metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­bis­­(1H-imidazole-κN3)copper(II)]-μ-furan-2,5-di­car­boxylato-κ2O2:O5] trihydrate]

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com

(Received 2 April 2012; accepted 17 April 2012; online 21 April 2012)

In the title cooridnation polymer, {[Cu(C6H2O5)(C3H4N2)2(H2O)]·3H2O}n, an infinite chain is formed along [001] by linking of the Cu(C3N2H4)2(H2O) entities with two bridging monodentate carboxyl­ate groups of two different furan-2,5-dicarboxyl­ate dianions. The geometry of the Cu2+ ion is a square-based pyramid with the water atom in the apical position and the ligand O and N atoms in a trans orientation. The dihedral angle between the imidazole planes is 83.96 (14)°. Ow–H⋯O and Ni–H⋯O (w = water and i = imidazole) hydrogen bonds help to establish the packing.

Related literature

For related structures and background to coordination polymers and their potential uses, see: Li et al. (2012a[Li, Y.-F., Gao, Y., Xu, Y., Qin, X. & Gao, W.-Y. (2012a). Acta Cryst. E68, m445.],b[Li, Y.-F., Gao, Y., Xu, Y., Qin, X.-L. & Gao, W.-Y. (2012b). Acta Cryst. E68, m500.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H2O5)(C3H4N2)2(H2O)]·3H2O

  • Mr = 425.85

  • Monoclinic, P 21 /c

  • a = 7.5725 (15) Å

  • b = 13.339 (3) Å

  • c = 18.881 (5) Å

  • β = 113.42 (3)°

  • V = 1750.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 293 K

  • 0.59 × 0.38 × 0.26 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.514, Tmax = 0.728

  • 16495 measured reflections

  • 3977 independent reflections

  • 3204 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.03

  • 3977 reflections

  • 259 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N3 1.9638 (18)
Cu1—N1 1.9826 (17)
Cu1—O4i 1.9844 (14)
Cu1—O1 1.9858 (15)
Cu1—O1W 2.2797 (17)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O4ii 0.86 2.10 2.953 (2) 169
N4—H4C⋯O3Wiii 0.86 1.95 2.756 (3) 156
O1W—H1A⋯O4Wiv 0.87 (2) 2.00 (2) 2.852 (3) 168 (2)
O1W—H1B⋯O2Wv 0.86 (2) 2.02 (2) 2.861 (3) 169 (3)
O2W—H2A⋯O5vi 0.82 (2) 1.95 (2) 2.756 (2) 166 (3)
O2W—H2B⋯O2vii 0.85 (2) 1.89 (2) 2.739 (2) 172 (2)
O3W—H3A⋯O1 0.84 (2) 2.22 (2) 3.013 (3) 157 (3)
O3W—H3B⋯O2W 0.81 (2) 1.93 (2) 2.705 (3) 161 (3)
O4W—H4A⋯O3W 0.88 (2) 2.23 (3) 2.878 (4) 130 (3)
O4W—H4B⋯O2vii 0.90 (2) 2.16 (2) 3.052 (3) 171 (3)
Symmetry codes: (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z; (v) x+1, y, z; (vi) -x+1, -y+1, -z+1; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we utilized furan-2,5-dicarboxyl acid as the ligand to construct coordination polymers (Li, et al., 2012a,b). As an extension of this work, a new chainlike compound, [Cu(C3N2H4)2(H2O)(C6H2O5)].3H2O (I), is now described.

The asymmetric unit of (I) is consisted of one Cu(II) cation, one furan-2,5-dicarboxylate anion, two imidazole molecules and four water molecules – one coordinated water molecule and three crystallizated water molecules (Fig.1). Cu cation is coordinated by two carboxylate O atoms (dCu1–O of 1.985 (8) Å and 1.986 (8) Å) from different furan-2,5-dicarboxylate, two trans-arranged imidazoles (dCu1–N of 1.964 (4) Å and 1.984 (4) Å) and one coordinated water molecule (dCu1–O1W = 2.280 (5) Å) which locates at the axial position, exhibiting distorted pyramid. Two monodentate coordinated carboxyls of furan-2,5-dicarboxylate involve in the formation of infinite chain. The furan-2,5-dicarboxylate shows bridging µ11 coordinated mode.

Cu cations are linked by two monodentate carboxylate of different furan-2,5-dicarboxylate to give rise to an infinite chain (Fig.2). Owater–H···O and Nimidazole–H···O H-bonding interactions together link the adjcent chains to supermolecular net. (Fig.3).

Related literature top

For related structures and background to coordination polymers and their potential uses, see: Li et al. (2012a,b).

Experimental top

In a typically synthesized route of (I), furan-2,5-dicarboxyl acid (0.0156 g, 0.10 mmol), Cu(NO3)2.2.5H2O (0.0233 g, 0.10 mmol), and C3N2H4 (0.020, 0.30 mmol) and NaOH (0.004, 0.10 mmol) were dissolved in water (5 ml, 278 mmol) under stirring. The mixture with molar ratio of 1 (furan-2,5-dicarboxyl acid): 1 (Cu(NO3)2.2.5H2O): 3 (C3N2H4): 1 NaOH: 2780 H2O was layed under room temperature for 2 days. The blue block product was collected as a single phase.

Refinement top

Water H atoms were located in a difference Fourier map and refined with O—H = 0.81–0.90 Å and Uiso(H) = 1.2Ueq(O). The carbon H-atoms and nitrogen H-atoms were placed in calculated positions (C—H = 0.93 Å and N—H = 0.86 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The unit cell of (I), showing displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) 1) x, 0.5 - y, -0.5 + z.]
[Figure 2] Fig. 2. The stick plot of (I), displaying the infinite chain along [001] direction formed by linking the Cu with two monodentate carboxyls of two different furan-2,5-dicarboxylate.
[Figure 3] Fig. 3. The ball-stick packing diagram of (I). Owater–H···O and Nimidazole–H···O H-bonding interactions together link the adjcent chains to supermolecular net.
catena-Poly[[[aquabis(1H-imidazole-κN3)copper(II)]- µ-furan-2,5-dicarboxylato-κ2O2:O5] trihydrate] top
Crystal data top
[Cu(C6H2O5)(C3H4N2)2(H2O)]·3H2OF(000) = 876
Mr = 425.85Dx = 1.616 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 7.5725 (15) Åθ = 3.1–27.5°
b = 13.339 (3) ŵ = 1.30 mm1
c = 18.881 (5) ÅT = 293 K
β = 113.42 (3)°Block, blue
V = 1750.0 (7) Å30.59 × 0.38 × 0.26 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3977 independent reflections
Radiation source: fine-focus sealed tube3204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1717
Tmin = 0.514, Tmax = 0.728l = 2424
16495 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0436P)2]
where P = (Fo2 + 2Fc2)/3
3977 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.57 e Å3
13 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Cu(C6H2O5)(C3H4N2)2(H2O)]·3H2OV = 1750.0 (7) Å3
Mr = 425.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5725 (15) ŵ = 1.30 mm1
b = 13.339 (3) ÅT = 293 K
c = 18.881 (5) Å0.59 × 0.38 × 0.26 mm
β = 113.42 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3977 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3204 reflections with I > 2σ(I)
Tmin = 0.514, Tmax = 0.728Rint = 0.059
16495 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03313 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.57 e Å3
3977 reflectionsΔρmin = 0.58 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.80735 (3)0.279641 (17)0.187220 (13)0.02352 (9)
O10.7606 (2)0.35512 (11)0.26878 (8)0.0341 (3)
O20.8142 (3)0.22327 (10)0.34881 (10)0.0417 (4)
O30.81345 (18)0.34055 (9)0.46325 (7)0.0244 (3)
O40.85663 (19)0.29295 (10)0.60515 (8)0.0293 (3)
O50.7608 (3)0.44502 (11)0.62582 (9)0.0440 (4)
N10.5261 (2)0.27626 (12)0.12482 (10)0.0289 (4)
N20.2161 (3)0.26486 (15)0.08964 (13)0.0416 (5)
H2C0.10640.25610.09230.050*
N31.0749 (2)0.25501 (13)0.25855 (10)0.0304 (4)
N41.3374 (3)0.17360 (18)0.32566 (13)0.0510 (6)
H4C1.42070.12600.34130.061*
C10.7868 (3)0.31396 (15)0.33307 (12)0.0282 (4)
C20.7783 (3)0.38283 (14)0.39338 (11)0.0246 (4)
C30.7261 (3)0.47994 (15)0.39320 (13)0.0367 (5)
H30.69590.52510.35250.044*
C40.7265 (3)0.49939 (15)0.46681 (12)0.0359 (5)
H40.69560.55970.48390.043*
C50.7806 (3)0.41319 (14)0.50774 (11)0.0248 (4)
C60.8006 (3)0.38347 (15)0.58597 (11)0.0259 (4)
C130.4381 (3)0.29424 (18)0.04730 (13)0.0402 (5)
H130.50040.30880.01490.048*
C140.2447 (3)0.28732 (19)0.02537 (16)0.0479 (6)
H140.15070.29630.02410.058*
C150.3867 (3)0.25861 (16)0.14793 (14)0.0352 (5)
H150.40530.24370.19850.042*
C161.1938 (3)0.3177 (2)0.31533 (13)0.0415 (5)
H161.16670.38340.32400.050*
C171.3568 (3)0.2670 (2)0.35633 (16)0.0556 (8)
H171.46270.29150.39790.067*
C181.1672 (3)0.16913 (18)0.26737 (14)0.0396 (5)
H181.11900.11280.23670.048*
O1W0.8545 (3)0.42683 (13)0.13588 (11)0.0493 (4)
H1A0.847 (4)0.423 (2)0.0890 (10)0.059*
H1B0.963 (3)0.454 (2)0.1640 (13)0.059*
O2W0.1888 (3)0.54338 (12)0.22157 (10)0.0456 (4)
H2A0.224 (4)0.5465 (18)0.2687 (9)0.055*
H2B0.182 (3)0.6015 (13)0.2018 (13)0.055*
O3W0.4606 (3)0.49932 (15)0.16719 (15)0.0676 (6)
H3A0.552 (3)0.458 (2)0.1840 (19)0.081*
H3B0.387 (4)0.500 (2)0.1888 (18)0.081*
O4W0.2270 (4)0.5961 (2)0.02425 (14)0.0892 (8)
H4A0.264 (5)0.5371 (16)0.046 (2)0.107*
H4B0.202 (5)0.636 (2)0.0576 (18)0.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02336 (13)0.03122 (14)0.01630 (13)0.00077 (9)0.00822 (9)0.00176 (9)
O10.0403 (8)0.0447 (8)0.0176 (7)0.0118 (7)0.0117 (6)0.0003 (6)
O20.0651 (11)0.0320 (8)0.0369 (10)0.0002 (8)0.0297 (9)0.0051 (6)
O30.0307 (7)0.0262 (6)0.0169 (7)0.0018 (6)0.0101 (6)0.0004 (5)
O40.0310 (7)0.0353 (7)0.0256 (8)0.0065 (6)0.0156 (6)0.0080 (6)
O50.0704 (11)0.0414 (8)0.0265 (9)0.0090 (8)0.0258 (8)0.0022 (6)
N10.0247 (8)0.0383 (9)0.0245 (9)0.0025 (7)0.0107 (7)0.0036 (7)
N20.0247 (9)0.0530 (11)0.0484 (13)0.0066 (8)0.0159 (8)0.0058 (9)
N30.0260 (8)0.0385 (9)0.0251 (9)0.0011 (7)0.0084 (7)0.0004 (7)
N40.0297 (10)0.0728 (15)0.0469 (14)0.0107 (10)0.0115 (9)0.0212 (12)
C10.0269 (10)0.0379 (10)0.0208 (10)0.0006 (8)0.0103 (8)0.0050 (8)
C20.0269 (9)0.0307 (9)0.0162 (9)0.0005 (8)0.0085 (8)0.0018 (7)
C30.0564 (14)0.0320 (10)0.0247 (11)0.0066 (10)0.0193 (10)0.0067 (8)
C40.0568 (13)0.0278 (10)0.0265 (11)0.0063 (10)0.0201 (10)0.0009 (8)
C50.0267 (9)0.0292 (9)0.0192 (10)0.0013 (8)0.0100 (8)0.0020 (7)
C60.0245 (9)0.0337 (10)0.0194 (10)0.0016 (8)0.0087 (8)0.0007 (8)
C130.0312 (11)0.0641 (15)0.0247 (12)0.0038 (10)0.0104 (9)0.0001 (10)
C140.0299 (11)0.0687 (17)0.0375 (15)0.0005 (11)0.0051 (10)0.0023 (12)
C150.0337 (11)0.0407 (11)0.0338 (12)0.0052 (9)0.0161 (10)0.0003 (9)
C160.0406 (12)0.0503 (13)0.0297 (12)0.0143 (10)0.0100 (10)0.0041 (10)
C170.0308 (12)0.097 (2)0.0308 (14)0.0189 (13)0.0033 (10)0.0092 (14)
C180.0300 (11)0.0509 (13)0.0406 (14)0.0020 (10)0.0168 (10)0.0045 (11)
O1W0.0618 (11)0.0474 (9)0.0358 (10)0.0173 (9)0.0164 (9)0.0027 (8)
O2W0.0711 (12)0.0367 (8)0.0329 (10)0.0039 (8)0.0247 (9)0.0019 (7)
O3W0.0549 (12)0.0521 (11)0.0975 (19)0.0156 (10)0.0322 (12)0.0010 (11)
O4W0.126 (2)0.0902 (17)0.0541 (16)0.0284 (17)0.0381 (15)0.0092 (13)
Geometric parameters (Å, º) top
Cu1—N31.9638 (18)C2—C31.354 (3)
Cu1—N11.9826 (17)C3—C41.413 (3)
Cu1—O4i1.9844 (14)C3—H30.9300
Cu1—O11.9858 (15)C4—C51.355 (3)
Cu1—O1W2.2797 (17)C4—H40.9300
O1—C11.274 (2)C5—C61.478 (3)
O2—C11.243 (2)C13—C141.357 (3)
O3—C21.360 (2)C13—H130.9300
O3—C51.368 (2)C14—H140.9300
O4—C61.283 (2)C15—H150.9300
O5—C61.229 (2)C16—C171.349 (3)
N1—C151.314 (3)C16—H160.9300
N1—C131.367 (3)C17—H170.9300
N2—C151.326 (3)C18—H180.9300
N2—C141.349 (3)O1W—H1A0.866 (16)
N2—H2C0.8600O1W—H1B0.858 (16)
N3—C181.318 (3)O2W—H2A0.822 (16)
N3—C161.375 (3)O2W—H2B0.853 (15)
N4—C181.322 (3)O3W—H3A0.843 (17)
N4—C171.357 (4)O3W—H3B0.808 (17)
N4—H4C0.8600O4W—H4A0.884 (18)
C1—C21.484 (3)O4W—H4B0.900 (18)
N3—Cu1—N1167.24 (7)C2—C3—C4106.66 (18)
N3—Cu1—O4i89.48 (7)C2—C3—H3126.7
N1—Cu1—O4i90.91 (7)C4—C3—H3126.7
N3—Cu1—O190.35 (7)C5—C4—C3106.69 (18)
N1—Cu1—O189.54 (7)C5—C4—H4126.7
O4i—Cu1—O1178.68 (6)C3—C4—H4126.7
N3—Cu1—O190.35 (7)C4—C5—O3109.77 (17)
N1—Cu1—O189.54 (7)C4—C5—C6133.28 (18)
O4i—Cu1—O1178.68 (6)O3—C5—C6116.88 (16)
N3—Cu1—O1W98.18 (7)O5—C6—O4126.13 (19)
N1—Cu1—O1W94.58 (7)O5—C6—C5118.68 (18)
O4i—Cu1—O1W88.76 (6)O4—C6—C5115.19 (17)
O1—Cu1—O1W89.96 (7)C14—C13—N1108.8 (2)
O1—Cu1—O1W89.96 (7)C14—C13—H13125.6
C1—O1—Cu1120.82 (13)N1—C13—H13125.6
C2—O3—C5106.77 (14)N2—C14—C13106.3 (2)
C6—O4—Cu1ii122.40 (13)N2—C14—H14126.9
C15—N1—C13105.82 (18)C13—C14—H14126.9
C15—N1—Cu1128.44 (16)N1—C15—N2111.1 (2)
C13—N1—Cu1125.73 (15)N1—C15—H15124.5
C15—N2—C14107.98 (19)N2—C15—H15124.5
C15—N2—H2C126.0C17—C16—N3108.0 (2)
C14—N2—H2C126.0C17—C16—H16126.0
C18—N3—C16106.23 (19)N3—C16—H16126.0
C18—N3—Cu1125.66 (15)C16—C17—N4107.2 (2)
C16—N3—Cu1127.62 (16)C16—C17—H17126.4
C18—N4—C17107.5 (2)N4—C17—H17126.4
C18—N4—H4C126.2N3—C18—N4111.0 (2)
C17—N4—H4C126.2N3—C18—H18124.5
O2—C1—O1126.51 (19)N4—C18—H18124.5
O2—C1—O1126.51 (19)Cu1—O1W—H1A115.2 (18)
O2—C1—C2118.23 (18)Cu1—O1W—H1B111.8 (19)
O1—C1—C2115.25 (18)H1A—O1W—H1B109 (2)
O1—C1—C2115.25 (18)H2A—O2W—H2B111 (2)
C3—C2—O3110.09 (17)H3A—O3W—H3B117 (3)
C3—C2—C1133.77 (19)H4A—O4W—H4B108 (2)
O3—C2—C1115.85 (16)
N3—Cu1—O1—O10.00 (17)O2—C1—C2—C3169.3 (2)
N1—Cu1—O1—O10.00 (17)O1—C1—C2—C39.3 (3)
N3—Cu1—O1—C157.95 (16)O1—C1—C2—C39.3 (3)
N1—Cu1—O1—C1109.29 (16)O2—C1—C2—O33.8 (3)
O1—Cu1—O1—C10 (100)O1—C1—C2—O3177.51 (16)
O1W—Cu1—O1—C1156.13 (16)O1—C1—C2—O3177.51 (16)
N3—Cu1—N1—C1546.9 (4)O3—C2—C3—C40.7 (3)
O4i—Cu1—N1—C15138.59 (19)C1—C2—C3—C4172.8 (2)
O1—Cu1—N1—C1542.66 (19)C2—C3—C4—C50.5 (3)
O1—Cu1—N1—C1542.66 (19)C3—C4—C5—O30.2 (2)
O1W—Cu1—N1—C15132.59 (19)C3—C4—C5—C6177.0 (2)
N3—Cu1—N1—C13134.4 (3)C2—O3—C5—C40.2 (2)
O4i—Cu1—N1—C1342.69 (18)C2—O3—C5—C6177.16 (16)
O1—Cu1—N1—C13136.07 (18)Cu1ii—O4—C6—O521.2 (3)
O1—Cu1—N1—C13136.07 (18)Cu1ii—O4—C6—C5157.71 (13)
O1W—Cu1—N1—C1346.14 (19)C4—C5—C6—O50.9 (4)
N1—Cu1—N3—C1846.9 (4)O3—C5—C6—O5175.63 (17)
O4i—Cu1—N3—C1844.92 (18)C4—C5—C6—O4179.9 (2)
O1—Cu1—N3—C18136.40 (19)O3—C5—C6—O43.4 (3)
O1—Cu1—N3—C18136.40 (19)C15—N1—C13—C140.3 (3)
O1W—Cu1—N3—C18133.59 (18)Cu1—N1—C13—C14178.68 (16)
N1—Cu1—N3—C16124.0 (3)C15—N2—C14—C130.0 (3)
O4i—Cu1—N3—C16144.21 (19)N1—C13—C14—N20.2 (3)
O1—Cu1—N3—C1634.47 (19)C13—N1—C15—N20.3 (3)
O1—Cu1—N3—C1634.47 (19)Cu1—N1—C15—N2178.64 (14)
O1W—Cu1—N3—C1655.5 (2)C14—N2—C15—N10.2 (3)
O1—O1—C1—O20.00 (14)C18—N3—C16—C170.7 (3)
Cu1—O1—C1—O211.2 (3)Cu1—N3—C16—C17173.02 (16)
Cu1—O1—C1—O10 (100)N3—C16—C17—N40.7 (3)
O1—O1—C1—C20.0 (2)C18—N4—C17—C160.4 (3)
Cu1—O1—C1—C2170.28 (12)C16—N3—C18—N40.5 (3)
C5—O3—C2—C30.5 (2)Cu1—N3—C18—N4172.96 (15)
C5—O3—C2—C1174.22 (16)C17—N4—C18—N30.0 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O4iii0.862.102.953 (2)169
N4—H4C···O3Wiv0.861.952.756 (3)156
O1W—H1A···O4Wv0.87 (2)2.00 (2)2.852 (3)168 (2)
O1W—H1B···O2Wvi0.86 (2)2.02 (2)2.861 (3)169 (3)
O2W—H2A···O5vii0.82 (2)1.95 (2)2.756 (2)166 (3)
O2W—H2B···O2viii0.85 (2)1.89 (2)2.739 (2)172 (2)
O3W—H3A···O10.84 (2)2.22 (2)3.013 (3)157 (3)
O3W—H3B···O2W0.81 (2)1.93 (2)2.705 (3)161 (3)
O4W—H4A···O3W0.88 (2)2.23 (3)2.878 (4)130 (3)
O4W—H4B···O2viii0.90 (2)2.16 (2)3.052 (3)171 (3)
Symmetry codes: (iii) x1, y+1/2, z1/2; (iv) x+2, y1/2, z+1/2; (v) x+1, y+1, z; (vi) x+1, y, z; (vii) x+1, y+1, z+1; (viii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C6H2O5)(C3H4N2)2(H2O)]·3H2O
Mr425.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.5725 (15), 13.339 (3), 18.881 (5)
β (°) 113.42 (3)
V3)1750.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.59 × 0.38 × 0.26
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.514, 0.728
No. of measured, independent and
observed [I > 2σ(I)] reflections
16495, 3977, 3204
Rint0.059
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.03
No. of reflections3977
No. of parameters259
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.58

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).

Selected bond lengths (Å) top
Cu1—N31.9638 (18)Cu1—O11.9858 (15)
Cu1—N11.9826 (17)Cu1—O1W2.2797 (17)
Cu1—O4i1.9844 (14)
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O4ii0.862.102.953 (2)169
N4—H4C···O3Wiii0.861.952.756 (3)156
O1W—H1A···O4Wiv0.866 (16)1.999 (16)2.852 (3)168 (2)
O1W—H1B···O2Wv0.858 (16)2.015 (17)2.861 (3)169 (3)
O2W—H2A···O5vi0.822 (16)1.953 (17)2.756 (2)166 (3)
O2W—H2B···O2vii0.853 (15)1.891 (16)2.739 (2)172 (2)
O3W—H3A···O10.843 (17)2.22 (2)3.013 (3)157 (3)
O3W—H3B···O2W0.808 (17)1.928 (16)2.705 (3)161 (3)
O4W—H4A···O3W0.884 (18)2.23 (3)2.878 (4)130 (3)
O4W—H4B···O2vii0.900 (18)2.16 (2)3.052 (3)171 (3)
Symmetry codes: (ii) x1, y+1/2, z1/2; (iii) x+2, y1/2, z+1/2; (iv) x+1, y+1, z; (v) x+1, y, z; (vi) x+1, y+1, z+1; (vii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This project was sponsored by the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, Y.-F., Gao, Y., Xu, Y., Qin, X. & Gao, W.-Y. (2012a). Acta Cryst. E68, m445.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F., Gao, Y., Xu, Y., Qin, X.-L. & Gao, W.-Y. (2012b). Acta Cryst. E68, m500.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds