metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(butyl­tri­ethyl­ammonium) di-μ-bromido-bis­­[di­bromido­mercurate(II)]

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: jinlei8812@163.com

(Received 30 March 2012; accepted 18 April 2012; online 21 April 2012)

In the title mol­ecular salt, (C10H24N)2[Hg2Br6], the complete anion is generated by crystallographic inversion symmetry, forming a pair of edge-sharing HgBr4 tetra­hedra. In the crystal, the cations and anions are linked by weak C—H⋯Br inter­actions.

Related literature

For a related structure and background to mol­ecular ferroelectrics, see: Jin (2012[Jin, L. (2012). Acta Cryst. E68, m123.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H24N)2[Hg2Br6]

  • Mr = 1197.24

  • Triclinic, [P \overline 1]

  • a = 7.6372 (15) Å

  • b = 10.318 (2) Å

  • c = 11.185 (2) Å

  • α = 76.70 (3)°

  • β = 72.22 (3)°

  • γ = 85.57 (3)°

  • V = 816.8 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 16.74 mm−1

  • T = 293 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.013, Tmax = 0.035

  • 7659 measured reflections

  • 3209 independent reflections

  • 2596 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.151

  • S = 1.05

  • 3209 reflections

  • 141 parameters

  • H-atom parameters constrained

  • Δρmax = 1.27 e Å−3

  • Δρmin = −1.83 e Å−3

Table 1
Selected geometric parameters (Å, °)

Hg1—Br2 2.4963 (18)
Hg1—Br3 2.5059 (17)
Hg1—Br1i 2.681 (2)
Hg1—Br1 2.7092 (19)
Hg1i—Br1—Hg1 88.53 (5)
Symmetry code: (i) -x+1, -y+2, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯Br1ii 0.97 2.91 3.837 (15) 160
C6—H6A⋯Br2 0.96 3.00 3.833 (16) 147
C7—H7B⋯Br2 0.97 3.03 3.973 (13) 165
Symmetry code: (ii) -x, -y+2, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Asa part of our studies (Jin, 2012) of molecular salts with possible ferroelectric properties, the title compound has been synthesized and its crystal structure is herein reported.

The title compound, (C10H16N+)2.Hg2Br62- crystallizes in the triclinic P-1 space group, and the structure of title compound contains isolated bitetrahedral [Hg2Br6]2- units,which consisiting of two distorted tetrahedral sharing one common edge and two butyltriethylammonium cations (Fig 1). The terminal bond distance of Hg–Br being 2.4963 (18)Å and 2.5059 (17)Å, the bond angles of Br–Hg–Br being in the range from 107.16 (6)° to 122.48 (7)°; the bridging are in the range 2.681 (2)Å and 2.7092 (19)Å, and the bond angles of Br–Hg–Br varying from 107.16 (6)° to 113.07 (7)°, thus deviating from ideal tetrahedral angles of 109.5°. An inversion centre is located an the centre of the [Hg2Br6]2- unit,and the bridge distance of Br–Br is 3.860Å.

In the crystal, there are weak C—H···Br hydrogen bonds (Table 1), which link the cations and anions into a three-dimensional network.

Related literature top

For a related structure and background to molecular ferroelectrics, see: Jin (2012).

Experimental top

In room temperature butyltriethylammonium (5 mmol,1.17 g) in 20 ml water, then a water solution with HgBr2 (5 mmol, 1.36 g) was dropped slowly into the previous solution with properly sirring. Colourless blocks were obtained by the slow evaporation of the above solution after one week in air with some colorless solid blocks appeared after days.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), indicating that this compound is not ferroelectric over the measured temperature range (below the melting point).

Refinement top

H atoms were placed in calculated positions(C—H = 0.96Å and 0.97 Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2/N) and 1.5Ueq(Csp3)] and allowed to ride.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The mlecular structure of the title compound, showing 30% probability displacement ellipsoids. Unlabelled atoms are related to the labelled atoms by the (-x, -y + 2, -z + 1) symmetry transformation.
Butyltriethylammonium di-µ-bromido-bis[dibromidomercurate(II)] top
Crystal data top
(C10H24N)2[Hg2Br6]V = 816.8 (3) Å3
Mr = 1197.24Z = 1
Triclinic, P1F(000) = 552
Hall symbol: -P 1Dx = 2.434 Mg m3
a = 7.6372 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.318 (2) Åθ = 3.1–26°
c = 11.185 (2) ŵ = 16.74 mm1
α = 76.70 (3)°T = 293 K
β = 72.22 (3)°Block, colorless
γ = 85.57 (3)°0.28 × 0.24 × 0.20 mm
Data collection top
Rigaku Mercury2
diffractometer
3209 independent reflections
Radiation source: fine-focus sealed tube2596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.1°
CCD_Profile_fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.013, Tmax = 0.035l = 1313
7659 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0572P)2 + 12.6923P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3209 reflectionsΔρmax = 1.27 e Å3
141 parametersΔρmin = 1.83 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0069 (8)
Crystal data top
(C10H24N)2[Hg2Br6]γ = 85.57 (3)°
Mr = 1197.24V = 816.8 (3) Å3
Triclinic, P1Z = 1
a = 7.6372 (15) ÅMo Kα radiation
b = 10.318 (2) ŵ = 16.74 mm1
c = 11.185 (2) ÅT = 293 K
α = 76.70 (3)°0.28 × 0.24 × 0.20 mm
β = 72.22 (3)°
Data collection top
Rigaku Mercury2
diffractometer
3209 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2596 reflections with I > 2σ(I)
Tmin = 0.013, Tmax = 0.035Rint = 0.053
7659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0572P)2 + 12.6923P]
where P = (Fo2 + 2Fc2)/3
3209 reflectionsΔρmax = 1.27 e Å3
141 parametersΔρmin = 1.83 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.46437 (8)0.89173 (5)0.16554 (5)0.0447 (3)
Br10.2377 (2)1.01250 (17)0.02768 (16)0.0588 (4)
Br20.4361 (3)1.01131 (17)0.34093 (17)0.0650 (5)
Br30.4370 (3)0.64383 (15)0.20690 (19)0.0661 (5)
N10.0814 (15)0.6872 (9)0.7024 (10)0.034 (2)
C70.0311 (17)0.7828 (12)0.5918 (12)0.036 (3)
H7A0.07220.83690.62820.043*
H7B0.13400.84210.54550.043*
C50.2418 (18)0.5990 (12)0.6507 (14)0.042 (3)
H5A0.26520.53510.72280.051*
H5B0.20680.54950.59780.051*
C80.018 (2)0.7233 (13)0.4966 (14)0.047 (3)
H8A0.12180.66450.54090.056*
H8B0.08520.67050.45730.056*
C90.066 (2)0.8301 (14)0.3919 (14)0.047 (3)
H9A0.17150.88040.43180.056*
H9B0.03640.89110.35120.056*
C30.128 (2)0.7737 (13)0.7835 (13)0.045 (3)
H3A0.22910.83190.72920.054*
H3B0.02270.82950.81240.054*
C20.080 (2)0.5964 (13)0.7817 (13)0.047 (3)
H2A0.10850.54710.72590.056*
H2B0.04190.53230.84740.056*
C100.109 (2)0.7763 (16)0.2901 (15)0.056 (4)
H10A0.01300.71580.25870.084*
H10B0.11670.84850.22040.084*
H10C0.22390.73020.32610.084*
C10.249 (2)0.6613 (15)0.8449 (17)0.062 (4)
H1A0.22660.70430.90620.094*
H1B0.34350.59580.88820.094*
H1C0.28840.72640.78160.094*
C60.417 (2)0.6716 (16)0.5727 (16)0.059 (4)
H6A0.39790.73210.49850.088*
H6B0.51180.60850.54550.088*
H6C0.45430.72060.62410.088*
C40.181 (3)0.6951 (17)0.9002 (17)0.073 (5)
H4A0.09400.62530.94580.109*
H4B0.18170.75340.95580.109*
H4C0.30170.65700.87260.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0577 (4)0.0362 (3)0.0401 (3)0.0008 (2)0.0150 (2)0.0074 (2)
Br10.0477 (8)0.0687 (10)0.0574 (10)0.0021 (7)0.0160 (7)0.0090 (8)
Br20.0730 (11)0.0624 (10)0.0602 (10)0.0025 (8)0.0153 (8)0.0200 (8)
Br30.0729 (11)0.0390 (8)0.0865 (12)0.0005 (7)0.0275 (9)0.0085 (8)
N10.050 (6)0.019 (4)0.034 (5)0.002 (4)0.012 (5)0.004 (4)
C70.040 (7)0.034 (6)0.035 (7)0.005 (5)0.011 (6)0.008 (5)
C50.040 (7)0.031 (6)0.054 (8)0.009 (5)0.020 (6)0.002 (6)
C80.056 (8)0.030 (6)0.054 (9)0.004 (6)0.021 (7)0.003 (6)
C90.044 (7)0.044 (7)0.046 (8)0.004 (6)0.017 (6)0.005 (6)
C30.059 (8)0.036 (7)0.042 (8)0.015 (6)0.016 (7)0.009 (6)
C20.059 (9)0.036 (7)0.040 (8)0.014 (6)0.013 (7)0.008 (6)
C100.060 (9)0.057 (9)0.059 (10)0.003 (7)0.035 (8)0.004 (7)
C10.056 (9)0.047 (8)0.068 (11)0.014 (7)0.009 (8)0.013 (8)
C60.054 (9)0.054 (9)0.063 (10)0.014 (7)0.016 (8)0.010 (8)
C40.110 (15)0.059 (10)0.058 (10)0.015 (10)0.048 (11)0.005 (8)
Geometric parameters (Å, º) top
Hg1—Br22.4963 (18)C9—H9B0.9700
Hg1—Br32.5059 (17)C3—C41.52 (2)
Hg1—Br1i2.681 (2)C3—H3A0.9700
Hg1—Br12.7092 (19)C3—H3B0.9700
Br1—Hg1i2.681 (2)C2—C11.46 (2)
N1—C51.517 (16)C2—H2A0.9700
N1—C71.524 (15)C2—H2B0.9700
N1—C21.522 (16)C10—H10A0.9600
N1—C31.538 (15)C10—H10B0.9600
C7—C81.492 (18)C10—H10C0.9600
C7—H7A0.9700C1—H1A0.9600
C7—H7B0.9700C1—H1B0.9600
C5—C61.50 (2)C1—H1C0.9600
C5—H5A0.9700C6—H6A0.9600
C5—H5B0.9700C6—H6B0.9600
C8—C91.526 (18)C6—H6C0.9600
C8—H8A0.9700C4—H4A0.9600
C8—H8B0.9700C4—H4B0.9600
C9—C101.50 (2)C4—H4C0.9600
C9—H9A0.9700
Br2—Hg1—Br3122.48 (7)C4—C3—N1114.4 (11)
Br2—Hg1—Br1i107.16 (6)C4—C3—H3A108.7
Br3—Hg1—Br1i113.07 (7)N1—C3—H3A108.7
Br2—Hg1—Br1108.17 (6)C4—C3—H3B108.7
Br3—Hg1—Br1110.02 (6)N1—C3—H3B108.7
Br1i—Hg1—Br191.47 (5)H3A—C3—H3B107.6
Hg1i—Br1—Hg188.53 (5)C1—C2—N1116.4 (11)
C5—N1—C7110.3 (9)C1—C2—H2A108.2
C5—N1—C2107.3 (9)N1—C2—H2A108.2
C7—N1—C2109.7 (10)C1—C2—H2B108.2
C5—N1—C3111.9 (10)N1—C2—H2B108.2
C7—N1—C3106.6 (8)H2A—C2—H2B107.3
C2—N1—C3111.1 (10)C9—C10—H10A109.5
C8—C7—N1117.3 (10)C9—C10—H10B109.5
C8—C7—H7A108.0H10A—C10—H10B109.5
N1—C7—H7A108.0C9—C10—H10C109.5
C8—C7—H7B108.0H10A—C10—H10C109.5
N1—C7—H7B108.0H10B—C10—H10C109.5
H7A—C7—H7B107.2C2—C1—H1A109.5
C6—C5—N1114.9 (11)C2—C1—H1B109.5
C6—C5—H5A108.5H1A—C1—H1B109.5
N1—C5—H5A108.5C2—C1—H1C109.5
C6—C5—H5B108.5H1A—C1—H1C109.5
N1—C5—H5B108.5H1B—C1—H1C109.5
H5A—C5—H5B107.5C5—C6—H6A109.5
C7—C8—C9111.7 (11)C5—C6—H6B109.5
C7—C8—H8A109.3H6A—C6—H6B109.5
C9—C8—H8A109.3C5—C6—H6C109.5
C7—C8—H8B109.3H6A—C6—H6C109.5
C9—C8—H8B109.3H6B—C6—H6C109.5
H8A—C8—H8B107.9C3—C4—H4A109.5
C10—C9—C8114.1 (12)C3—C4—H4B109.5
C10—C9—H9A108.7H4A—C4—H4B109.5
C8—C9—H9A108.7C3—C4—H4C109.5
C10—C9—H9B108.7H4A—C4—H4C109.5
C8—C9—H9B108.7H4B—C4—H4C109.5
H9A—C9—H9B107.6
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···Br1ii0.972.913.837 (15)160
C6—H6A···Br20.963.003.833 (16)147
C7—H7B···Br20.973.033.973 (13)165
Symmetry code: (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula(C10H24N)2[Hg2Br6]
Mr1197.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.6372 (15), 10.318 (2), 11.185 (2)
α, β, γ (°)76.70 (3), 72.22 (3), 85.57 (3)
V3)816.8 (3)
Z1
Radiation typeMo Kα
µ (mm1)16.74
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.013, 0.035
No. of measured, independent and
observed [I > 2σ(I)] reflections
7659, 3209, 2596
Rint0.053
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.151, 1.05
No. of reflections3209
No. of parameters141
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0572P)2 + 12.6923P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.27, 1.83

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Hg1—Br22.4963 (18)Hg1—Br1i2.681 (2)
Hg1—Br32.5059 (17)Hg1—Br12.7092 (19)
Hg1i—Br1—Hg188.53 (5)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···Br1ii0.972.913.837 (15)160
C6—H6A···Br20.963.003.833 (16)147
C7—H7B···Br20.973.033.973 (13)165
Symmetry code: (ii) x, y+2, z+1.
 

Acknowledgements

The author thanks the Ordered Matter Science Research Centre, Southeast University.

References

First citationJin, L. (2012). Acta Cryst. E68, m123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds