organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1320

(E)-4-Amino-N′-(3-nitro­benzyl­­idene)benzohydrazide

aSchool of Ocean, Qinzhou University, Qinzhou, Guangxi 535000, People's Republic of China
*Correspondence e-mail: shuqing_xu@163.com

(Received 30 March 2012; accepted 31 March 2012; online 6 April 2012)

In the title compound, C14H12N4O3, the dihedral angle between the benzene rings is 7.6 (4)°. In the crystal, infinite sheets linked by N—H⋯O and bifurcated N—H⋯(O,N) hydrogen bonds propagate in the (10-1) plane, in which R44(36) loops are apparent. Neighbouring layers may inter­act by way of very weak ππ stacking inter­actions [centroid–centroid distances = 3.9329 (13) and 4.0702 (13) Å].

Related literature

For related structures and background references to hydrazones, see: Cao (2009[Cao, G.-B. (2009). Acta Cryst. E65, o2415.]); Zhou & Yang (2010[Zhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o365.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl., 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N4O3

  • Mr = 284.28

  • Monoclinic, P 21 /n

  • a = 7.8909 (16) Å

  • b = 11.153 (2) Å

  • c = 14.709 (3) Å

  • β = 92.00 (3)°

  • V = 1293.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.987

  • 11091 measured reflections

  • 2952 independent reflections

  • 2756 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.161

  • S = 1.06

  • 2952 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.86 2.47 3.183 (2) 141
N2—H2⋯O3ii 0.86 2.44 3.041 (2) 127
N1—H1A⋯O1iii 0.89 2.27 3.106 (2) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As an extension of recent studies of hydrazone Schiff bases, (Cao, 2009; Zhou & Yang, 2010), the title compound was prepared and characterized.

As shown in Fig. 1, the asymmetric unit of the title compound, (I), contains one independent molecule displaying an E configuration with respect to its CN double bond. The dihedral angle between the two benzene rings is 7.6 (4) °. The bond lengths and angles are as expected for a compound of this type and agree with the other ligands belonging to the hydrazone series. The C8N3 and C7O1 bond lengths of 1.283 (2) and 1.228 (2) Å, respectively, conform to the values for double bonds. Whereas the C1-N1, C8-N3, C11-N4 and N2-N3 [1.385 (2), 1.360 (2), 1.466 (2) and 1.378 (2) Å, respectively] bond lengths correspond to a single bond. In the crystal packing, it is noted that one of amino H (H1A) and amide H2 are involved in forming intermolecular N—H···O and N—H···N hydrogen bonds, which link the molecules into a R44(36) graph-set notation (Fig. 2 and Table 1). These rings form an alternating sequence, in turn, linking the molecules into a two-dimensional supramolecular sheet structure parallel to (101). Neighboring layers are further interacting with each other through weak ππ stacking interactions [centroid to centroid distances of the benzene C1/C6 and C9/C14 rings are 3.93 (6) and 4.07 (6) Å].

Related literature top

For related structures and background references to hydrazones, see: Cao (2009); Zhou & Yang (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

3-Nitrobenzaldehyde (1 mmol, 0.151 g) and 4-aminobenzohydrazide (1 mmol, 0.151 g) were dissolved in MeOH (20 ml). The mixture was stirred for 6 hours at room temperature to give a yellow solution. Yellow prisms were formed by gradual evaporation of the solvent over a period of 5 days at room temperature.

Refinement top

H-atoms were placed in calculated positions (C—H = 0.93 and N—H = 0.86-0.89 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C or N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing in the title compound where molecules are linked via N–H···O hydrogen bonds (dashed lines). Except for those involved in hydrogen-bonding interactions, H atoms have been omitted for clarity.
(E)-4-Amino-N'-(3-nitrobenzylidene)benzohydrazide top
Crystal data top
C14H12N4O3F(000) = 592
Mr = 284.28Dx = 1.460 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3352 reflections
a = 7.8909 (16) Åθ = 1.4–27.5°
b = 11.153 (2) ŵ = 0.11 mm1
c = 14.709 (3) ÅT = 296 K
β = 92.00 (3)°Prism, yellow
V = 1293.7 (4) Å30.20 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2952 independent reflections
Radiation source: fine-focus sealed tube2756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.981, Tmax = 0.987k = 1414
11091 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0851P)2 + 0.6295P]
where P = (Fo2 + 2Fc2)/3
2952 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H12N4O3V = 1293.7 (4) Å3
Mr = 284.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8909 (16) ŵ = 0.11 mm1
b = 11.153 (2) ÅT = 296 K
c = 14.709 (3) Å0.20 × 0.15 × 0.12 mm
β = 92.00 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2952 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2756 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.987Rint = 0.044
11091 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.06Δρmax = 0.22 e Å3
2952 reflectionsΔρmin = 0.22 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13734 (17)0.68729 (12)0.42167 (9)0.0318 (3)
O20.0202 (2)0.28779 (13)0.14494 (10)0.0405 (4)
O30.00112 (17)0.09872 (13)0.11390 (9)0.0352 (4)
N10.3895 (2)0.95096 (15)0.79084 (11)0.0333 (4)
H1B0.37831.02860.77800.040*
H1A0.47960.93060.82550.040*
N20.2130 (2)0.52763 (13)0.50999 (10)0.0280 (4)
H20.24000.50320.56400.034*
N30.18734 (19)0.44493 (14)0.44124 (10)0.0270 (3)
N40.02597 (19)0.18540 (14)0.16438 (10)0.0286 (4)
C10.3493 (2)0.87791 (17)0.71707 (12)0.0266 (4)
C20.2528 (2)0.92102 (17)0.64211 (12)0.0294 (4)
H2A0.22011.00110.64020.035*
C30.2060 (2)0.84555 (16)0.57111 (12)0.0278 (4)
H30.14130.87560.52220.033*
C40.2540 (2)0.72489 (16)0.57130 (12)0.0253 (4)
C50.3551 (2)0.68367 (17)0.64523 (12)0.0286 (4)
H50.39210.60450.64590.034*
C60.4007 (2)0.75809 (17)0.71689 (12)0.0289 (4)
H60.46630.72820.76550.035*
C70.1965 (2)0.64721 (16)0.49378 (12)0.0259 (4)
C80.2188 (2)0.33609 (17)0.46441 (12)0.0288 (4)
H80.25240.31870.52420.035*
C90.2025 (2)0.23928 (16)0.39805 (12)0.0272 (4)
C100.1297 (2)0.25889 (16)0.31199 (12)0.0262 (4)
H100.09240.33500.29490.031*
C110.1133 (2)0.16422 (16)0.25250 (12)0.0259 (4)
C120.1707 (2)0.04973 (17)0.27327 (13)0.0317 (4)
H120.15960.01230.23120.038*
C130.2455 (3)0.03068 (17)0.35892 (14)0.0345 (4)
H130.28620.04500.37480.041*
C140.2596 (2)0.12410 (18)0.42087 (13)0.0320 (4)
H140.30780.11000.47850.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0356 (7)0.0343 (7)0.0249 (7)0.0026 (6)0.0065 (5)0.0016 (5)
O20.0494 (9)0.0321 (8)0.0390 (8)0.0013 (6)0.0126 (7)0.0013 (6)
O30.0339 (7)0.0356 (7)0.0356 (7)0.0054 (6)0.0054 (6)0.0092 (6)
N10.0338 (9)0.0346 (9)0.0312 (8)0.0009 (7)0.0027 (7)0.0080 (7)
N20.0357 (8)0.0278 (8)0.0200 (7)0.0016 (6)0.0046 (6)0.0012 (6)
N30.0278 (8)0.0290 (8)0.0240 (7)0.0020 (6)0.0015 (6)0.0035 (6)
N40.0267 (8)0.0298 (8)0.0294 (8)0.0023 (6)0.0011 (6)0.0009 (6)
C10.0210 (8)0.0326 (9)0.0262 (9)0.0028 (7)0.0021 (6)0.0045 (7)
C20.0314 (9)0.0256 (8)0.0312 (9)0.0025 (7)0.0011 (7)0.0001 (7)
C30.0277 (9)0.0288 (9)0.0267 (9)0.0001 (7)0.0016 (7)0.0021 (7)
C40.0237 (8)0.0290 (9)0.0233 (8)0.0012 (7)0.0008 (6)0.0008 (7)
C50.0282 (9)0.0270 (9)0.0302 (9)0.0004 (7)0.0031 (7)0.0019 (7)
C60.0263 (9)0.0344 (10)0.0255 (9)0.0006 (7)0.0057 (7)0.0009 (7)
C70.0233 (8)0.0302 (9)0.0239 (8)0.0002 (7)0.0008 (6)0.0000 (7)
C80.0283 (9)0.0320 (9)0.0256 (9)0.0004 (7)0.0043 (7)0.0011 (7)
C90.0248 (8)0.0292 (9)0.0274 (9)0.0001 (7)0.0011 (7)0.0008 (7)
C100.0233 (8)0.0258 (8)0.0294 (9)0.0009 (7)0.0002 (7)0.0005 (7)
C110.0240 (8)0.0282 (9)0.0254 (9)0.0017 (7)0.0001 (7)0.0002 (7)
C120.0343 (10)0.0271 (9)0.0337 (10)0.0014 (8)0.0025 (8)0.0030 (7)
C130.0377 (10)0.0282 (9)0.0376 (10)0.0084 (8)0.0013 (8)0.0012 (8)
C140.0323 (10)0.0344 (10)0.0292 (9)0.0046 (8)0.0017 (7)0.0030 (7)
Geometric parameters (Å, º) top
O1—C71.228 (2)C4—C51.403 (3)
O2—N41.229 (2)C4—C71.490 (2)
O3—N41.231 (2)C5—C61.380 (2)
N1—C11.385 (2)C5—H50.9300
N1—H1B0.8899C6—H60.9300
N1—H1A0.8900C8—C91.458 (2)
N2—C71.360 (2)C8—H80.9300
N2—N31.378 (2)C9—C101.389 (3)
N2—H20.8600C9—C141.398 (3)
N3—C81.283 (2)C10—C111.375 (2)
N4—C111.466 (2)C10—H100.9300
C1—C61.397 (3)C11—C121.385 (3)
C1—C21.403 (3)C12—C131.389 (3)
C2—C31.382 (3)C12—H120.9300
C2—H2A0.9300C13—C141.386 (3)
C3—C41.398 (3)C13—H130.9300
C3—H30.9300C14—H140.9300
C1—N1—H1B112.8C5—C6—H6119.7
C1—N1—H1A117.1C1—C6—H6119.7
H1B—N1—H1A116.1O1—C7—N2122.65 (17)
C7—N2—N3121.12 (15)O1—C7—C4123.07 (17)
C7—N2—H2119.4N2—C7—C4114.27 (15)
N3—N2—H2119.4N3—C8—C9120.75 (17)
C8—N3—N2114.60 (15)N3—C8—H8119.6
O2—N4—O3123.35 (16)C9—C8—H8119.6
O2—N4—C11118.80 (15)C10—C9—C14118.88 (17)
O3—N4—C11117.84 (15)C10—C9—C8121.15 (17)
N1—C1—C6120.38 (17)C14—C9—C8119.97 (16)
N1—C1—C2121.16 (17)C11—C10—C9119.06 (17)
C6—C1—C2118.44 (17)C11—C10—H10120.5
C3—C2—C1120.58 (17)C9—C10—H10120.5
C3—C2—H2A119.7C10—C11—C12123.03 (17)
C1—C2—H2A119.7C10—C11—N4118.02 (16)
C2—C3—C4121.31 (17)C12—C11—N4118.92 (16)
C2—C3—H3119.3C11—C12—C13117.80 (17)
C4—C3—H3119.3C11—C12—H12121.1
C3—C4—C5117.62 (16)C13—C12—H12121.1
C3—C4—C7118.86 (16)C14—C13—C12120.21 (18)
C5—C4—C7123.52 (17)C14—C13—H13119.9
C6—C5—C4121.40 (17)C12—C13—H13119.9
C6—C5—H5119.3C13—C14—C9120.99 (18)
C4—C5—H5119.3C13—C14—H14119.5
C5—C6—C1120.60 (17)C9—C14—H14119.5
C7—N2—N3—C8175.27 (16)N2—N3—C8—C9178.03 (15)
N1—C1—C2—C3176.57 (17)N3—C8—C9—C109.4 (3)
C6—C1—C2—C31.8 (3)N3—C8—C9—C14171.08 (18)
C1—C2—C3—C40.5 (3)C14—C9—C10—C111.1 (3)
C2—C3—C4—C51.5 (3)C8—C9—C10—C11178.44 (16)
C2—C3—C4—C7178.64 (16)C9—C10—C11—C121.9 (3)
C3—C4—C5—C62.3 (3)C9—C10—C11—N4176.03 (15)
C7—C4—C5—C6177.89 (17)O2—N4—C11—C104.2 (2)
C4—C5—C6—C11.0 (3)O3—N4—C11—C10175.03 (16)
N1—C1—C6—C5177.33 (17)O2—N4—C11—C12177.78 (17)
C2—C1—C6—C51.1 (3)O3—N4—C11—C123.0 (2)
N3—N2—C7—O19.7 (3)C10—C11—C12—C131.0 (3)
N3—N2—C7—C4171.05 (15)N4—C11—C12—C13176.84 (16)
C3—C4—C7—O114.6 (3)C11—C12—C13—C140.6 (3)
C5—C4—C7—O1165.29 (17)C12—C13—C14—C91.3 (3)
C3—C4—C7—N2164.70 (16)C10—C9—C14—C130.5 (3)
C5—C4—C7—N215.5 (3)C8—C9—C14—C13180.00 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.473.183 (2)141
N2—H2···O3ii0.862.443.041 (2)127
N1—H1A···O1iii0.892.273.106 (2)156
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12N4O3
Mr284.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.8909 (16), 11.153 (2), 14.709 (3)
β (°) 92.00 (3)
V3)1293.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
11091, 2952, 2756
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.161, 1.06
No. of reflections2952
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.473.183 (2)141
N2—H2···O3ii0.862.443.041 (2)127
N1—H1A···O1iii0.892.273.106 (2)156
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi Province (grant No. 2011GXNSFA018123). The author also acknowledges financial support from the Natural Science Foundation of Education Bureau of Guangxi Province (grant No. 201106LX537).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl., 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, G.-B. (2009). Acta Cryst. E65, o2415.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o365.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1320
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds