organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1432

Di­cyclo­hexyl­ammonium hydrogen phenyl­phospho­nate

aLaboratoire de Chimie Minerale et Analytique, Departement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDepartement de Chimie, Université de Montreal, CP 6128, Succ. Centre-Ville, Montreal, Quebec, Canada H3C 3J7, and cInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: tijchimia@yahoo.fr

(Received 30 March 2012; accepted 10 April 2012; online 18 April 2012)

In the title salt, [(C6H11)2NH2]+·[C6H5PO2(OH)], the anion is monodeprotonated and acts as both a hydrogen-bond donor and acceptor. The anions are linked by pairs of O—H⋯O inter­actions, forming inversion dimers with R22(8) ring motifs. These dimers are bridged by two dicyclo­hexyl­aminium cations via pairs of N—H⋯O hydrogen bonds, giving R44(12) ring motifs, forming chains propagating along [010]. The chains are bridged by C—H⋯O inter­actions, forming a two-dimensional network lying parallel to (101).

Related literature

For the crystal structure of phenyl­phospho­nic acid, see: Weakley (1976[Weakley, T. J. R. (1976). Acta Cryst. B32, 2889-2890.]). For the crystal structure of anilinium phenyl­phospho­nate, see: Mahmoudkhani & Langer (2002[Mahmoudkhani, A. H. & Langer, V. (2002). J. Mol. Struct. 609, 97-108.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H24N+·C6H6O3P

  • Mr = 339.40

  • Monoclinic, P 21 /n

  • a = 13.3212 (4) Å

  • b = 8.9093 (3) Å

  • c = 16.0670 (5) Å

  • β = 104.385 (1)°

  • V = 1847.09 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.43 mm−1

  • T = 150 K

  • 0.16 × 0.12 × 0.08 mm

Data collection
  • Bruker Microstar diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.749, Tmax = 0.892

  • 21802 measured reflections

  • 3456 independent reflections

  • 3221 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.08

  • 3456 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.84 1.75 2.5920 (13) 175
N1—H1A⋯O1 0.92 1.86 2.7520 (14) 161
N1—H1B⋯O2ii 0.92 1.81 2.6897 (15) 159
C18—H18A⋯O3iii 0.99 2.52 3.3019 (16) 136
C18—H18B⋯O2ii 0.99 2.52 3.2693 (16) 133
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the title salt (Fig. 1), the hydrogen phenylphosphonate anion is unequivocally tetrahedral, with three oxygen atoms and a phenyl group; O2—P1—O1 116.59 (5)°, O3—P1—C1 104.45 (5)°. The P—O distances are different [1.4870 (10) Å for PO, 1.5134 (9) Å for P-O-, and 1.574 (3) Å for bond P-O(H)]. This is similar to the situation in the crystal structure of the parent phenylphosphonic acid PhPO3H2 (Weakley, 1976), with bond distances of 1.496 Å for PO and 1.545 Å for P—O(H).

In the crystal, the anions are linked by a pair of O-H···O hydrogen bonds to form inversion dimers with a ring motif of R22(8) (Bernstein et al., 1995; Table 1 and Fig. 2). These dimers are linked by two dicyclohexylaminium cations, via pairs of N-H···O hydrogen bonds forming a ring motif of R44(12), to form chains propagating along [010], as shown in Table 1 and Fig. 2. A similar chain arrangement has been observed in the crystal structure of anilinium phenylphosphonate (Mahmoudkhani & Langer, 2002). In the title compound the chains are linked by C-H···O interactions to form a two-dimensional network that lies parallel to (101); see Table 1 and Fig. 2.

Related literature top

For the crystal structure of phenylphosphonic acid, see: Weakley (1976). For the crystal structure of anilinium phenylphosphonate, see: Mahmoudkhani & Langer (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

When dicyclohexylamine was allowed to react with phenylphosphonic acid in an equimolar ratio (1:1) in water, a precipitate was obtained and filtered [Yield: 83%; M.p: 448 K]. The filtrate was allowed to evaporate at 333 K, giving colourless block-like crystals of the title compound.

Refinement top

The OH and NH2 H atoms could be located in a difference electron density map. For refinement all the H-atoms were placed in calculated positions and treated as riding atoms: O-H = 0.84 Å, N-H = 0.92 Å, C-H = 0.95, 0.99 and 1.00 Å for CH(aromatic), methylene and methine H atoms, respectively, with Uiso = k × Ueq(O,N,C), where k = 1.5 for OH and NH2 H atoms, and = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title salt. Displacement ellipsoids are drawn at the 50% probability level [an N-H···O hydrogen bond is shown as a dashed line].
[Figure 2] Fig. 2. A view of the crystal packing of the title salt. The O-H···O and N-H···O hydrogen bonds, and the C-H···O interactions are shown as dashed cyan lines (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).
dicyclohexylammonium hydrogen phenylphosphonate top
Crystal data top
C12H24N+·C6H6O3PF(000) = 736
Mr = 339.40Dx = 1.220 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 10987 reflections
a = 13.3212 (4) Åθ = 3.9–69.5°
b = 8.9093 (3) ŵ = 1.43 mm1
c = 16.0670 (5) ÅT = 150 K
β = 104.385 (1)°Block, colourless
V = 1847.09 (10) Å30.16 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker Microstar
diffractometer
3456 independent reflections
Radiation source: Rotating Anode3221 reflections with I > 2σ(I)
Helios optics monochromatorRint = 0.045
Detector resolution: 8.3 pixels mm-1θmax = 70.0°, θmin = 3.9°
ω scansh = 1516
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 1010
Tmin = 0.749, Tmax = 0.892l = 1917
21802 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.5837P]
where P = (Fo2 + 2Fc2)/3
3456 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C12H24N+·C6H6O3PV = 1847.09 (10) Å3
Mr = 339.40Z = 4
Monoclinic, P21/nCu Kα radiation
a = 13.3212 (4) ŵ = 1.43 mm1
b = 8.9093 (3) ÅT = 150 K
c = 16.0670 (5) Å0.16 × 0.12 × 0.08 mm
β = 104.385 (1)°
Data collection top
Bruker Microstar
diffractometer
3456 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3221 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.892Rint = 0.045
21802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.08Δρmax = 0.34 e Å3
3456 reflectionsΔρmin = 0.34 e Å3
210 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.61697 (8)0.08819 (12)0.61698 (7)0.0241 (3)
C70.78359 (11)0.20505 (17)0.60436 (11)0.0360 (4)
C80.88185 (13)0.17940 (19)0.57279 (13)0.0474 (6)
C90.85691 (14)0.1191 (2)0.48160 (12)0.0504 (6)
C100.79476 (14)0.02535 (19)0.47509 (11)0.0456 (6)
C110.69609 (12)0.00267 (17)0.50547 (9)0.0347 (4)
C120.71952 (10)0.06220 (15)0.59617 (9)0.0270 (4)
C130.61555 (10)0.16079 (14)0.70110 (8)0.0246 (4)
C140.50257 (10)0.18592 (16)0.70178 (9)0.0297 (4)
C150.49544 (11)0.25630 (18)0.78668 (10)0.0359 (4)
C160.54933 (12)0.15792 (18)0.86212 (10)0.0375 (5)
C170.66214 (11)0.13042 (17)0.86139 (9)0.0335 (4)
C180.67143 (10)0.06407 (15)0.77601 (8)0.0285 (4)
P10.48868 (2)0.32919 (3)0.40858 (2)0.0235 (1)
O10.52613 (7)0.31140 (10)0.50502 (6)0.0267 (3)
O20.43638 (8)0.19710 (11)0.35992 (6)0.0353 (3)
O30.41421 (7)0.46904 (10)0.38831 (6)0.0278 (3)
C10.59865 (10)0.38079 (15)0.36779 (8)0.0267 (4)
C20.61401 (14)0.31648 (17)0.29338 (10)0.0401 (5)
C30.69755 (16)0.3597 (2)0.26150 (12)0.0534 (7)
C40.76585 (14)0.46728 (19)0.30332 (13)0.0492 (6)
C50.75229 (12)0.53178 (18)0.37773 (11)0.0401 (5)
C60.66913 (11)0.48883 (16)0.40993 (9)0.0309 (4)
H1A0.577300.146300.573800.0360*
H1B0.584300.003200.614900.0360*
H7A0.803100.237500.665200.0430*
H7B0.741700.285800.570100.0430*
H8A0.919900.275400.575100.0570*
H8B0.927400.107300.611500.0570*
H9A0.922100.099800.464400.0600*
H9B0.816700.194900.441900.0600*
H10A0.837800.103900.510500.0550*
H10B0.776300.060200.414700.0550*
H11A0.660200.100200.504500.0420*
H11B0.649100.066200.465500.0420*
H120.759100.014100.637100.0320*
H130.651200.260300.704800.0290*
H14A0.465300.088800.693700.0360*
H14B0.469200.252900.653700.0360*
H15A0.528200.356800.792600.0430*
H15B0.421700.269000.787000.0430*
H16A0.512700.060600.858900.0450*
H16B0.546500.207500.916600.0450*
H17A0.694000.060800.908600.0400*
H17B0.700600.226400.871700.0400*
H18A0.745500.056100.775900.0340*
H18B0.641500.038200.769400.0340*
H20.567100.242400.264000.0480*
H30.707500.314800.210500.0640*
H3A0.436100.536900.424600.0420*
H40.822400.497100.280900.0590*
H50.799700.605400.406900.0480*
H60.660000.533500.461300.0370*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0276 (5)0.0192 (5)0.0238 (5)0.0008 (4)0.0032 (4)0.0000 (4)
C70.0332 (7)0.0271 (7)0.0489 (9)0.0022 (6)0.0124 (7)0.0015 (6)
C80.0360 (8)0.0408 (10)0.0700 (12)0.0010 (7)0.0217 (8)0.0067 (8)
C90.0545 (10)0.0475 (10)0.0595 (11)0.0129 (8)0.0339 (9)0.0174 (8)
C100.0634 (11)0.0403 (9)0.0396 (9)0.0131 (8)0.0251 (8)0.0038 (7)
C110.0468 (8)0.0285 (7)0.0297 (7)0.0028 (6)0.0111 (6)0.0007 (6)
C120.0302 (7)0.0217 (6)0.0292 (7)0.0024 (5)0.0074 (5)0.0004 (5)
C130.0286 (7)0.0185 (6)0.0254 (7)0.0005 (5)0.0044 (5)0.0015 (5)
C140.0285 (7)0.0290 (7)0.0302 (7)0.0033 (5)0.0046 (6)0.0043 (5)
C150.0349 (7)0.0358 (8)0.0385 (8)0.0055 (6)0.0121 (6)0.0022 (6)
C160.0432 (8)0.0409 (9)0.0292 (8)0.0010 (7)0.0105 (6)0.0028 (6)
C170.0391 (8)0.0326 (8)0.0256 (7)0.0007 (6)0.0018 (6)0.0028 (6)
C180.0316 (7)0.0257 (7)0.0245 (7)0.0035 (5)0.0001 (5)0.0016 (5)
P10.0288 (2)0.0179 (2)0.0229 (2)0.0024 (1)0.0046 (1)0.0004 (1)
O10.0342 (5)0.0218 (5)0.0240 (5)0.0016 (4)0.0072 (4)0.0029 (3)
O20.0477 (6)0.0236 (5)0.0325 (5)0.0097 (4)0.0060 (5)0.0035 (4)
O30.0270 (5)0.0248 (5)0.0285 (5)0.0002 (4)0.0008 (4)0.0000 (4)
C10.0343 (7)0.0201 (6)0.0258 (7)0.0042 (5)0.0079 (5)0.0043 (5)
C20.0615 (10)0.0278 (8)0.0359 (8)0.0015 (7)0.0216 (7)0.0011 (6)
C30.0848 (14)0.0386 (9)0.0523 (11)0.0060 (9)0.0464 (10)0.0020 (8)
C40.0544 (10)0.0389 (9)0.0673 (12)0.0076 (8)0.0396 (9)0.0146 (8)
C50.0342 (7)0.0362 (8)0.0523 (10)0.0008 (6)0.0151 (7)0.0093 (7)
C60.0313 (7)0.0299 (7)0.0318 (7)0.0003 (6)0.0084 (6)0.0036 (6)
Geometric parameters (Å, º) top
P1—O11.5136 (10)C10—H10A0.9900
P1—O21.4869 (10)C10—H10B0.9900
P1—O31.5755 (10)C11—H11A0.9900
P1—C11.8066 (14)C11—H11B0.9900
O3—H3A0.8400C12—H121.0000
N1—C121.5029 (18)C13—H131.0000
N1—C131.5027 (17)C14—H14B0.9900
N1—H1A0.9200C14—H14A0.9900
N1—H1B0.9200C15—H15A0.9900
C7—C121.520 (2)C15—H15B0.9900
C7—C81.534 (2)C16—H16A0.9900
C8—C91.518 (3)C16—H16B0.9900
C9—C101.520 (3)C17—H17A0.9900
C10—C111.525 (2)C17—H17B0.9900
C11—C121.526 (2)C18—H18B0.9900
C13—C141.5243 (19)C18—H18A0.9900
C13—C181.5166 (18)C1—C61.397 (2)
C14—C151.526 (2)C1—C21.386 (2)
C15—C161.523 (2)C2—C31.390 (3)
C16—C171.526 (2)C3—C41.376 (3)
C17—C181.5267 (19)C4—C51.378 (3)
C7—H7A0.9900C5—C61.388 (2)
C7—H7B0.9900C2—H20.9500
C8—H8B0.9900C3—H30.9500
C8—H8A0.9900C4—H40.9500
C9—H9A0.9900C5—H50.9500
C9—H9B0.9900C6—H60.9500
O1—P1—O2116.59 (5)C12—C11—H11B109.00
O1—P1—O3108.96 (5)H11A—C11—H11B108.00
O1—P1—C1107.90 (6)N1—C12—H12109.00
O2—P1—O3109.18 (6)C11—C12—H12109.00
O2—P1—C1109.08 (6)C7—C12—H12109.00
O3—P1—C1104.45 (6)C18—C13—H13109.00
P1—O3—H3A109.00N1—C13—H13109.00
C12—N1—C13118.80 (10)C14—C13—H13109.00
H1A—N1—H1B107.00C15—C14—H14A110.00
C12—N1—H1A108.00C13—C14—H14B110.00
C12—N1—H1B108.00C13—C14—H14A110.00
C13—N1—H1B108.00C15—C14—H14B110.00
C13—N1—H1A108.00H14A—C14—H14B108.00
C8—C7—C12110.71 (13)H15A—C15—H15B108.00
C7—C8—C9111.83 (15)C14—C15—H15B110.00
C8—C9—C10110.55 (15)C16—C15—H15A110.00
C9—C10—C11111.34 (14)C14—C15—H15A109.00
C10—C11—C12111.58 (13)C16—C15—H15B109.00
C7—C12—C11112.15 (12)C15—C16—H16B109.00
N1—C12—C11106.81 (11)C15—C16—H16A109.00
N1—C12—C7111.94 (11)H16A—C16—H16B108.00
C14—C13—C18111.63 (11)C17—C16—H16A109.00
N1—C13—C14107.62 (10)C17—C16—H16B109.00
N1—C13—C18110.85 (10)C16—C17—H17B109.00
C13—C14—C15110.35 (11)C16—C17—H17A109.00
C14—C15—C16110.69 (13)C18—C17—H17A109.00
C15—C16—C17110.90 (13)C18—C17—H17B109.00
C16—C17—C18111.65 (12)H17A—C17—H17B108.00
C13—C18—C17111.08 (11)C13—C18—H18A109.00
C8—C7—H7B110.00C13—C18—H18B109.00
C12—C7—H7A110.00C17—C18—H18A109.00
C12—C7—H7B109.00C17—C18—H18B109.00
C8—C7—H7A109.00H18A—C18—H18B108.00
H7A—C7—H7B108.00P1—C1—C2120.96 (11)
H8A—C8—H8B108.00C2—C1—C6118.53 (13)
C7—C8—H8A109.00P1—C1—C6120.50 (10)
C7—C8—H8B109.00C1—C2—C3120.44 (15)
C9—C8—H8B109.00C2—C3—C4120.38 (17)
C9—C8—H8A109.00C3—C4—C5120.04 (18)
C8—C9—H9B110.00C4—C5—C6119.81 (15)
C8—C9—H9A110.00C1—C6—C5120.80 (13)
H9A—C9—H9B108.00C1—C2—H2120.00
C10—C9—H9A110.00C3—C2—H2120.00
C10—C9—H9B110.00C2—C3—H3120.00
C9—C10—H10B109.00C4—C3—H3120.00
C9—C10—H10A109.00C3—C4—H4120.00
C11—C10—H10A109.00C5—C4—H4120.00
C11—C10—H10B109.00C4—C5—H5120.00
H10A—C10—H10B108.00C6—C5—H5120.00
C10—C11—H11A109.00C1—C6—H6120.00
C10—C11—H11B109.00C5—C6—H6120.00
C12—C11—H11A109.00
O3—P1—C1—C2106.84 (12)C10—C11—C12—N1176.67 (12)
O1—P1—C1—C643.88 (13)N1—C13—C14—C15178.67 (11)
O2—P1—C1—C6171.43 (11)C14—C13—C18—C1755.08 (15)
O3—P1—C1—C671.95 (12)C18—C13—C14—C1556.83 (15)
O1—P1—C1—C2137.33 (12)N1—C13—C18—C17175.05 (11)
O2—P1—C1—C29.78 (14)C13—C14—C15—C1657.40 (16)
C12—N1—C13—C1862.64 (14)C14—C15—C16—C1756.75 (16)
C13—N1—C12—C11176.40 (11)C15—C16—C17—C1855.13 (16)
C12—N1—C13—C14175.04 (11)C16—C17—C18—C1354.13 (16)
C13—N1—C12—C753.28 (15)P1—C1—C2—C3178.46 (13)
C12—C7—C8—C955.25 (18)C6—C1—C2—C30.4 (2)
C8—C7—C12—N1173.44 (13)P1—C1—C6—C5178.34 (12)
C8—C7—C12—C1153.39 (17)C2—C1—C6—C50.5 (2)
C7—C8—C9—C1056.75 (19)C1—C2—C3—C40.2 (3)
C8—C9—C10—C1156.27 (19)C2—C3—C4—C50.7 (3)
C9—C10—C11—C1254.83 (17)C3—C4—C5—C60.5 (3)
C10—C11—C12—C753.68 (16)C4—C5—C6—C10.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.841.752.5920 (13)175
N1—H1A···O10.921.862.7520 (14)161
N1—H1B···O2ii0.921.812.6897 (15)159
C18—H18A···O3iii0.992.523.3019 (16)136
C18—H18B···O2ii0.992.523.2693 (16)133
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H24N+·C6H6O3P
Mr339.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)13.3212 (4), 8.9093 (3), 16.0670 (5)
β (°) 104.385 (1)
V3)1847.09 (10)
Z4
Radiation typeCu Kα
µ (mm1)1.43
Crystal size (mm)0.16 × 0.12 × 0.08
Data collection
DiffractometerBruker Microstar
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.749, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
21802, 3456, 3221
Rint0.045
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.08
No. of reflections3456
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.841.752.5920 (13)175
N1—H1A···O10.921.862.7520 (14)161
N1—H1B···O2ii0.921.812.6897 (15)159
C18—H18A···O3iii0.992.523.3019 (16)136
C18—H18B···O2ii0.992.523.2693 (16)133
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahmoudkhani, A. H. & Langer, V. (2002). J. Mol. Struct. 609, 97–108.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeakley, T. J. R. (1976). Acta Cryst. B32, 2889–2890.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1432
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds