organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Di­methyl­piperazine-1,4-diium bis­­(hexa­fluoro­phosphate) dihydrate

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: sunsuwen_5127@163.com

(Received 29 March 2012; accepted 18 April 2012; online 25 April 2012)

In the title hydrated mol­ecular salt, C6H16N2+·2PF6·2H2O, the complete 1,4-dimethyl­piperazine-1,4-diium dication is generated by crystallographic inversion symmetry and both C—N bonds are in equatorial orientations. In the crystal, the components are linked by O—H⋯F and N—H⋯O hydrogen bonds but there are no direct links between cations and anions.

Related literature

For background to mol­ecular ferroelectrics, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N2+·2PF6·2H2O

  • Mr = 442.18

  • Monoclinic, P 21 /n

  • a = 8.1382 (16) Å

  • b = 6.3666 (13) Å

  • c = 15.758 (3) Å

  • β = 99.55 (3)°

  • V = 805.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.489, Tmax = 1.000

  • 8084 measured reflections

  • 1849 independent reflections

  • 1093 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.163

  • S = 1.06

  • 1849 reflections

  • 122 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯F6i 0.85 (1) 2.18 (2) 3.008 (5) 167 (5)
O1—H2⋯F3ii 0.84 (1) 2.42 (4) 2.923 (5) 119 (4)
N1—H3⋯O1iii 0.88 (4) 1.98 (4) 2.814 (4) 159 (4)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dielectric constant measurements of compounds as a function of temperature is the basic methods to find the materials which possess potential ferroelectric phase changes (Fu et al.,2009;Ye et al.,2006).The dielectric constant of the title compound has been measured, but showed no dielectric disuniformity in the range 120–385 K (mp. 393–402 K)

The asymmetric unit of the title compound is shown in Fig. 1. crystallized in the monoclinic P2(1)/n space group, The crystal packing Fig. 2 features O—H···F and N—H···O hydrogen bonds(O1—H1··· F6, O1—H2···F3, N1—H3···O1) between the C6H16N2+ cations and PF6- anions and H2O (see; Table 1).

Related literature top

For background to molecular ferroelectrics, see: Fu et al. (2009); Ye et al. (2006).

Experimental top

1,4-Dimethyl-piperazine (0.57 g) and an excess of hexafluorophosphoric acid (0.95 g) were dissolved in methanol without any precipitation under stirring at the ambient temperature. Colourless blocks of the title compound were obtained by slow evaporation at room temperature over two days.

Refinement top

H atoms were placed in calculated positions (N—H = 0.89 Å; C—H = 0.96 Å and 0.97 Å for Csp3 atoms), assigned fixed Uiso values [1.5Ueq(Csp3,N)] and allowed to ride.The H1 and H2 on the O1 were restrained with O—H =0.85 Å yielding O1—H1 = 0.8448 Å and O1 —H2 = 0.8440 Å, with Uiso(H) = 1.2 Uiso(O)

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. T The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
1,4-Dimethylpiperazine-1,4-diium bis(hexafluorophosphate) dihydrate top
Crystal data top
C6H16N2+·2PF6·2H2OZ = 2
Mr = 442.18F(000) = 448
Monoclinic, P21/nDx = 1.824 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.1382 (16) Åθ = 3.0–27.5°
b = 6.3666 (13) ŵ = 0.40 mm1
c = 15.758 (3) ÅT = 293 K
β = 99.55 (3)°Block, colorless
V = 805.1 (3) Å30.30 × 0.30 × 0.20 mm
Data collection top
Rigaku Mercury CCD
diffractometer
1849 independent reflections
Radiation source: fine-focus sealed tube1093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1010
Tmin = 0.489, Tmax = 1.000k = 88
8084 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.8793P]
where P = (Fo2 + 2Fc2)/3
1849 reflections(Δ/σ)max < 0.001
122 parametersΔρmax = 0.37 e Å3
3 restraintsΔρmin = 0.36 e Å3
Crystal data top
C6H16N2+·2PF6·2H2OV = 805.1 (3) Å3
Mr = 442.18Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.1382 (16) ŵ = 0.40 mm1
b = 6.3666 (13) ÅT = 293 K
c = 15.758 (3) Å0.30 × 0.30 × 0.20 mm
β = 99.55 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
1849 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1093 reflections with I > 2σ(I)
Tmin = 0.489, Tmax = 1.000Rint = 0.079
8084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0683 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.37 e Å3
1849 reflectionsΔρmin = 0.36 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.95245 (13)0.08087 (17)0.17417 (6)0.0411 (3)
F20.8739 (4)0.0534 (5)0.25799 (19)0.0871 (10)
F51.0375 (4)0.1087 (5)0.09153 (17)0.0832 (10)
F30.7745 (3)0.1086 (5)0.1178 (2)0.0921 (11)
F40.9416 (4)0.1629 (4)0.1595 (2)0.0809 (9)
F61.1318 (4)0.0484 (6)0.22919 (18)0.0884 (11)
F10.9643 (5)0.3248 (5)0.1878 (2)0.1043 (13)
N10.1232 (4)0.0309 (5)0.4452 (2)0.0373 (8)
C30.1606 (5)0.0920 (6)0.5267 (2)0.0430 (10)
H3A0.24120.20080.52060.052*
H3B0.20890.00010.57330.052*
C20.0059 (5)0.1900 (6)0.4520 (2)0.0418 (10)
H2A0.03240.26500.39790.050*
H2B0.03700.29080.49630.050*
C10.2776 (5)0.1300 (7)0.4226 (3)0.0585 (13)
H1A0.24930.20950.37040.088*
H1B0.35610.02230.41440.088*
H1C0.32620.22150.46830.088*
O10.0661 (4)0.6583 (5)0.34880 (19)0.0503 (8)
H10.144 (4)0.639 (9)0.320 (3)0.09 (2)*
H20.027 (3)0.648 (9)0.317 (3)0.11 (2)*
H30.092 (5)0.064 (7)0.406 (3)0.050 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0418 (6)0.0436 (6)0.0374 (6)0.0029 (5)0.0049 (4)0.0021 (5)
F20.106 (3)0.100 (2)0.0671 (19)0.0070 (19)0.0484 (18)0.0093 (17)
F50.081 (2)0.123 (3)0.0512 (17)0.0102 (18)0.0271 (15)0.0156 (16)
F30.0463 (17)0.120 (3)0.102 (2)0.0144 (17)0.0091 (16)0.036 (2)
F40.091 (2)0.0488 (17)0.100 (2)0.0019 (15)0.0079 (18)0.0138 (15)
F60.0546 (18)0.129 (3)0.0720 (19)0.0122 (17)0.0164 (15)0.0205 (19)
F10.141 (3)0.0461 (19)0.135 (3)0.0075 (18)0.052 (3)0.0085 (18)
N10.0398 (19)0.0371 (19)0.0347 (18)0.0072 (14)0.0053 (14)0.0064 (15)
C30.042 (2)0.043 (2)0.042 (2)0.0057 (18)0.0009 (17)0.0016 (18)
C20.055 (3)0.034 (2)0.036 (2)0.0004 (18)0.0031 (18)0.0050 (17)
C10.054 (3)0.065 (3)0.060 (3)0.023 (2)0.021 (2)0.009 (2)
O10.052 (2)0.0492 (19)0.0513 (18)0.0009 (15)0.0137 (17)0.0023 (14)
Geometric parameters (Å, º) top
P1—F21.569 (3)C3—H3A0.9700
P1—F41.570 (3)C3—H3B0.9700
P1—F11.569 (3)C2—C3i1.492 (6)
P1—F31.578 (3)C2—H2A0.9700
P1—F51.583 (3)C2—H2B0.9700
P1—F61.583 (3)C1—H1A0.9600
N1—C21.476 (5)C1—H1B0.9600
N1—C31.491 (5)C1—H1C0.9600
N1—C11.501 (5)O1—H10.845 (10)
N1—H30.88 (4)O1—H20.844 (10)
C3—C2i1.492 (6)
F2—P1—F489.64 (18)C1—N1—H3106 (3)
F2—P1—F191.11 (18)C2i—C3—N1110.7 (3)
F4—P1—F1179.25 (19)C2i—C3—H3A109.5
F2—P1—F391.30 (19)N1—C3—H3A109.5
F4—P1—F390.21 (18)C2i—C3—H3B109.5
F1—P1—F389.8 (2)N1—C3—H3B109.5
F2—P1—F5178.11 (18)H3A—C3—H3B108.1
F4—P1—F590.61 (18)N1—C2—C3i111.5 (3)
F1—P1—F588.65 (19)N1—C2—H2A109.3
F3—P1—F590.57 (17)C3i—C2—H2A109.3
F2—P1—F689.52 (18)N1—C2—H2B109.3
F4—P1—F688.61 (18)C3i—C2—H2B109.3
F1—P1—F691.4 (2)H2A—C2—H2B108.0
F3—P1—F6178.6 (2)N1—C1—H1A109.5
F5—P1—F688.61 (17)N1—C1—H1B109.5
C2—N1—C3110.1 (3)H1A—C1—H1B109.5
C2—N1—C1111.3 (3)N1—C1—H1C109.5
C3—N1—C1111.5 (3)H1A—C1—H1C109.5
C2—N1—H3113 (3)H1B—C1—H1C109.5
C3—N1—H3104 (3)H1—O1—H2110 (2)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F6ii0.85 (1)2.18 (2)3.008 (5)167 (5)
O1—H2···F3iii0.84 (1)2.42 (4)2.923 (5)119 (4)
N1—H3···O1iv0.88 (4)1.98 (4)2.814 (4)159 (4)
Symmetry codes: (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC6H16N2+·2PF6·2H2O
Mr442.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.1382 (16), 6.3666 (13), 15.758 (3)
β (°) 99.55 (3)
V3)805.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.489, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8084, 1849, 1093
Rint0.079
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.163, 1.06
No. of reflections1849
No. of parameters122
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.36

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F6i0.845 (10)2.179 (15)3.008 (5)167 (5)
O1—H2···F3ii0.844 (10)2.42 (4)2.923 (5)119 (4)
N1—H3···O1iii0.88 (4)1.98 (4)2.814 (4)159 (4)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y1, z.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds