metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m565-m566

catena-Poly[copper(I)-di-μ-bromido-copper(I)-bis­­[μ-4-methyl-1H-1,2,4-triazole-5(4H)-thione-κ2S:S]]

aDepartment of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, and bSchool of Chemistry, University of Bristol, Bristol BS8 1TS, England
*Correspondence e-mail: chavengp@gmail.com

(Received 29 March 2012; accepted 3 April 2012; online 13 April 2012)

In the title coordination polymer, [CuBr(C3H5N3S)]n, the CuI atom adopts a tetra­hdral CuS2Br2 coordination geometry arising from two S-bonded 4-methyl-1H-1,2,4-triazole-3(4H)-thione ligands and two bromide ions. Both the S and Br atoms act as bridging ligands, connecting pairs of CuI atoms and generating chains propagating in [100]. Inter-chain N—H⋯N hydrogen bonds generate layers in the ac plane. Weak intra-chain N—H⋯Br inter­actions also occur.

Related literature

For related structures of metals coordinated by 1,2,4-triazole derivatives, see: Cingi et al. (1996[Cingi, M. B., Bigoli, F., Lanfranchi, M., Leporati, E., Pellinghelli, M. A. & Foglia, C. (1996). Inorg. Chem. 95, 37-43.]); Haasnoot (2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.]); Kajdan et al. (2000[Kajdan, T. W., Squattrito, P. J. & Dubey, S. N. (2000). Inorg. Chim. Acta, 300-302, 1082-1089.]); Menzies & Squattrito (2001[Menzies, C. M. & Squattrito, P. J. (2001). Inorg. Chim. Acta, 314, 194-200.]); Klingele & Brooker (2003[Klingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119-132.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr(C3H5N3S)]

  • Mr = 258.62

  • Monoclinic, P 21 /n

  • a = 5.5781 (11) Å

  • b = 12.931 (3) Å

  • c = 9.810 (2) Å

  • β = 97.69 (3)°

  • V = 701.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.02 mm−1

  • T = 100 K

  • 0.28 × 0.12 × 0.06 mm

Data collection
  • Bruker D8 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) Tmin = 0.284, Tmax = 0.582

  • 7830 measured reflections

  • 1610 independent reflections

  • 1513 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.056

  • S = 1.16

  • 1610 reflections

  • 86 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—S1 2.3124 (9)
Cu1—S1i 2.4012 (9)
Cu1—Br1 2.4638 (7)
Cu1—Br1ii 2.5085 (8)
Cu1—Br1—Cu1ii 67.81 (2)
Cu1—S1—Cu1i 73.60 (3)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2iii 0.86 (2) 2.35 (3) 2.890 (4) 121 (3)
N1—H1⋯Br1 0.86 (2) 2.78 (2) 3.566 (3) 153 (3)
Symmetry code: (iii) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker, 2003)[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin,USA.]; cell refinement: SAINT (Bruker, 2003)[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin,USA.]; data reduction: SAINT and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008)[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]; software used to prepare material for publication: Mercury (Macrae et al., 2008)[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.] and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,2,4-Triazole and its derivatives are very interesting ligands because they combine the coordination geometry of both pyrazole and imidazole with regard to the arrangement of their three heteroatoms. The interest in unsubstituted and substituted 1,2,4-triazole derivatives arise from their ability to bond metal ions in a various forms. A large number of mononuclear, oligonuclear and polynuclear metal coordination compounds with 1,2,4-triazole derivatives as ligands including the coordination chemistry have been described (Cingi et al., 1996; Haasnoot, 2000; Kajdan et al., 2000; Menzies & Squattrito, 2001; Klingele & Brooker, 2003).

Herein, we report the crystal structure of the title compound. The polymeric complex of [Cu(µ2 –Hmptrz)(µ2-Br)]n is isomorphous with those complex that has been report [Cu(µ2-Hmptrz)(µ2-I)]n (Wang et al., 2011). The chemical structure of this complex is shown in Scheme 1. Each Cu atom is a distorted tetrahedral geometry with the angles around Cu centre atom ranging from 104.74 (3)° to 117.72 (3)° and it is coordinated by two µ2-S donating Hmptrz molecules and two µ2-Br atoms. The one-dimensional chain built from two type of Cu(µ2-S)2 and Cu(µ2-Br)2 unit sharing the Cu centre atoms. Each pair of µ2-S and of µ2-Br bridges alternate to link between two Cu centre atoms giving the linked rhomboid of Cu2S2 and Cu2Br2 core forming a 1-D chain running along a-axis. Each Cu2S2 rhomboid is located at nearly perpendicular position to adjacent Cu2Br2 rhomboid with a dihedral angle of 86.90 (4)o between these planes. A view of the one-dimensional polymeric chain is shown in Figure 1.

The Cu···Cu distances of of Cu(µ2-S)2 and Cu(µ2-Br)2 unit are 2.8246 (9) and 2.7740 (9) Å. The latter distance is slightly shorter than the sum of van der Waals radii of Cu atoms (2.80 Å). The inter-molecular hydrogen bonds N(1)—H(1)···N(2)iii [N(1)···N(2)iii = 2.890 (4) Å, iii: -x + 1, -y + 2, -z + 2] between the adjacent 1-D polymeric chains are observed generating the two-dimensional sheets of supramolecular interactions running in ac-plane. The arrangement of the polymeric chains and the inter-molecular hydrogen bonds in crystal packing of this complex are shown in Figures 2 and 3, respectively.

Related literature top

For related structures of metals coordinated by 1,2,4-triazole derivatives, see: Cingi et al. (1996); Haasnoot (2000); Kajdan et al. (2000); Menzies & Squattrito (2001); Klingele & Brooker (2003).

Experimental top

The mixture of Hmptrz ligand (0.28 g, 2.43 mmol) and copper (I) iodide (0.15 g, 1.05 mmol) in acetronitrile solution was refluxed N2 gas. The yellow filtrate was allowed to stand at room temperature for 2 days. The block colorless crystals of [Cu(µ2-Hmptrz)(µ2-Br)]n were isolated. This complex melts and decomposes at 234–235 oC.

Refinement top

All hydrogen atoms on carbon atoms were constrained, C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C) for C-sp2 atoms of pyridine and phenyl rings and C—H = 0.98 Å with Uiso(H) = 1.5Ueq(C) for C-sp3 atoms of the methyl group, respectively. The hydrogen atom on N atom is located in a difference Fourier map and restrained, N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003) and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the 1-D polymeric chain of [Cu(µ2-Hmptrz)(µ2-Br)]n with displacement ellipsoids plotted at the 50% probability level.
[Figure 2] Fig. 2. The arrangement of the polymeric chains in packing of [Cu(µ2-Hmptrz)(µ2-Br)]n.
[Figure 3] Fig. 3. The inter-molecular hydrogen bonds generating 2-D sheet of [Cu(µ2-Hmptrz)(µ2-Br)]n.
catena-Poly[copper(I)-di-µ-bromido-copper(I)-bis[µ-4-methyl- 1H-1,2,4-triazole-5(4H)-thione-κ2S:S]] top
Crystal data top
[CuBr(C3H5N3S)]F(000) = 496
Mr = 258.62Dx = 2.450 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71074 Å
Hall symbol: -P 2ynCell parameters from 2999 reflections
a = 5.5781 (11) Åθ = 2.6–27.5°
b = 12.931 (3) ŵ = 9.02 mm1
c = 9.810 (2) ÅT = 100 K
β = 97.69 (3)°Prism, colorless
V = 701.2 (2) Å30.28 × 0.12 × 0.06 mm
Z = 4
Data collection top
Bruker D8 CCD
diffractometer
1610 independent reflections
Radiation source: sealed X-ray tube1513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 8.366 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1616
Tmin = 0.284, Tmax = 0.582l = 1212
7830 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0145P)2 + 1.2302P]
where P = (Fo2 + 2Fc2)/3
1610 reflections(Δ/σ)max = 0.001
86 parametersΔρmax = 0.64 e Å3
1 restraintΔρmin = 0.37 e Å3
Crystal data top
[CuBr(C3H5N3S)]V = 701.2 (2) Å3
Mr = 258.62Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.5781 (11) ŵ = 9.02 mm1
b = 12.931 (3) ÅT = 100 K
c = 9.810 (2) Å0.28 × 0.12 × 0.06 mm
β = 97.69 (3)°
Data collection top
Bruker D8 CCD
diffractometer
1610 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1513 reflections with I > 2σ(I)
Tmin = 0.284, Tmax = 0.582Rint = 0.043
7830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0271 restraint
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.64 e Å3
1610 reflectionsΔρmin = 0.37 e Å3
86 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ (F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25060 (7)0.99881 (3)0.51220 (4)0.01363 (11)
Br10.02520 (5)1.07438 (2)0.68746 (3)0.01177 (9)
S10.52061 (14)0.86702 (6)0.58000 (7)0.01143 (16)
N10.5464 (5)0.9389 (2)0.8453 (3)0.0139 (5)
H10.417 (5)0.976 (2)0.838 (4)0.017*
N20.6910 (5)0.9341 (2)0.9706 (3)0.0164 (6)
N30.8341 (4)0.83717 (19)0.8149 (3)0.0113 (5)
C10.6309 (5)0.8819 (2)0.7499 (3)0.0115 (6)
C20.8636 (6)0.8719 (2)0.9480 (3)0.0150 (6)
H20.99440.85281.01540.018*
C30.9938 (6)0.7674 (2)0.7517 (3)0.0154 (6)
H3A0.90860.70250.72630.023*
H3B1.13850.75300.81730.023*
H3C1.04140.79990.66920.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01225 (19)0.0179 (2)0.01017 (19)0.00017 (15)0.00072 (14)0.00002 (15)
Br10.01057 (15)0.01533 (16)0.00898 (15)0.00146 (11)0.00027 (10)0.00234 (11)
S10.0127 (4)0.0118 (4)0.0094 (3)0.0004 (3)0.0001 (3)0.0016 (3)
N10.0140 (13)0.0179 (14)0.0093 (12)0.0056 (11)0.0001 (10)0.0004 (10)
N20.0215 (14)0.0184 (14)0.0081 (12)0.0047 (12)0.0024 (10)0.0004 (11)
N30.0116 (12)0.0102 (12)0.0118 (12)0.0013 (10)0.0005 (10)0.0013 (10)
C10.0116 (14)0.0094 (14)0.0134 (15)0.0018 (11)0.0008 (11)0.0017 (11)
C20.0167 (15)0.0165 (16)0.0107 (14)0.0034 (13)0.0020 (12)0.0005 (12)
C30.0132 (15)0.0172 (16)0.0163 (16)0.0052 (12)0.0042 (12)0.0005 (13)
Geometric parameters (Å, º) top
Cu1—S12.3124 (9)N1—N21.378 (4)
Cu1—S1i2.4012 (9)N1—H10.862 (18)
Cu1—Br12.4638 (7)N2—C21.296 (4)
Cu1—Br1ii2.5085 (8)N3—C11.354 (4)
Cu1—Cu1ii2.7740 (9)N3—C21.370 (4)
Cu1—Cu1i2.8246 (9)N3—C31.463 (4)
Br1—Cu1ii2.5085 (8)C2—H20.9500
S1—C11.708 (3)C3—H3A0.9800
S1—Cu1i2.4012 (9)C3—H3B0.9800
N1—C11.327 (4)C3—H3C0.9800
S1—Cu1—S1i106.40 (3)C2—N3—C3127.2 (3)
S1—Cu1—Br1117.72 (3)N1—C1—N3105.0 (3)
S1i—Cu1—Br1108.84 (3)N1—C1—S1129.5 (2)
S1—Cu1—Br1ii104.74 (3)N3—C1—S1125.5 (2)
S1i—Cu1—Br1ii106.25 (3)N2—C2—N3111.7 (3)
Br1—Cu1—Br1ii112.19 (2)N2—C2—H2124.1
Cu1—Br1—Cu1ii67.81 (2)N3—C2—H2124.1
Cu1—S1—Cu1i73.60 (3)N3—C3—H3A109.5
C1—N1—N2112.6 (3)N3—C3—H3B109.5
C1—N1—H1129 (3)H3A—C3—H3B109.5
N2—N1—H1119 (3)N3—C3—H3C109.5
C2—N2—N1103.6 (3)H3A—C3—H3C109.5
C1—N3—C2107.1 (3)H3B—C3—H3C109.5
C1—N3—C3125.7 (3)
S1—Cu1—Br1—Cu1ii121.64 (4)N2—N1—C1—N31.1 (3)
S1i—Cu1—Br1—Cu1ii117.29 (3)N2—N1—C1—S1177.6 (2)
Br1ii—Cu1—Br1—Cu1ii0.0C2—N3—C1—N11.1 (3)
Cu1i—Cu1—Br1—Cu1ii172.54 (4)C3—N3—C1—N1179.4 (3)
S1i—Cu1—S1—C193.28 (12)C2—N3—C1—S1177.7 (2)
Br1—Cu1—S1—C129.05 (12)C3—N3—C1—S10.6 (4)
Br1ii—Cu1—S1—C1154.45 (11)Cu1—S1—C1—N116.7 (3)
Cu1ii—Cu1—S1—C197.63 (12)Cu1i—S1—C1—N192.2 (3)
Cu1i—Cu1—S1—C193.28 (12)Cu1—S1—C1—N3161.8 (2)
S1i—Cu1—S1—Cu1i0.0Cu1i—S1—C1—N386.3 (3)
Br1—Cu1—S1—Cu1i122.33 (3)N1—N2—C2—N30.2 (4)
Br1ii—Cu1—S1—Cu1i112.27 (3)C1—N3—C2—N20.8 (4)
Cu1ii—Cu1—S1—Cu1i169.09 (4)C3—N3—C2—N2179.1 (3)
C1—N1—N2—C20.5 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2iii0.86 (2)2.35 (3)2.890 (4)121 (3)
N1—H1···Br10.86 (2)2.78 (2)3.566 (3)153 (3)
Symmetry code: (iii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[CuBr(C3H5N3S)]
Mr258.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)5.5781 (11), 12.931 (3), 9.810 (2)
β (°) 97.69 (3)
V3)701.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)9.02
Crystal size (mm)0.28 × 0.12 × 0.06
Data collection
DiffractometerBruker D8 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.284, 0.582
No. of measured, independent and
observed [I > 2σ(I)] reflections
7830, 1610, 1513
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.056, 1.16
No. of reflections1610
No. of parameters86
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.37

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003) and SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Cu1—S12.3124 (9)Cu1—Br12.4638 (7)
Cu1—S1i2.4012 (9)Cu1—Br1ii2.5085 (8)
Cu1—Br1—Cu1ii67.81 (2)Cu1—S1—Cu1i73.60 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2iii0.862 (18)2.35 (3)2.890 (4)121 (3)
N1—H1···Br10.862 (18)2.78 (2)3.566 (3)153 (3)
Symmetry code: (iii) x+1, y+2, z+2.
 

Acknowledgements

We gratefully acknowledge financial support from the Center for Innovation in Chemistry (PERCH-CIC) Commission on Higher Education, Ministry of Education, and the Department of Chemistry, Faculty of Science, Prince of Songkla University. We also thank the School of Chemistry, University of Bristol, for the single crystal X-ray diffraction instrument service.

References

First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationCingi, M. B., Bigoli, F., Lanfranchi, M., Leporati, E., Pellinghelli, M. A. & Foglia, C. (1996). Inorg. Chem. 95, 37–43.  Google Scholar
First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185.  Web of Science CrossRef CAS Google Scholar
First citationKajdan, T. W., Squattrito, P. J. & Dubey, S. N. (2000). Inorg. Chim. Acta, 300–302, 1082–1089.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119–132.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMenzies, C. M. & Squattrito, P. J. (2001). Inorg. Chim. Acta, 314, 194–200.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m565-m566
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds