5 (3)
N1—Cd1—C25108.67 (10)C12—C13—H13119.3
O2—Cd1—C2527.41 (10)C14—C13—H13119.3
O4i—Cd1—C25106.96 (10)C13—C14—C15120.2 (3)
N2—Cd1—C25176.27 (10)C13—C14—C26120.0 (3)
N3—Cd1—C26i125.36 (10)C15—C14—C26119.8 (3)
O3i—Cd1—C26i27.78 (9)C16—C15—C14118.0 (3)
O1—Cd1—C26i88.58 (10)C16—C15—H15121.0
N1—Cd1—C26i119.61 (9)C14—C15—H15121.0
O2—Cd1—C26i110.00 (10)C15—C16—C11122.4 (3)
O4i—Cd1—C26i27.31 (8)C15—C16—S1128.6 (2)
N2—Cd1—C26i83.04 (10)C11—C16—S1109.0 (2)
C25—Cd1—C26i99.99 (10)N3—C17—N4125.4 (3)
C23—S2—C2488.73 (16)N3—C17—S1115.4 (2)
C25—O1—Cd192.0 (2)N4—C17—S1119.2 (2)
C25—O2—Cd190.5 (2)N5—C18—C19125.3 (3)
C1—N1—C5118.0 (3)N5—C18—C23115.5 (3)
C1—N1—Cd1121.9 (2)C19—C18—C23119.2 (3)
C5—N1—Cd1119.2 (2)C20—C19—C18119.2 (3)
C10—N2—C6118.1 (3)C20—C19—H19120.4
C10—N2—Cd1123.5 (2)C18—C19—H19120.4
C6—N2—Cd1114.9 (2)C19—C20—C21121.4 (3)
C24—N5—C18109.9 (3)C19—C20—H20119.3
C24—N6—H6A120.0C21—C20—H20119.3
C24—N6—H6B120.0C20—C21—C22119.5 (3)
H6A—N6—H6B120.0C20—C21—C25120.7 (3)
C16—S1—C1789.23 (15)C22—C21—C25119.8 (3)
C17—N3—C11110.7 (3)C23—C22—C21119.3 (3)
C17—N3—Cd1127.6 (2)C23—C22—H22120.4
C11—N3—Cd1121.6 (2)C21—C22—H22120.4
C17—N4—H4A120.0C22—C23—C18121.4 (3)
C17—N4—H4B120.0C22—C23—S2128.8 (3)
H4A—N4—H4B120.0C18—C23—S2109.7 (2)
C26—O4—Cd1ii90.62 (19)N5—C24—N6125.6 (3)
C26—O3—Cd1ii92.41 (19)N5—C24—S2116.1 (3)
N1—C1—C2123.4 (3)N6—C24—S2118.3 (3)
N1—C1—H1118.3O2—C25—O1122.6 (3)
C2—C1—H1118.3O2—C25—C21119.5 (3)
C3—C2—C1118.6 (3)O1—C25—C21117.9 (3)
C3—C2—H2120.7O2—C25—Cd162.11 (18)
C1—C2—H2120.7O1—C25—Cd160.52 (18)
C4—C3—C2118.8 (3)C21—C25—Cd1178.2 (2)
C4—C3—H3120.6O4—C26—O3121.9 (3)
C2—C3—H3120.6O4—C26—C14119.2 (3)
C3—C4—C5119.5 (3)O3—C26—C14118.9 (3)
C3—C4—H4120.3O4—C26—Cd1ii62.07 (17)
C5—C4—H4120.3O3—C26—Cd1ii59.82 (16)
N1—C5—C4121.7 (3)C14—C26—Cd1ii178.6 (2)
N3—Cd1—O1—C25119.4 (2)C17—N3—C11—C12178.7 (3)
O3i—Cd1—O1—C2587.5 (2)Cd1—N3—C11—C122.8 (4)
N1—Cd1—O1—C2517.6 (3)C17—N3—C11—C161.3 (4)
O2—Cd1—O1—C250.78 (19)Cd1—N3—C11—C16177.1 (2)
O4i—Cd1—O1—C25142.2 (2)N3—C11—C12—C13179.8 (3)
N2—Cd1—O1—C25175.3 (2)C16—C11—C12—C130.3 (5)
C26i—Cd1—O1—C25115.0 (2)C11—C12—C13—C141.7 (5)
N3—Cd1—O2—C2570.0 (2)C12—C13—C14—C152.1 (5)
O3i—Cd1—O2—C2591.9 (2)C12—C13—C14—C26177.5 (3)
O1—Cd1—O2—C250.78 (19)C13—C14—C15—C160.4 (5)
N1—Cd1—O2—C25168.9 (2)C26—C14—C15—C16179.3 (3)
O4i—Cd1—O2—C2548.1 (2)C14—C15—C16—C111.7 (5)
N2—Cd1—O2—C25176.38 (19)C14—C15—C16—S1177.6 (2)
C26i—Cd1—O2—C2572.5 (2)N3—C11—C16—C15178.1 (3)
N3—Cd1—N1—C1120.1 (2)C12—C11—C16—C152.0 (5)
O3i—Cd1—N1—C177.7 (2)N3—C11—C16—S12.6 (3)
O1—Cd1—N1—C124.6 (3)C12—C11—C16—S1177.4 (2)
O2—Cd1—N1—C110.7 (2)C17—S1—C16—C15178.3 (3)
O4i—Cd1—N1—C1125.9 (2)C17—S1—C16—C112.4 (2)
N2—Cd1—N1—C1165.2 (3)C11—N3—C17—N4178.8 (3)
C25—Cd1—N1—C116.1 (3)Cd1—N3—C17—N45.6 (5)
C26i—Cd1—N1—C197.6 (3)C11—N3—C17—S10.7 (3)
N3—Cd1—N1—C571.2 (2)Cd1—N3—C17—S1174.85 (14)
O3i—Cd1—N1—C591.0 (2)C16—S1—C17—N31.8 (3)
O1—Cd1—N1—C5166.7 (2)C16—S1—C17—N4177.7 (3)
O2—Cd1—N1—C5179.5 (2)C24—N5—C18—C19177.1 (3)
O4i—Cd1—N1—C542.9 (3)C24—N5—C18—C231.9 (4)
N2—Cd1—N1—C53.6 (2)N5—C18—C19—C20178.1 (3)
C25—Cd1—N1—C5175.2 (2)C23—C18—C19—C200.9 (5)
C26i—Cd1—N1—C571.1 (3)C18—C19—C20—C210.3 (5)
N3—Cd1—N2—C1067.9 (3)C19—C20—C21—C220.6 (5)
O3i—Cd1—N2—C1086.4 (3)C19—C20—C21—C25179.3 (3)
O1—Cd1—N2—C1011.0 (4)C20—C21—C22—C230.8 (5)
N1—Cd1—N2—C10174.2 (3)C25—C21—C22—C23179.0 (3)
O2—Cd1—N2—C10177.8 (2)C21—C22—C23—C180.2 (5)
O4i—Cd1—N2—C1032.8 (3)C21—C22—C23—S2176.9 (3)
C25—Cd1—N2—C10155.6 (14)N5—C18—C23—C22178.5 (3)
C26i—Cd1—N2—C1059.8 (3)C19—C18—C23—C220.6 (5)
N3—Cd1—N2—C690.6 (2)N5—C18—C23—S20.8 (4)
O3i—Cd1—N2—C6115.1 (2)C19—C18—C23—S2178.3 (3)
O1—Cd1—N2—C6147.5 (2)C24—S2—C23—C22177.1 (3)
N1—Cd1—N2—C615.7 (2)C24—S2—C23—C180.3 (3)
O2—Cd1—N2—C623.7 (3)C18—N5—C24—N6178.6 (3)
O4i—Cd1—N2—C6168.7 (2)C18—N5—C24—S22.2 (4)
C25—Cd1—N2—C62.9 (16)C23—S2—C24—N51.5 (3)
C26i—Cd1—N2—C6141.7 (2)C23—S2—C24—N6179.2 (3)
O3i—Cd1—N3—C170.5 (4)Cd1—O2—C25—O11.4 (3)
O1—Cd1—N3—C1786.9 (3)Cd1—O2—C25—C21179.1 (3)
N1—Cd1—N3—C17137.7 (3)Cd1—O1—C25—O21.5 (3)
O2—Cd1—N3—C17137.0 (3)Cd1—O1—C25—C21179.1 (3)
O4i—Cd1—N3—C172.3 (3)C20—C21—C25—O211.1 (5)
N2—Cd1—N3—C1772.7 (3)C22—C21—C25—O2169.0 (3)
C25—Cd1—N3—C17111.0 (3)C20—C21—C25—O1169.4 (3)
C26i—Cd1—N3—C171.6 (3)C22—C21—C25—O110.4 (5)
O3i—Cd1—N3—C11175.6 (2)C20—C21—C25—Cd1144 (8)
O1—Cd1—N3—C1197.9 (2)C22—C21—C25—Cd136 (8)
N1—Cd1—N3—C1137.5 (2)N3—Cd1—C25—O2116.9 (2)
O2—Cd1—N3—C1147.8 (2)O3i—Cd1—C25—O288.2 (2)
O4i—Cd1—N3—C11177.4 (2)O1—Cd1—C25—O2178.6 (3)
N2—Cd1—N3—C11102.4 (2)N1—Cd1—C25—O211.6 (2)
C25—Cd1—N3—C1173.8 (2)O4i—Cd1—C25—O2141.69 (19)
C26i—Cd1—N3—C11176.8 (2)N2—Cd1—C25—O229.8 (16)
C5—N1—C1—C21.7 (5)C26i—Cd1—C25—O2114.5 (2)
Cd1—N1—C1—C2167.2 (3)N3—Cd1—C25—O161.8 (2)
N1—C1—C2—C30.4 (5)O3i—Cd1—C25—O193.2 (2)
C1—C2—C3—C41.3 (5)N1—Cd1—C25—O1167.02 (19)
C2—C3—C4—C51.8 (5)O2—Cd1—C25—O1178.6 (3)
C1—N1—C5—C41.2 (5)O4i—Cd1—C25—O139.7 (2)
Cd1—N1—C5—C4168.0 (2)N2—Cd1—C25—O1148.9 (14)
C1—N1—C5—C6177.1 (3)C26i—Cd1—C25—O166.9 (2)
Cd1—N1—C5—C68.0 (4)N3—Cd1—C25—C2188 (8)
C3—C4—C5—N10.5 (5)O3i—Cd1—C25—C2167 (8)
C3—C4—C5—C6175.2 (3)O1—Cd1—C25—C2126 (8)
C10—N2—C6—C73.6 (5)N1—Cd1—C25—C21167 (8)
Cd1—N2—C6—C7156.1 (3)O2—Cd1—C25—C21155 (8)
C10—N2—C6—C5174.5 (3)O4i—Cd1—C25—C2114 (8)
Cd1—N2—C6—C525.7 (4)N2—Cd1—C25—C21175 (7)
N1—C5—C6—N223.0 (4)C26i—Cd1—C25—C2141 (8)
C4—C5—C6—N2153.0 (3)Cd1ii—O4—C26—O30.3 (3)
N1—C5—C6—C7158.8 (3)Cd1ii—O4—C26—C14179.3 (2)
C4—C5—C6—C725.2 (5)Cd1ii—O3—C26—O40.3 (3)
N2—C6—C7—C82.2 (6)Cd1ii—O3—C26—C14179.3 (2)
C5—C6—C7—C8175.8 (3)C13—C14—C26—O4178.0 (3)
C6—C7—C8—C91.1 (6)C15—C14—C26—O41.6 (4)
C7—C8—C9—C102.8 (6)C13—C14—C26—O31.0 (4)
C6—N2—C10—C91.7 (5)C15—C14—C26—O3179.4 (3)
Cd1—N2—C10—C9156.1 (3)C13—C14—C26—Cd1ii25 (9)
C8—C9—C10—N21.5 (6)C15—C14—C26—Cd1ii155 (9)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O3iii0.882.102.917 (4)155
N6—H6B···O3iv0.882.122.996 (4)173
N4—H4A···O4i0.882.253.101 (4)162
N4—H4B···N5v0.882.213.066 (4)163
Symmetry codes: (i) x+1, y, z; (iii) x, y+2, z1; (iv) x+1, y, z1; (v) x, y1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C8H5N2O2S)2(C10H8N2)]
Mr640.87
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.977 (2), 11.715 (2), 11.734 (2)
α, β, γ (°)65.28 (3), 77.52 (3), 77.15 (3)
V3)1202.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.27 × 0.18 × 0.13
Data collection
DiffractometerRigaku Saturn 724 CCD area-detector
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 2000)
Tmin, Tmax0.837, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10158, 5296, 5015
Rint0.037
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.088, 1.08
No. of reflections5296
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.50, 0.72

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEX (McArdle, 1995).

Selected bond lengths (Å) top
Cd1—N32.345 (3)Cd1—O22.415 (3)
Cd1—O3i2.372 (2)Cd1—O4i2.422 (2)
Cd1—O12.381 (3)Cd1—N22.484 (3)
Cd1—N12.391 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O3ii0.882.102.917 (4)155
N6—H6B···O3iii0.882.122.996 (4)173
N4—H4A···O4i0.882.253.101 (4)162
N4—H4B···N5iv0.882.213.066 (4)163
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z1; (iii) x+1, y, z1; (iv) x, y1, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Foundations of Fuzhou University (2010-XQ-06) and the Education Department of Fujian Province (JA11020).

References

First citationDas, J., Lin, J., Moquin, R. V., Shen, Z., Spergel, S. H., Wityak, J., Doweyko, A. M., DeFex, H. F., Fang, Q., Pang, S., Pitt, S., Shen, D. R., Schieven, G. L. & Barrish, J. C. (2003). Bioorg. Med. Chem. Lett. 13, 2145–2149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFang, X., Lei, C., Yu, H.-Y., Huang, M.-D. & Wang, J.-D. (2010). Acta Cryst. E66, o1239–o1240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLei, C., Fang, X., Yu, H.-Y., Huang, M.-D. & Wang, J.-D. (2010). Acta Cryst. E66, o914.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m641-m642
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds