organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1305

2-{4-[Acet­yl(eth­yl)amino]­benzene­sulfonamido}­benzoic acid

aDepartment of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr, gmustafa884@yahoo.com

(Received 30 March 2012; accepted 30 March 2012; online 4 April 2012)

In the title compound, C17H18N2O5S, the dihedral angle between the aromatic rings is 68.59 (10)° and the C—S—N—C torsion angle is −81.84 (18)°. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond, generating an S(6) ring. In the crystal, mol­ecules are linked by C—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For related structures and background to the biological properties of sulfonamides, see: Mustafa et al. (2010[Mustafa, G., Akkurt, M., Khan, I. U., Naseem, R. & Sajjad, B. (2010). Acta Cryst. E66, o1768.], 2011[Mustafa, G., Khan, I. U., Zia-ur-Rehman, M., Sharif, S. & Arshad, M. N. (2011). Acta Cryst. E67, o1018.]); Khan et al. (2011[Khan, I. U., Mustafa, G. & Akkurt, M. (2011). Acta Cryst. E67, o1857.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O5S

  • Mr = 362.40

  • Orthorhombic, P n a 21

  • a = 18.0371 (7) Å

  • b = 12.0249 (4) Å

  • c = 7.8430 (2) Å

  • V = 1701.10 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.35 × 0.29 × 0.27 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 9278 measured reflections

  • 3880 independent reflections

  • 3327 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 0.99

  • 3880 reflections

  • 233 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1612 Freidel pairs

  • Flack parameter: 0.05 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.82 1.82 2.599 (2) 158
N1—H1N⋯O2 0.85 (2) 1.93 (2) 2.627 (2) 138 (2)
C12—H12⋯O3ii 0.93 2.45 3.356 (2) 164
C15—H15C⋯O3ii 0.96 2.53 3.400 (3) 150
C17—H17A⋯O2ii 0.96 2.58 3.486 (4) 158
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{3\over 2}}]; (ii) x, y, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

As part of our ongoing studies of sulfonamides with potential biological properties (Mustafa et al., 2010, 2011; Khan et al., 2011), we now describe the title compound, (I).

In the title compound (I), (Fig. 1), the C2—C7 benzene ring makes a dihedral angle of 68.59 (10)° with the C8—C13 benzene ring. All the bond lengths are similar to those of the related molecules (Mustafa et al., 2010; 2011; Khan et al., 2011). The torsion angles C3—N1—S1—C8, C11—N2—C16—C17 and C11—N2—C14—C15 are -81.84 (18), 94.2 (3), and 7.0 (3)°, respectively.

The molecular conformation of (I) is stabilized by intramolecular N—H···O hydrogen-bond interaction (Table 1), which generate one S(6) ring. In the crystal, molecules are linked by C—H···O and O—H···O hydrogen bonds to form a three- dimensional network structure (Table 1, Fig. 2).

Related literature top

For related structures and background to the biological properties of sulfonamides, see: Mustafa et al. (2010, 2011); Khan et al. (2011).

Experimental top

To an aquious solution of p-amino benzoic acid (1.0 g, 7.3 mmol), sodium carbonate (1 N) was added to adjust the pH 8. Then added 4-(acetylamino) benzenesulfonyl chloride (2.21 g, 9.48 mmol) and the mixture was stirred at room temperature keeping the pH of the mixture up to 8.0 with occasional addition of sodium carbonate solution. Progress and completion of the reaction was confirmed by TLC and conversion of suspension into clear solution. After 2 h, whole mixture was poured into a beaker and the pH was adjusted to 2.0 by 1 N HCl. Pprecipitates were produced which were filtered and washed with distilled water. The prepared sulfonamide (2-({[4-(acetylamino)phenyl]sulfonyl}amino) benzoic acid) (1.0 g, 3 mmol), DMF (10 ml) and n-hexane washed sodium hydride (0.22 g, 9.0 mmol) were stirred at room temperature for 40 min followed by the addition of ethyl iodide (0.61 g, 3.9 mmol). The whole reaction mixture was stirred till the completion of the reaction and poured into crushed ice in a beaker. The pH of the mixture was adjusted to 4.0 with 1 N HCl. Precipitates were produced, filtered and washed twice with distilled water and crystallized from chloroform solution as brown blocks.

Refinement top

The NH H atom was located in a difference map and refined with the distance restraint N—H = 0.86 (2) Å freely. The remaining H atoms were placed in calculated positions [O–H = 0.82 Å, C—H = 0.93, 0.96 and 0.97 Å], with Uiso(H) = 1.5Ueq(C, O) for the methyl and hydroxyl H atoms and Uiso(H) = 1.2Ueq(C) for the other H atoms. Four reflections giving bad agreements with Fc, viz. (200), (110), (011) and (122), were omitted during the final cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the packing diagram and the hydrogen bonding of (I) along the c axis. Hydrogen atoms that not involved in the hydrogen-bonding (dashed lines) have been omitted for clarity.
2-{4-[Acetyl(ethyl)amino]benzenesulfonamido}benzoic acid top
Crystal data top
C17H18N2O5SF(000) = 760
Mr = 362.40Dx = 1.415 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4557 reflections
a = 18.0371 (7) Åθ = 2.3–28.2°
b = 12.0249 (4) ŵ = 0.22 mm1
c = 7.8430 (2) ÅT = 296 K
V = 1701.10 (10) Å3Block, brown
Z = 40.35 × 0.29 × 0.27 mm
Data collection top
Bruker APEXII CCD
diffractometer
3327 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.040
Graphite monochromatorθmax = 28.3°, θmin = 2.8°
ϕ and ω scansh = 2419
9278 measured reflectionsk = 1316
3880 independent reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0604P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
3880 reflectionsΔρmax = 0.35 e Å3
233 parametersΔρmin = 0.18 e Å3
2 restraintsAbsolute structure: Flack (1983), 1612 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (6)
Crystal data top
C17H18N2O5SV = 1701.10 (10) Å3
Mr = 362.40Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 18.0371 (7) ŵ = 0.22 mm1
b = 12.0249 (4) ÅT = 296 K
c = 7.8430 (2) Å0.35 × 0.29 × 0.27 mm
Data collection top
Bruker APEXII CCD
diffractometer
3327 reflections with I > 2σ(I)
9278 measured reflectionsRint = 0.040
3880 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093Δρmax = 0.35 e Å3
S = 0.99Δρmin = 0.18 e Å3
3880 reflectionsAbsolute structure: Flack (1983), 1612 Freidel pairs
233 parametersAbsolute structure parameter: 0.05 (6)
2 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09768 (2)1.03872 (4)1.00764 (6)0.0403 (1)
O10.06408 (9)0.65010 (13)1.42241 (19)0.0555 (5)
O20.12860 (8)0.80244 (12)1.3690 (2)0.0570 (5)
O30.13309 (9)1.10513 (13)1.13429 (18)0.0551 (5)
O40.02644 (8)1.06853 (14)0.9452 (2)0.0568 (5)
O50.36221 (10)1.08713 (16)0.1903 (2)0.0660 (6)
N10.09488 (10)0.91519 (15)1.0928 (2)0.0473 (6)
N20.30964 (11)1.02317 (15)0.4272 (3)0.0544 (6)
C10.08374 (10)0.73379 (15)1.3240 (2)0.0402 (5)
C20.04690 (9)0.73281 (15)1.1545 (2)0.0376 (5)
C30.05278 (10)0.82314 (14)1.0418 (2)0.0371 (5)
C40.01818 (12)0.81716 (18)0.8837 (3)0.0494 (6)
C50.02159 (13)0.72412 (18)0.8387 (3)0.0569 (8)
C60.02717 (13)0.63543 (19)0.9473 (3)0.0584 (7)
C70.00674 (11)0.63937 (17)1.1041 (3)0.0486 (6)
C80.15845 (10)1.03090 (13)0.8330 (2)0.0347 (5)
C90.23390 (11)1.02380 (17)0.8644 (3)0.0461 (6)
C100.28288 (12)1.02284 (18)0.7301 (3)0.0497 (7)
C110.25724 (11)1.02912 (16)0.5651 (2)0.0428 (6)
C120.18157 (11)1.03649 (16)0.5338 (2)0.0456 (6)
C130.13254 (11)1.03771 (17)0.6682 (2)0.0428 (6)
C140.32075 (12)1.10446 (17)0.3124 (3)0.0479 (6)
C150.28352 (13)1.21419 (17)0.3350 (4)0.0609 (8)
C160.35281 (15)0.9186 (2)0.4124 (4)0.0765 (10)
C170.3174 (2)0.8394 (3)0.2929 (7)0.1147 (17)
H10.096200.639501.494700.0830*
H1N0.1178 (11)0.9097 (19)1.187 (2)0.047 (6)*
H40.022000.876400.808000.0590*
H50.045000.721400.733100.0680*
H60.053800.572700.915000.0700*
H70.002800.578901.177600.0580*
H90.251301.019700.975800.0550*
H100.333501.017900.750800.0600*
H120.164101.040600.422400.0550*
H130.081901.043100.647700.0510*
H15A0.310601.270300.274000.0910*
H15B0.282201.232800.453900.0910*
H15C0.233801.210100.291500.0910*
H16A0.402500.935600.372600.0920*
H16B0.357000.884300.523900.0920*
H17A0.270500.816000.338300.1720*
H17B0.348900.775700.278200.1720*
H17C0.309900.875000.184700.1720*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0487 (2)0.0385 (2)0.0338 (2)0.0018 (2)0.0058 (2)0.0024 (2)
O10.0657 (9)0.0549 (8)0.0460 (8)0.0130 (7)0.0115 (7)0.0178 (7)
O20.0614 (9)0.0576 (8)0.0520 (8)0.0156 (7)0.0192 (7)0.0128 (7)
O30.0783 (10)0.0481 (8)0.0388 (7)0.0115 (7)0.0075 (7)0.0068 (6)
O40.0479 (8)0.0636 (9)0.0590 (9)0.0107 (7)0.0093 (7)0.0114 (8)
O50.0780 (12)0.0699 (11)0.0501 (9)0.0151 (8)0.0208 (8)0.0087 (8)
N10.0584 (11)0.0472 (9)0.0363 (9)0.0136 (8)0.0088 (8)0.0139 (8)
N20.0615 (11)0.0523 (10)0.0495 (10)0.0049 (8)0.0198 (9)0.0117 (9)
C10.0401 (9)0.0410 (9)0.0394 (9)0.0035 (7)0.0001 (7)0.0065 (8)
C20.0317 (8)0.0421 (9)0.0390 (9)0.0000 (7)0.0032 (7)0.0026 (8)
C30.0350 (9)0.0390 (8)0.0374 (10)0.0010 (7)0.0016 (7)0.0016 (7)
C40.0558 (12)0.0521 (11)0.0402 (10)0.0040 (9)0.0063 (9)0.0083 (9)
C50.0664 (14)0.0582 (13)0.0462 (12)0.0054 (10)0.0154 (10)0.0039 (10)
C60.0641 (13)0.0492 (12)0.0618 (13)0.0110 (10)0.0135 (11)0.0042 (10)
C70.0503 (11)0.0422 (10)0.0534 (12)0.0061 (8)0.0039 (9)0.0050 (9)
C80.0404 (10)0.0322 (8)0.0315 (8)0.0021 (6)0.0018 (7)0.0012 (7)
C90.0462 (11)0.0583 (12)0.0339 (9)0.0017 (9)0.0074 (8)0.0039 (9)
C100.0383 (11)0.0615 (12)0.0494 (12)0.0003 (9)0.0015 (9)0.0063 (10)
C110.0455 (11)0.0425 (10)0.0405 (10)0.0007 (7)0.0081 (8)0.0031 (8)
C120.0526 (11)0.0530 (11)0.0312 (10)0.0037 (9)0.0065 (8)0.0027 (8)
C130.0378 (10)0.0531 (11)0.0376 (10)0.0022 (8)0.0065 (8)0.0040 (8)
C140.0513 (11)0.0468 (10)0.0457 (11)0.0119 (8)0.0002 (9)0.0054 (9)
C150.0686 (15)0.0468 (11)0.0673 (15)0.0098 (10)0.0047 (12)0.0065 (11)
C160.0816 (19)0.0763 (17)0.0716 (17)0.0207 (14)0.0323 (14)0.0162 (15)
C170.117 (3)0.0541 (16)0.173 (4)0.0027 (17)0.033 (3)0.008 (2)
Geometric parameters (Å, º) top
S1—O31.4256 (16)C9—C101.375 (3)
S1—O41.4211 (15)C10—C111.376 (3)
S1—N11.6295 (18)C11—C121.390 (3)
S1—C81.7568 (17)C12—C131.376 (2)
O1—C11.317 (2)C14—C151.491 (3)
O2—C11.209 (2)C16—C171.481 (5)
O5—C141.233 (3)C4—H40.9300
O1—H10.8200C5—H50.9300
N1—C31.401 (2)C6—H60.9300
N2—C141.344 (3)C7—H70.9300
N2—C161.484 (3)C9—H90.9300
N2—C111.438 (3)C10—H100.9300
N1—H1N0.849 (17)C12—H120.9300
C1—C21.486 (2)C13—H130.9300
C2—C31.404 (2)C15—H15A0.9600
C2—C71.394 (3)C15—H15B0.9600
C3—C41.390 (3)C15—H15C0.9600
C4—C51.375 (3)C16—H16A0.9700
C5—C61.369 (3)C16—H16B0.9700
C6—C71.374 (3)C17—H17A0.9600
C8—C91.386 (3)C17—H17B0.9600
C8—C131.377 (2)C17—H17C0.9600
O3—S1—O4120.26 (10)O5—C14—C15121.0 (2)
O3—S1—N1103.82 (9)N2—C14—C15119.8 (2)
O3—S1—C8107.08 (9)N2—C16—C17111.6 (2)
O4—S1—N1110.07 (9)C3—C4—H4120.00
O4—S1—C8108.00 (9)C5—C4—H4120.00
N1—S1—C8106.87 (8)C4—C5—H5120.00
C1—O1—H1109.00C6—C5—H5120.00
S1—N1—C3128.33 (13)C5—C6—H6120.00
C11—N2—C16116.48 (19)C7—C6—H6120.00
C14—N2—C16119.1 (2)C2—C7—H7120.00
C11—N2—C14124.45 (18)C6—C7—H7120.00
C3—N1—H1N116.8 (15)C8—C9—H9120.00
S1—N1—H1N114.4 (15)C10—C9—H9120.00
O1—C1—C2113.44 (16)C9—C10—H10120.00
O1—C1—O2122.08 (16)C11—C10—H10120.00
O2—C1—C2124.47 (16)C11—C12—H12120.00
C1—C2—C3121.54 (15)C13—C12—H12120.00
C1—C2—C7119.49 (17)C8—C13—H13120.00
C3—C2—C7118.96 (16)C12—C13—H13120.00
C2—C3—C4119.18 (16)C14—C15—H15A109.00
N1—C3—C2118.19 (15)C14—C15—H15B109.00
N1—C3—C4122.62 (16)C14—C15—H15C109.00
C3—C4—C5120.4 (2)H15A—C15—H15B109.00
C4—C5—C6120.8 (2)H15A—C15—H15C109.00
C5—C6—C7119.8 (2)H15B—C15—H15C110.00
C2—C7—C6120.85 (19)N2—C16—H16A109.00
C9—C8—C13120.26 (17)N2—C16—H16B109.00
S1—C8—C13121.13 (14)C17—C16—H16A109.00
S1—C8—C9118.52 (14)C17—C16—H16B109.00
C8—C9—C10119.7 (2)H16A—C16—H16B108.00
C9—C10—C11120.3 (2)C16—C17—H17A109.00
N2—C11—C10118.92 (19)C16—C17—H17B109.00
N2—C11—C12121.05 (16)C16—C17—H17C109.00
C10—C11—C12119.98 (17)H17A—C17—H17B109.00
C11—C12—C13119.78 (15)H17A—C17—H17C110.00
C8—C13—C12120.02 (18)H17B—C17—H17C109.00
O5—C14—N2119.2 (2)
O3—S1—N1—C3165.17 (17)O2—C1—C2—C310.4 (3)
O4—S1—N1—C335.20 (19)O1—C1—C2—C710.4 (2)
C8—S1—N1—C381.84 (18)C1—C2—C7—C6179.19 (19)
N1—S1—C8—C13109.88 (16)C7—C2—C3—C40.3 (3)
N1—S1—C8—C973.62 (16)C7—C2—C3—N1178.43 (17)
O3—S1—C8—C937.13 (17)C1—C2—C3—C4178.99 (17)
O4—S1—C8—C9167.99 (15)C3—C2—C7—C60.5 (3)
O3—S1—C8—C13139.37 (15)C1—C2—C3—N10.3 (2)
O4—S1—C8—C138.52 (18)C2—C3—C4—C50.3 (3)
S1—N1—C3—C2166.53 (14)N1—C3—C4—C5178.98 (19)
S1—N1—C3—C414.8 (3)C3—C4—C5—C60.8 (3)
C14—N2—C11—C1264.0 (3)C4—C5—C6—C70.6 (4)
C16—N2—C14—C15174.0 (2)C5—C6—C7—C20.0 (3)
C16—N2—C11—C1062.2 (3)S1—C8—C9—C10176.96 (16)
C11—N2—C14—C157.0 (3)C9—C8—C13—C120.6 (3)
C14—N2—C16—C1785.0 (3)C13—C8—C9—C100.4 (3)
C11—N2—C16—C1794.2 (3)S1—C8—C13—C12177.02 (15)
C11—N2—C14—O5173.6 (2)C8—C9—C10—C110.1 (3)
C14—N2—C11—C10118.7 (2)C9—C10—C11—C120.0 (3)
C16—N2—C14—O55.5 (3)C9—C10—C11—N2177.39 (19)
C16—N2—C11—C12115.1 (2)C10—C11—C12—C130.1 (3)
O2—C1—C2—C7168.24 (18)N2—C11—C12—C13177.48 (18)
O1—C1—C2—C3170.93 (16)C11—C12—C13—C80.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.821.822.599 (2)158
N1—H1N···O20.85 (2)1.93 (2)2.627 (2)138 (2)
C12—H12···O3ii0.932.453.356 (2)164
C15—H15C···O3ii0.962.533.400 (3)150
C17—H17A···O2ii0.962.583.486 (4)158
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC17H18N2O5S
Mr362.40
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)18.0371 (7), 12.0249 (4), 7.8430 (2)
V3)1701.10 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.35 × 0.29 × 0.27
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9278, 3880, 3327
Rint0.040
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 0.99
No. of reflections3880
No. of parameters233
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.18
Absolute structureFlack (1983), 1612 Freidel pairs
Absolute structure parameter0.05 (6)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.821.822.599 (2)158
N1—H1N···O20.849 (17)1.934 (19)2.627 (2)138 (2)
C12—H12···O3ii0.932.453.356 (2)164
C15—H15C···O3ii0.962.533.400 (3)150
C17—H17A···O2ii0.962.583.486 (4)158
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y, z1.
 

Acknowledgements

The authors are grateful to Mr Muhammad Nadeem Arshad for his assistance and the Higher Education Commission (HEC), Pakistan, for financial support.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhan, I. U., Mustafa, G. & Akkurt, M. (2011). Acta Cryst. E67, o1857.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMustafa, G., Akkurt, M., Khan, I. U., Naseem, R. & Sajjad, B. (2010). Acta Cryst. E66, o1768.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMustafa, G., Khan, I. U., Zia-ur-Rehman, M., Sharif, S. & Arshad, M. N. (2011). Acta Cryst. E67, o1018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1305
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds