metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m555-m556

Bis[5-chloro-2-(phenyl­diazenyl-κN2)pyridine-κN]bis­­(thio­cyanato-κN)iron(II)

aFaculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Sikao, Trang 92150, Thailand, and bDepartment of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: nokluksamee@hotmail.com

(Received 29 March 2012; accepted 2 April 2012; online 13 April 2012)

In the title complex, [Fe(NCS)2(C11H8ClN3)2], the FeII atom is coordinated by two N atoms from the thio­cyanate ligands and four N atoms from two chelating 5-chloro-2-(phenyl­diazen­yl)pyridine ligands, generating a fairly regular FeN6 octa­hedral coordination geometry. The thio­cyanate ions are in a cis disposition and the pyridine N atoms are in a trans orientation. In the crystal, a short inter­molecular Cl⋯S contact [3.366 (3) Å] is observed.

Related literature

For background to diazenyl complexes, see: Krause & Krause (1980[Krause, R. A. & Krause, K. (1980). Inorg. Chem. 19, 2600-2603.]); Santra et al. (1999[Santra, P. K., Misra, T. K., Das, D., Sinha, C., Slawin, A. M. Z. & Woollins, J. D. (1999). Polyhedron, 18, 2869-2878.]); Hotze, Caspers et al. (2004[Hotze, A. C. G., Caspers, S. E., De Vos, D. E., Kooijman, H., Spek, A. L., Flamigni, A., Bacac, M., Sava, G., Haasnoot, J. G. & Reedijk, J. (2004). J. Biol. Inorg. Chem. 9, 354-364.]); Hotze, Kooijman et al. (2004[Hotze, A. C. G., Kooijman, H., Spek, A. L., Haasnoot, J. G. & Reedijk, J. (2004). New J. Chem. 28, 565-569.]). For applications of diazenyl compounds, see: Erkkila et al. (1999[Erkkila, K. E., Odom, D. T. & Barton, J. K. (1999). Chem. Rev. 99, 2777-2795.]); Wong & Giandomenico (1999[Wong, E. & Giandomenico, C. M. (1999). Chem. Rev. 99, 2451-2466.]); Velder et al. (2000[Velder, A. H., Kooijman, H., Spek, A. L., Haasnoot, J. G., De Vos, D. & Reedijk, J. (2000). Inorg. Chem. 39, 2966-2967.]); Barf & Sheldon (1995[Barf, G. A. & Sheldon, R. A. (1995). J. Mol. Catal. A Chem. 98, 143-147.]). For structures of related diazenyl­imine complexes, see: Hansongnern et al. (2008[Hansongnern, K., Sahavisit, L. & Pakawatchai, C. (2008). Anal. Sci. 24, x57-x58.]); Ray et al. (2005[Ray, U., Banerjee, D., Liou, J.-C., Lin, C.-N., Lu, T.-H. & Sinha, C. (2005). Inorg. Chim. Acta, 358, 1019-1026.]); Senapoti et al. (2002)[Senapoti, S., Ray, U. S., Santra, P. K., Sinha, C., Slawin, A. M. Z. & Wollins, J. D. (2001). Polyhedron, 21, 753-762.]. For background to diazenyl complexes, see: Byabartta et al. (2001[Byabartta, P., Santra, P. K., Misra, T. K., Sinha, C. & Kennard, C. H. L. (2001). Polyhedron, 20, 905-913.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(NCS)2(C11H8ClN3)2]

  • Mr = 607.34

  • Monoclinic, P 21 /n

  • a = 9.5151 (3) Å

  • b = 23.7391 (9) Å

  • c = 12.1550 (4) Å

  • β = 96.209 (1)°

  • V = 2729.46 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 293 K

  • 0.34 × 0.17 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 1.000

  • 29379 measured reflections

  • 4809 independent reflections

  • 4189 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.110

  • S = 1.08

  • 4809 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—N3 1.900 (2)
Fe1—N6 1.917 (2)
Fe1—N4 1.936 (2)
Fe1—N7 1.941 (2)
Fe1—N1 1.945 (2)
Fe1—N8 1.952 (2)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXSInc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Azoimine (—N=N—C=N—) compounds are famously used as effective ligands in synthesization of transition metal complexes owing of their strong π-acidity (Krause and Krause 1980; Santra et al., 1999; Hotze, Caspers et al., 2004), stability and various applications like DNA probing (Erkkila et al., 1999), chemotherapeutic drugs (Wong et al., 1999), anticancer activity (Hotze, Kooijman et al., 2004) and powerful catalysts in epoxidation reaction of olefin to give epoxide (Barf and Sheldon 1995). The diazenylimine complexes are mostly found in octahedral geometry with d6 metal ions (Hansongnern et al., 2008; Ray et al., 2005; Senapoti et al., 2002).

Herein, we report the synthesis and crystal structure of a new Fe(II) complex with 5-chloro-2-(phenyldiazenyl) pyridine, (C11H8N3Cl1: Clazpy), an azoimine ligand. Regarding to the title compound, the molecular structure of [Fe(Clazpy)2(NCS)2] is a distorted octahedral complex (Scheme 1 and Fig.1). The chelating coordination is observed by two N atoms from pyridine rings [Fe(1)—N(1) = 1.945 (2) Å and Fe(1)—N(4) = 1.936 (2) Å] and other two N atoms from diazenyl moiety [Fe(1)—N(3) = 1.900 (2) Å and Fe(1)—N(6) = 1.917 (2) Å in trans arrangement while two N atoms of both thiocyanato ligands are in cis geometry [Fe(1)—N(7) = 1.941 (2) Å, Fe(1)—N(8) = 1.952 (2) Å]. The dihedral angles between pyridine and phenyl rings of both Clazpy ligands are similar, with 53.83 (12)° and 52.53 (10)°. The bond lengths of Fe—N(NCS) (1.941 (2) Å and 1.952 (2) Å) are longer than that reported in the related complex, [Fe(MeaaiEt)2(NCS)2]; MeaaiEt = 1-ethyl-2(p-tolyldiazenyl)imiddiazenylle (Ray et al., 2005). The average Fe—N(py) and Fe—N(diazenyl) distances (1.9085 Å and 1.9405 Å) in [Fe(Clazpy)2(NCS)2] is shorter than that observed in [Fe(MeaaiEt)2(NCS)2], Fe—N(imiddiazenylle) = 2.103 (2) Å and Fe—N(diazenyl) = 2.371 (2) Å, supporting the strong σ-donor and π-acceptor property of Clazpy. The better π-back bonding from d6-Fe(II) to π* orbital of the Clazpy ligand makes slightly N=N distance to be longer comparison with MeaaiEt owing to the decreasing of N=N bond order, thus, the strength of the diazenyl bond decreases. All N(py)—Fe—N(py) and N(diazenyl)—Fe—NCS bond angles deviate from 180°, especially for N(6)—Fe(1)—N(8) = 168.44 (10)° during to the bite angle from the two Clazpy ligands. The torsion angles of pyridine-diazenyl-phenyl atoms, C(5)—N(2)—N(3)—C(6) and C(16)—N(5)—N(6)—C(17), are -176.4 (2) and -178.6 (2)°, respectively. In addition, the short contact between Cl(1) of clazpy and S(1) of isothiocyanato ligand are observed (Cl(1)···S(1) = 3.366 (3) Å) between two adjacent molecules.

Related literature top

For background to diazenyl complexes, see: Krause & Krause (1980); Santra et al. (1999); Hotze, Caspers et al. (2004); Hotze, Kooijman et al. (2004). For applications of diazenyl compounds, see: Erkkila et al. (1999); Wong & Giandomenico (1999); Velder et al. (2000); Barf & Sheldon (1995). For structures of related diazenylimine complexes, see: Hansongnern et al. (2008); Ray et al. (2005); Senapoti et al. (2002). For background to diazenyl complexes, see: Byabartta et al. (2001).

Experimental top

Methanolic solution (30 ml) of 5-chloro-2-(phenyldiazenyl)pyridine (Clazpy) (0.11 g, 0.50 mmol), FeSO4.7H2O (0.07 g, 0.25 mmol) and ammonium thiocynate (0.04 g, 0.53 mmol) was refluxed for 3 h. The filtrate was standing for overnight at room temperature. The green solids were precipitated and collected by filtration, washed it with methanol/water (1:1 v/v), and dried in vacuo for a day. The green solids were recrystallized in the mixture of CH2Cl2 and MeOH (1:2). The green crystals were obtained (yield 80%, 0.12 g). Anal. Calcd for FeC24H16N8 S2Cl2: C, 47.47; H, 2.66; N, 18.45; S, 10.56. Found: C, 47.07; H, 2.56; N, 17.98; S, 10.39.

Refinement top

All hydrogen atoms were constrained, C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C) for C-sp2 atoms of pyridine and phenyl rings.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids plotted at the 50% probability level.
[Figure 2] Fig. 2. The short contact interactions of [Fe(Clazpy)2(NCS)2] .
Bis[5-chloro-2-(phenyldiazenyl-κN2)pyridine- κN]bis(thiocyanato-κN)iron(II) top
Crystal data top
[Fe(NCS)2(C11H8ClN3)2]F(000) = 1232
Mr = 607.34Dx = 1.478 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7953 reflections
a = 9.5151 (3) Åθ = 2.3–25.4°
b = 23.7391 (9) ŵ = 0.93 mm1
c = 12.1550 (4) ÅT = 293 K
β = 96.209 (1)°Block, red-brown
V = 2729.46 (16) Å30.34 × 0.17 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4809 independent reflections
Radiation source: fine-focus sealed tube4189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Frames, each covering 0.3 ° in ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1111
Tmin = 0.916, Tmax = 1.000k = 2828
29379 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0511P)2 + 2.004P]
where P = (Fo2 + 2Fc2)/3
4809 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Fe(NCS)2(C11H8ClN3)2]V = 2729.46 (16) Å3
Mr = 607.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5151 (3) ŵ = 0.93 mm1
b = 23.7391 (9) ÅT = 293 K
c = 12.1550 (4) Å0.34 × 0.17 × 0.09 mm
β = 96.209 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4809 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4189 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 1.000Rint = 0.027
29379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.08Δρmax = 0.95 e Å3
4809 reflectionsΔρmin = 0.75 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on al data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.26710 (4)0.199109 (16)0.72956 (3)0.03803 (13)
N10.4302 (2)0.15150 (10)0.77250 (18)0.0439 (5)
N20.4637 (2)0.22105 (11)0.90825 (19)0.0513 (6)
N30.3387 (2)0.23370 (10)0.86513 (17)0.0415 (5)
N40.1056 (2)0.24866 (10)0.70140 (17)0.0432 (5)
N50.0086 (2)0.16663 (12)0.7497 (2)0.0536 (6)
N60.1197 (2)0.15144 (10)0.77242 (18)0.0451 (5)
N70.2284 (2)0.16225 (10)0.58695 (19)0.0490 (6)
N80.3889 (2)0.25196 (11)0.66138 (19)0.0470 (5)
S20.49476 (8)0.34626 (3)0.56230 (8)0.0626 (2)
S10.20586 (13)0.09807 (7)0.39640 (12)0.1316 (7)
C10.4725 (3)0.10415 (13)0.7267 (3)0.0522 (7)
H10.41450.08730.66940.063*
C20.6012 (3)0.07977 (14)0.7631 (3)0.0613 (9)
C30.6913 (3)0.10504 (17)0.8452 (3)0.0713 (10)
H30.77980.08980.86750.086*
C40.6470 (3)0.15305 (17)0.8927 (3)0.0667 (9)
H40.70470.17090.94880.080*
C50.5151 (3)0.17485 (14)0.8567 (2)0.0494 (7)
C60.2817 (3)0.28345 (12)0.9103 (2)0.0458 (6)
C70.3583 (4)0.33294 (15)0.9139 (3)0.0676 (9)
H70.45010.33330.89430.081*
C80.2971 (5)0.38131 (17)0.9467 (4)0.0913 (13)
H80.34750.41490.94960.110*
C90.1606 (5)0.38048 (18)0.9755 (3)0.0905 (13)
H90.11870.41370.99580.109*
C100.0864 (4)0.33076 (17)0.9743 (3)0.0717 (10)
H100.00430.33030.99610.086*
C110.1460 (3)0.28201 (14)0.9411 (2)0.0520 (7)
H110.09580.24830.93920.062*
C120.1023 (3)0.30337 (13)0.6782 (2)0.0496 (7)
H120.18610.32200.66850.059*
C130.0229 (3)0.33307 (15)0.6681 (3)0.0611 (8)
C140.1487 (4)0.30664 (18)0.6787 (3)0.0751 (11)
H140.23340.32650.67110.090*
C150.1460 (3)0.25012 (18)0.7007 (3)0.0711 (10)
H150.22970.23070.70690.085*
C160.0178 (3)0.22207 (14)0.7138 (2)0.0519 (7)
C170.1347 (3)0.09386 (12)0.8076 (2)0.0503 (7)
C180.0563 (4)0.05231 (16)0.7497 (3)0.0752 (10)
H180.00660.06120.68820.090*
C190.0737 (5)0.00269 (18)0.7856 (4)0.0987 (15)
H190.02320.03130.74700.118*
C200.1640 (5)0.01550 (17)0.8771 (5)0.0998 (15)
H200.17380.05270.90070.120*
C210.2400 (4)0.02575 (16)0.9341 (4)0.0832 (11)
H210.30100.01670.99660.100*
C220.2266 (3)0.08071 (13)0.8994 (3)0.0580 (8)
H220.27920.10890.93770.070*
C230.2177 (3)0.13531 (15)0.5084 (3)0.0592 (8)
C240.4349 (3)0.29088 (12)0.6208 (2)0.0423 (6)
Cl10.64768 (11)0.01811 (4)0.70172 (10)0.0874 (3)
Cl20.01594 (12)0.40406 (4)0.64356 (10)0.0929 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0315 (2)0.0475 (2)0.0347 (2)0.00046 (15)0.00200 (14)0.00205 (15)
N10.0344 (11)0.0541 (14)0.0438 (12)0.0022 (10)0.0072 (9)0.0068 (10)
N20.0360 (12)0.0753 (17)0.0416 (13)0.0022 (11)0.0004 (10)0.0006 (12)
N30.0342 (11)0.0558 (14)0.0344 (11)0.0058 (10)0.0034 (9)0.0012 (10)
N40.0372 (12)0.0567 (14)0.0348 (11)0.0067 (10)0.0001 (9)0.0054 (10)
N50.0361 (13)0.0714 (17)0.0526 (14)0.0047 (11)0.0020 (10)0.0058 (12)
N60.0369 (12)0.0562 (14)0.0422 (12)0.0057 (10)0.0040 (9)0.0072 (10)
N70.0446 (13)0.0613 (15)0.0404 (13)0.0026 (11)0.0017 (10)0.0108 (11)
N80.0423 (13)0.0547 (14)0.0447 (13)0.0013 (11)0.0084 (10)0.0003 (11)
S20.0505 (4)0.0526 (5)0.0840 (6)0.0021 (3)0.0047 (4)0.0187 (4)
S10.0840 (8)0.1876 (15)0.1193 (10)0.0205 (8)0.0075 (7)0.1068 (11)
C10.0482 (16)0.0534 (17)0.0567 (18)0.0057 (13)0.0130 (13)0.0084 (14)
C20.0548 (18)0.066 (2)0.067 (2)0.0172 (16)0.0222 (16)0.0224 (16)
C30.0431 (17)0.105 (3)0.067 (2)0.0237 (18)0.0115 (16)0.025 (2)
C40.0398 (16)0.104 (3)0.0553 (19)0.0097 (17)0.0004 (14)0.0079 (18)
C50.0355 (14)0.0702 (19)0.0423 (15)0.0004 (13)0.0026 (12)0.0084 (14)
C60.0485 (16)0.0556 (17)0.0330 (13)0.0068 (13)0.0030 (11)0.0059 (12)
C70.066 (2)0.071 (2)0.067 (2)0.0203 (18)0.0130 (17)0.0172 (17)
C80.122 (4)0.066 (2)0.088 (3)0.027 (2)0.024 (3)0.024 (2)
C90.127 (4)0.070 (3)0.079 (3)0.012 (3)0.031 (3)0.023 (2)
C100.076 (2)0.087 (3)0.056 (2)0.010 (2)0.0224 (17)0.0098 (18)
C110.0513 (17)0.0639 (19)0.0417 (15)0.0032 (14)0.0093 (12)0.0030 (13)
C120.0478 (16)0.0626 (19)0.0369 (14)0.0100 (14)0.0019 (12)0.0028 (13)
C130.060 (2)0.072 (2)0.0484 (17)0.0227 (17)0.0063 (14)0.0040 (15)
C140.048 (2)0.102 (3)0.072 (2)0.0312 (19)0.0086 (16)0.005 (2)
C150.0358 (16)0.100 (3)0.075 (2)0.0076 (17)0.0038 (15)0.003 (2)
C160.0358 (15)0.073 (2)0.0459 (16)0.0016 (14)0.0026 (12)0.0059 (14)
C170.0450 (15)0.0504 (17)0.0568 (17)0.0108 (13)0.0118 (13)0.0095 (13)
C180.069 (2)0.071 (2)0.083 (2)0.0176 (18)0.0039 (19)0.0160 (19)
C190.097 (3)0.064 (3)0.133 (4)0.033 (2)0.001 (3)0.022 (3)
C200.101 (3)0.055 (2)0.141 (4)0.019 (2)0.001 (3)0.006 (3)
C210.091 (3)0.061 (2)0.095 (3)0.014 (2)0.003 (2)0.016 (2)
C220.0599 (19)0.0500 (18)0.0631 (19)0.0108 (14)0.0020 (15)0.0015 (14)
C230.0355 (15)0.078 (2)0.063 (2)0.0087 (14)0.0004 (13)0.0181 (17)
C240.0346 (13)0.0487 (16)0.0428 (14)0.0077 (12)0.0004 (11)0.0032 (12)
Cl10.0880 (7)0.0692 (6)0.1091 (8)0.0340 (5)0.0298 (6)0.0175 (5)
Cl20.1028 (8)0.0715 (6)0.1004 (8)0.0383 (6)0.0082 (6)0.0028 (5)
Geometric parameters (Å, º) top
Fe1—N31.900 (2)C6—C111.384 (4)
Fe1—N61.917 (2)C7—C81.366 (5)
Fe1—N41.936 (2)C7—H70.9300
Fe1—N71.941 (2)C8—C91.381 (6)
Fe1—N11.945 (2)C8—H80.9300
Fe1—N81.952 (2)C9—C101.375 (6)
N1—C11.336 (4)C9—H90.9300
N1—C51.352 (4)C10—C111.369 (5)
N2—N31.282 (3)C10—H100.9300
N2—C51.379 (4)C11—H110.9300
N3—C61.433 (4)C12—C131.378 (4)
N4—C121.329 (4)C12—H120.9300
N4—C161.356 (4)C13—C141.370 (5)
N5—N61.274 (3)C13—Cl21.714 (4)
N5—C161.386 (4)C14—C151.368 (5)
N6—C171.435 (4)C14—H140.9300
N7—C231.144 (4)C15—C161.384 (4)
N8—C241.156 (4)C15—H150.9300
S2—C241.626 (3)C17—C221.378 (4)
S1—C231.617 (3)C17—C181.382 (4)
C1—C21.383 (4)C18—C191.381 (6)
C1—H10.9300C18—H180.9300
C2—C31.380 (5)C19—C201.364 (6)
C2—Cl11.722 (4)C19—H190.9300
C3—C41.365 (5)C20—C211.361 (6)
C3—H30.9300C20—H200.9300
C4—C51.384 (4)C21—C221.373 (5)
C4—H40.9300C21—H210.9300
C6—C71.380 (4)C22—H220.9300
N3—Fe1—N6102.92 (9)C8—C7—H7120.5
N3—Fe1—N495.39 (9)C6—C7—H7120.5
N6—Fe1—N479.44 (10)C7—C8—C9120.2 (4)
N3—Fe1—N7169.99 (9)C7—C8—H8119.9
N6—Fe1—N784.43 (10)C9—C8—H8119.9
N4—Fe1—N792.62 (9)C10—C9—C8120.4 (4)
N3—Fe1—N179.49 (10)C10—C9—H9119.8
N6—Fe1—N199.78 (10)C8—C9—H9119.8
N4—Fe1—N1174.56 (9)C11—C10—C9120.0 (3)
N7—Fe1—N192.66 (10)C11—C10—H10120.0
N3—Fe1—N885.23 (9)C9—C10—H10120.0
N6—Fe1—N8168.44 (10)C10—C11—C6119.2 (3)
N4—Fe1—N891.75 (10)C10—C11—H11120.4
N7—Fe1—N888.54 (10)C6—C11—H11120.4
N1—Fe1—N889.68 (10)N4—C12—C13121.3 (3)
C1—N1—C5118.6 (2)N4—C12—H12119.3
C1—N1—Fe1130.1 (2)C13—C12—H12119.3
C5—N1—Fe1111.03 (19)C14—C13—C12120.9 (3)
N3—N2—C5111.1 (2)C14—C13—Cl2121.1 (3)
N2—N3—C6114.1 (2)C12—C13—Cl2118.0 (3)
N2—N3—Fe1118.86 (18)C15—C14—C13118.0 (3)
C6—N3—Fe1125.00 (17)C15—C14—H14121.0
C12—N4—C16118.5 (2)C13—C14—H14121.0
C12—N4—Fe1129.2 (2)C14—C15—C16119.5 (3)
C16—N4—Fe1112.2 (2)C14—C15—H15120.3
N6—N5—C16111.3 (2)C16—C15—H15120.3
N5—N6—C17113.3 (2)N4—C16—C15121.8 (3)
N5—N6—Fe1119.1 (2)N4—C16—N5116.8 (2)
C17—N6—Fe1126.25 (18)C15—C16—N5121.2 (3)
C23—N7—Fe1171.1 (3)C22—C17—C18120.7 (3)
C24—N8—Fe1164.8 (2)C22—C17—N6119.4 (2)
N1—C1—C2121.0 (3)C18—C17—N6119.9 (3)
N1—C1—H1119.5C19—C18—C17118.3 (4)
C2—C1—H1119.5C19—C18—H18120.8
C3—C2—C1120.6 (3)C17—C18—H18120.8
C3—C2—Cl1120.9 (3)C20—C19—C18120.8 (4)
C1—C2—Cl1118.5 (3)C20—C19—H19119.6
C4—C3—C2118.2 (3)C18—C19—H19119.6
C4—C3—H3120.9C21—C20—C19120.5 (4)
C2—C3—H3120.9C21—C20—H20119.7
C3—C4—C5119.3 (3)C19—C20—H20119.7
C3—C4—H4120.4C20—C21—C22120.0 (4)
C5—C4—H4120.4C20—C21—H21120.0
N1—C5—N2117.2 (2)C22—C21—H21120.0
N1—C5—C4122.2 (3)C21—C22—C17119.6 (3)
N2—C5—C4120.5 (3)C21—C22—H22120.2
C7—C6—C11121.1 (3)C17—C22—H22120.2
C7—C6—N3119.6 (3)N7—C23—S1178.5 (3)
C11—C6—N3119.1 (3)N8—C24—S2178.2 (2)
C8—C7—C6119.0 (3)
N3—Fe1—N1—C1173.6 (3)Cl1—C2—C3—C4178.3 (3)
N6—Fe1—N1—C172.2 (2)C2—C3—C4—C50.6 (5)
N7—Fe1—N1—C112.7 (2)C1—N1—C5—N2174.8 (2)
N8—Fe1—N1—C1101.2 (2)Fe1—N1—C5—N210.3 (3)
N3—Fe1—N1—C512.28 (18)C1—N1—C5—C43.5 (4)
N6—Fe1—N1—C5113.74 (19)Fe1—N1—C5—C4171.4 (2)
N7—Fe1—N1—C5161.45 (19)N3—N2—C5—N10.3 (4)
N8—Fe1—N1—C572.93 (19)N3—N2—C5—C4178.0 (3)
C5—N2—N3—C6176.4 (2)C3—C4—C5—N12.7 (5)
C5—N2—N3—Fe111.8 (3)C3—C4—C5—N2175.6 (3)
N6—Fe1—N3—N2111.7 (2)N2—N3—C6—C753.0 (4)
N4—Fe1—N3—N2167.9 (2)Fe1—N3—C6—C7110.6 (3)
N7—Fe1—N3—N224.9 (7)N2—N3—C6—C11132.3 (3)
N1—Fe1—N3—N214.0 (2)Fe1—N3—C6—C1164.1 (3)
N8—Fe1—N3—N276.6 (2)C11—C6—C7—C81.1 (5)
N6—Fe1—N3—C685.4 (2)N3—C6—C7—C8173.4 (3)
N4—Fe1—N3—C65.0 (2)C6—C7—C8—C90.1 (6)
N7—Fe1—N3—C6138.0 (5)C7—C8—C9—C101.7 (7)
N1—Fe1—N3—C6176.8 (2)C8—C9—C10—C112.1 (6)
N8—Fe1—N3—C686.3 (2)C9—C10—C11—C60.8 (5)
N3—Fe1—N4—C1267.2 (2)C7—C6—C11—C100.8 (5)
N6—Fe1—N4—C12169.3 (2)N3—C6—C11—C10173.8 (3)
N7—Fe1—N4—C12106.8 (2)C16—N4—C12—C130.8 (4)
N8—Fe1—N4—C1218.2 (2)Fe1—N4—C12—C13175.3 (2)
N3—Fe1—N4—C16109.20 (19)N4—C12—C13—C141.9 (5)
N6—Fe1—N4—C167.03 (18)N4—C12—C13—Cl2177.4 (2)
N7—Fe1—N4—C1676.81 (19)C12—C13—C14—C150.7 (5)
N8—Fe1—N4—C16165.42 (19)Cl2—C13—C14—C15178.5 (3)
C16—N5—N6—C17178.6 (2)C13—C14—C15—C161.3 (5)
C16—N5—N6—Fe111.1 (3)C12—N4—C16—C151.3 (4)
N3—Fe1—N6—N5103.7 (2)Fe1—N4—C16—C15178.1 (2)
N4—Fe1—N6—N510.6 (2)C12—N4—C16—N5173.2 (2)
N7—Fe1—N6—N583.1 (2)Fe1—N4—C16—N53.6 (3)
N1—Fe1—N6—N5174.9 (2)C14—C15—C16—N42.4 (5)
N8—Fe1—N6—N530.3 (6)C14—C15—C16—N5171.9 (3)
N3—Fe1—N6—C1790.5 (2)N6—N5—C16—N44.5 (4)
N4—Fe1—N6—C17176.3 (2)N6—N5—C16—C15170.0 (3)
N7—Fe1—N6—C1782.6 (2)N5—N6—C17—C22133.9 (3)
N1—Fe1—N6—C179.1 (2)Fe1—N6—C17—C2259.6 (3)
N8—Fe1—N6—C17135.4 (5)N5—N6—C17—C1845.6 (4)
N3—Fe1—N8—C2487.5 (9)Fe1—N6—C17—C18120.9 (3)
N6—Fe1—N8—C2447.9 (11)C22—C17—C18—C190.8 (6)
N4—Fe1—N8—C247.8 (9)N6—C17—C18—C19179.8 (3)
N7—Fe1—N8—C24100.4 (9)C17—C18—C19—C201.2 (7)
N1—Fe1—N8—C24167.0 (9)C18—C19—C20—C210.7 (8)
C5—N1—C1—C20.9 (4)C19—C20—C21—C220.3 (8)
Fe1—N1—C1—C2172.8 (2)C20—C21—C22—C170.8 (6)
N1—C1—C2—C32.3 (5)C18—C17—C22—C210.2 (5)
N1—C1—C2—Cl1179.0 (2)N6—C17—C22—C21179.2 (3)
C1—C2—C3—C43.1 (5)

Experimental details

Crystal data
Chemical formula[Fe(NCS)2(C11H8ClN3)2]
Mr607.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.5151 (3), 23.7391 (9), 12.1550 (4)
β (°) 96.209 (1)
V3)2729.46 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.34 × 0.17 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.916, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
29379, 4809, 4189
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.08
No. of reflections4809
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.75

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Fe1—N31.900 (2)Fe1—N71.941 (2)
Fe1—N61.917 (2)Fe1—N11.945 (2)
Fe1—N41.936 (2)Fe1—N81.952 (2)
 

Acknowledgements

We are grateful to the Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, for financial support. We express our thanks for partial financial support and the single-crystal X-ray diffractometer to the Center for Innovation in Chemistry (PERCH-CIC), Comission on Higher Education, Ministry of Education, Thailand.

References

First citationBarf, G. A. & Sheldon, R. A. (1995). J. Mol. Catal. A Chem. 98, 143–147.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXSInc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationByabartta, P., Santra, P. K., Misra, T. K., Sinha, C. & Kennard, C. H. L. (2001). Polyhedron, 20, 905–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationErkkila, K. E., Odom, D. T. & Barton, J. K. (1999). Chem. Rev. 99, 2777–2795.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHansongnern, K., Sahavisit, L. & Pakawatchai, C. (2008). Anal. Sci. 24, x57–x58.  CAS Google Scholar
First citationHotze, A. C. G., Caspers, S. E., De Vos, D. E., Kooijman, H., Spek, A. L., Flamigni, A., Bacac, M., Sava, G., Haasnoot, J. G. & Reedijk, J. (2004). J. Biol. Inorg. Chem. 9, 354–364.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHotze, A. C. G., Kooijman, H., Spek, A. L., Haasnoot, J. G. & Reedijk, J. (2004). New J. Chem. 28, 565–569.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, R. A. & Krause, K. (1980). Inorg. Chem. 19, 2600–2603.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRay, U., Banerjee, D., Liou, J.-C., Lin, C.-N., Lu, T.-H. & Sinha, C. (2005). Inorg. Chim. Acta, 358, 1019–1026.  Web of Science CSD CrossRef CAS Google Scholar
First citationSantra, P. K., Misra, T. K., Das, D., Sinha, C., Slawin, A. M. Z. & Woollins, J. D. (1999). Polyhedron, 18, 2869–2878.  Web of Science CSD CrossRef CAS Google Scholar
First citationSenapoti, S., Ray, U. S., Santra, P. K., Sinha, C., Slawin, A. M. Z. & Wollins, J. D. (2001). Polyhedron, 21, 753–762.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVelder, A. H., Kooijman, H., Spek, A. L., Haasnoot, J. G., De Vos, D. & Reedijk, J. (2000). Inorg. Chem. 39, 2966–2967.  Web of Science PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, E. & Giandomenico, C. M. (1999). Chem. Rev. 99, 2451–2466.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m555-m556
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds