metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­chloridobis[diphen­yl(thio­phen-2-yl)phosphane-κP]palladium(II)

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

(Received 3 April 2012; accepted 4 April 2012; online 13 April 2012)

The title compound, trans-[PdCl2(C16H13PS)2], forms a monomeric complex with a trans-square-planar geometry. The Pd—P bond lengths are 2.3387 (11) Å, as the Pd atom lies on an inversion point, while the Pd—Cl bond lengths are 2.2950 (12) Å.

Related literature

For a review on related compounds, see: Spessard & Miessler (1996[Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131-135. New Jersey: Prentice Hall.]). For the synthesis of the starting materials, see: Drew & Doyle (1990[Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346-349.]). For (R3P)2PdCl2 compounds with consanguinities, see: Muller & Meijboom (2010[Muller, A. & Meijboom, R. (2010). Acta Cryst. E66, m1463.]); Meijboom (2011[Meijboom, R. (2011). Acta Cryst. E67, m1663.]); Burgoyne et al. (2012[Burgoyne, A. R., Meijboom, R. & Ogutu, H. (2012). Acta Cryst. E68, m404.]); Ogutu & Meijboom, (2011[Ogutu, H. & Meijboom, R. (2011). Acta Cryst. E67, m1662.]). For their applications, see: Bedford et al. (2004[Bedford, R. B., Cazin, C. S. J. & Holder, D. (2004). Coord. Chem. Rev. 248, 2283-2321.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C16H13PS)2]

  • Mr = 713.91

  • Monoclinic, P 21 /n

  • a = 9.019 (2) Å

  • b = 18.427 (4) Å

  • c = 9.658 (2) Å

  • β = 110.14 (4)°

  • V = 1507.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.16 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.812, Tmax = 0.841

  • 20792 measured reflections

  • 3747 independent reflections

  • 3591 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.111

  • S = 1.19

  • 3747 reflections

  • 198 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 1.54 e Å−3

  • Δρmin = −1.49 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The catalytic abilities of palladium metal centre complexes make them amongst the most popular catalytic precursors in organic synthesis. They are used in carbon-carbon bond formation reactions like the Heck, Stille and Suzuki reactions (Bedford et al., 2004).

[PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. The title compound, trans-[PdCl2{P(C6H5)2(C4SH3)}2], crystallizes with the Pd atom on a center of symmetry and each pair of equivalent ligands in a mutually trans orientation. The geometry is, therefore, slightly distorted square planar and the Pd atom is not displaced out of the coordinating atoms plane. All angles in the coordination polyhedron are close to the ideal value of 90°, with P—Pd—Cl = 87.50 (5)° and P—Pd—Cli = 92.50 (5)°. As required by the crystallographic symmetry, the P—Pd—Pi and Cl—Pd—Cli angles are 180°.

The title compound compares well with other closely related Pd(II) complexes from the literature containing two chloro and two tertiary phosphine ligands in a trans geometry (Muller & Meijboom, 2010). The title compound, having a Pd—Cl bond length of 2.2950 (12) Å and a Pd—P bond length of 2.3387 (11) Å, fits well into the typical range for complexes of this kind. Notably the title compound did not crystallize as a solvated complex; these type of Pd(II) complexes have a tendency to crystallize as solvates (Ogutu & Meijboom, 2011).

Related literature top

For a review on related compounds, see: Spessard & Miessler (1996). For the synthesis of the starting materials, see: Drew & Doyle (1990). For (R3-P)2PdCl2 compounds with consanguinities, see: Muller & Meijboom (2010); Meijboom (2011); Burgoyne et al. (2012); Ogutu & Meijboom, (2011). For their applications, see: Bedford et al. (2004).

Experimental top

Dichloro(1,5-cyclooctadiene)palladium(II), [PdCl2(COD)], was prepared according to the literature procedure of Drew & Doyle (1990). A solution of diphenyl(thiophenyl-2-yl)phosphine (0.2 mmol) in dichloromethane (2.0 ml) was added to a solution of [PdCl2(COD)] (0.1 mmol) in dichloromethane (3.0 ml). Slow evaporation of the solvent gave the parent palladium compound. Recrystallization from dichloromethane afforded crystals of the title compound with 60% yield.

Refinement top

A disorder refinement model was applied to the thiophene ring. Ellipsoid displacement constraints (SIMU) were used to improve the model of the structure. The occupation parameters were linked to a free variable with a distribution of 0.57 (1):0.43 (1). P1, C1A, C2A and C3A were all constrained to have equal ADPs. All hydrogen atoms were positioned geometrically with C—H = 0.95 Å for aromatic H atoms. All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq. The remaining highest electron peak was 1.54 at 0.06 Å from C1A and the deepest hole was -1.49 at 0.24 Å from C4B.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the trans-dichlorobis {diphenyl(thiophenyl-2-yl)phosphine}palladium(II) showing 50% probability displacement ellipsoids. Symmetry code to generate molecule through inversion point: - x, - y, 1 - z. Hydrogen atoms were omitted for clarity.
[Figure 2] Fig. 2. The structure of the disordered phenyl ring within trans-dichlorobis {diphenyl(thiophenyl-2-yl)phosphine}palladium(II), with the lower occupancy atoms shown as semi-transparent.
trans-Dichloridobis[diphenyl(thiophen-2-yl)phosphane- κP]palladium(II) top
Crystal data top
[PdCl2(C16H13PS)2]F(000) = 720.0
Mr = 713.91Dx = 1.573 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9973 reflections
a = 9.019 (2) Åθ = 2.5–28.3°
b = 18.427 (4) ŵ = 1.06 mm1
c = 9.658 (2) ÅT = 100 K
β = 110.14 (4)°Cube, orange
V = 1507.0 (7) Å30.20 × 0.20 × 0.16 mm
Z = 2
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
3747 independent reflections
Radiation source: fine-focus sealed tube3591 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 712
Tmin = 0.812, Tmax = 0.841k = 2424
20792 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0193P)2 + 7.7351P]
where P = (Fo2 + 2Fc2)/3
3747 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 1.54 e Å3
40 restraintsΔρmin = 1.49 e Å3
Crystal data top
[PdCl2(C16H13PS)2]V = 1507.0 (7) Å3
Mr = 713.91Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.019 (2) ŵ = 1.06 mm1
b = 18.427 (4) ÅT = 100 K
c = 9.658 (2) Å0.20 × 0.20 × 0.16 mm
β = 110.14 (4)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
3747 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3591 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.841Rint = 0.019
20792 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05140 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.19Δρmax = 1.54 e Å3
3747 reflectionsΔρmin = 1.49 e Å3
198 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A collection frame width of 0.5 ° covering up to θ = 28.4° resulted in 99% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.50000.50000.50000.01794 (11)
Cl10.70661 (12)0.45351 (6)0.69206 (10)0.0280 (2)
P10.52138 (11)0.39844 (5)0.36286 (10)0.01804 (18)
C50.4185 (5)0.4000 (2)0.1640 (4)0.0225 (7)
C110.7266 (4)0.3790 (2)0.3872 (4)0.0205 (7)
C100.5040 (6)0.4028 (2)0.0598 (5)0.0310 (9)
H100.61370.40360.09070.037*
C160.7978 (5)0.3108 (2)0.4353 (4)0.0231 (7)
H160.73860.27240.45070.028*
C120.8193 (6)0.4352 (2)0.3639 (5)0.0325 (9)
H120.77450.48060.33420.039*
C130.9756 (5)0.4240 (3)0.3845 (5)0.0362 (10)
H131.03570.46120.36550.043*
C60.2505 (5)0.3988 (2)0.1073 (5)0.0309 (9)
H60.19410.39820.17170.037*
C70.1722 (7)0.3984 (3)0.0409 (5)0.0442 (12)
H70.06240.39640.07720.053*
C80.2528 (7)0.4010 (3)0.1360 (5)0.0472 (14)
H80.19750.40040.23690.057*
C90.4108 (7)0.4042 (3)0.0871 (5)0.0412 (12)
H90.46080.40760.15660.049*
C150.9557 (5)0.3024 (3)0.4588 (5)0.0340 (10)
H151.00430.25810.49290.041*
C141.0427 (5)0.3582 (3)0.4327 (5)0.0347 (10)
H141.14930.35120.44820.042*
C1A0.4428 (9)0.3176 (4)0.4104 (7)0.01804 (18)0.570 (6)
C2A0.4540 (9)0.3048 (5)0.5578 (9)0.01804 (18)0.570 (6)
H2A0.49880.33560.63770.022*0.570 (6)
C3A0.3748 (8)0.2270 (4)0.5617 (8)0.0180 (6)0.570 (6)
H3A0.36260.20430.64320.022*0.570 (6)
C4A0.3287 (19)0.2006 (7)0.4190 (13)0.041 (3)0.570 (6)
H4A0.28320.15500.39430.049*0.570 (6)
S1A0.3563 (4)0.24996 (17)0.3057 (3)0.0386 (7)0.570 (6)
C1B0.4544 (10)0.3199 (4)0.4465 (6)0.0178 (7)0.430 (6)
C2B0.3665 (17)0.2577 (7)0.3461 (10)0.071 (6)0.430 (6)
H2B0.34530.25430.24510.085*0.430 (6)
C3B0.3197 (19)0.2020 (6)0.4418 (12)0.030 (3)0.430 (6)
H3B0.26520.15890.40890.036*0.430 (6)
C4B0.3787 (12)0.2298 (4)0.6013 (8)0.043 (2)0.430 (6)
H4B0.36620.20650.68200.052*0.430 (6)
S1B0.4619 (3)0.30264 (15)0.6042 (3)0.0244 (7)0.430 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01662 (18)0.0228 (2)0.01334 (18)0.00304 (14)0.00382 (13)0.00107 (14)
Cl10.0254 (5)0.0336 (5)0.0192 (4)0.0079 (4)0.0001 (3)0.0004 (4)
P10.0168 (4)0.0231 (4)0.0145 (4)0.0022 (3)0.0057 (3)0.0025 (3)
C50.0288 (19)0.0210 (18)0.0163 (16)0.0016 (15)0.0060 (14)0.0022 (13)
C110.0178 (16)0.0247 (18)0.0205 (16)0.0008 (14)0.0084 (13)0.0038 (14)
C100.040 (2)0.0190 (18)0.0249 (19)0.0044 (17)0.0009 (17)0.0008 (15)
C160.0234 (18)0.030 (2)0.0170 (16)0.0005 (15)0.0085 (14)0.0036 (14)
C120.037 (2)0.023 (2)0.041 (2)0.0011 (17)0.0168 (19)0.0033 (17)
C130.029 (2)0.040 (3)0.044 (3)0.0133 (19)0.019 (2)0.014 (2)
C60.032 (2)0.034 (2)0.0248 (19)0.0045 (18)0.0067 (16)0.0041 (17)
C70.046 (3)0.041 (3)0.031 (2)0.011 (2)0.004 (2)0.003 (2)
C80.071 (4)0.035 (3)0.025 (2)0.016 (2)0.003 (2)0.0041 (19)
C90.072 (4)0.033 (2)0.025 (2)0.004 (2)0.025 (2)0.0026 (18)
C150.029 (2)0.046 (3)0.029 (2)0.0137 (19)0.0129 (17)0.0069 (19)
C140.0185 (18)0.058 (3)0.029 (2)0.0033 (19)0.0089 (16)0.007 (2)
C1A0.0168 (4)0.0231 (4)0.0145 (4)0.0022 (3)0.0057 (3)0.0025 (3)
C2A0.0168 (4)0.0231 (4)0.0145 (4)0.0022 (3)0.0057 (3)0.0025 (3)
C3A0.0168 (9)0.0231 (5)0.0145 (9)0.0022 (8)0.0057 (4)0.0025 (8)
C4A0.036 (5)0.028 (5)0.058 (5)0.008 (4)0.015 (5)0.015 (4)
S1A0.0460 (14)0.0398 (13)0.0342 (13)0.0067 (10)0.0191 (10)0.0007 (9)
C1B0.0166 (11)0.0224 (11)0.0145 (11)0.0018 (10)0.0056 (10)0.0026 (11)
C2B0.067 (8)0.077 (9)0.062 (9)0.025 (7)0.014 (7)0.002 (8)
C3B0.029 (5)0.018 (5)0.059 (6)0.007 (4)0.037 (4)0.009 (5)
C4B0.043 (4)0.053 (4)0.033 (4)0.014 (4)0.012 (4)0.007 (4)
S1B0.0279 (12)0.0342 (13)0.0112 (11)0.0045 (9)0.0069 (10)0.0001 (10)
Geometric parameters (Å, º) top
Pd1—Cl12.2950 (12)C7—H70.9300
Pd1—Cl1i2.2950 (12)C8—C91.340 (8)
Pd1—P12.3387 (11)C8—H80.9300
Pd1—P1i2.3387 (11)C9—H90.9300
P1—C1A1.777 (7)C15—C141.370 (7)
P1—C111.820 (4)C15—H150.9300
P1—C51.823 (4)C14—H140.9300
P1—C1B1.857 (6)C1A—C2A1.412 (9)
C5—C61.423 (6)C1A—S1A1.625 (7)
C5—C101.465 (6)C2A—C3A1.608 (10)
C11—C121.397 (6)C2A—H2A0.9300
C11—C161.414 (5)C3A—C4A1.384 (12)
C10—C91.378 (6)C3A—H3A0.9300
C10—H100.9300C4A—S1A1.507 (12)
C16—C151.371 (6)C4A—H4A0.9300
C16—H160.9300C1B—S1B1.534 (5)
C12—C131.369 (6)C1B—C2B1.534 (5)
C12—H120.9300C2B—C3B1.534 (5)
C13—C141.363 (7)C2B—H2B0.9300
C13—H130.9300C3B—C4B1.534 (5)
C6—C71.361 (6)C3B—H3B0.9300
C6—H60.9300C4B—S1B1.534 (5)
C7—C81.354 (8)C4B—H4B0.9300
Cl1—Pd1—Cl1i180.000 (1)C9—C8—C7121.2 (5)
Cl1—Pd1—P187.52 (4)C9—C8—H8119.4
Cl1i—Pd1—P192.48 (4)C7—C8—H8119.4
Cl1—Pd1—P1i92.48 (4)C8—C9—C10124.0 (5)
Cl1i—Pd1—P1i87.52 (4)C8—C9—H9118.0
P1—Pd1—P1i180.0C10—C9—H9118.0
C1A—P1—C11106.3 (3)C14—C15—C16120.8 (4)
C1A—P1—C5100.5 (2)C14—C15—H15119.6
C11—P1—C5105.39 (18)C16—C15—H15119.6
C11—P1—C1B105.0 (3)C13—C14—C15121.1 (4)
C5—P1—C1B110.3 (2)C13—C14—H14119.5
C1A—P1—Pd1114.0 (2)C15—C14—H14119.5
C11—P1—Pd1111.29 (12)C2A—C1A—S1A110.6 (6)
C5—P1—Pd1118.21 (13)C2A—C1A—P1120.3 (5)
C1B—P1—Pd1105.9 (2)S1A—C1A—P1129.1 (4)
C6—C5—C10118.6 (4)C1A—C2A—C3A107.1 (6)
C6—C5—P1119.6 (3)C1A—C2A—H2A126.4
C10—C5—P1121.8 (3)C3A—C2A—H2A126.4
C12—C11—C16118.8 (4)C4A—C3A—C2A105.8 (7)
C12—C11—P1118.1 (3)C4A—C3A—H3A127.1
C16—C11—P1123.0 (3)C2A—C3A—H3A127.1
C9—C10—C5115.5 (4)C3A—C4A—S1A116.4 (7)
C9—C10—H10122.3C3A—C4A—H4A121.8
C5—C10—H10122.3S1A—C4A—H4A121.8
C15—C16—C11118.9 (4)C4A—S1A—C1A100.0 (5)
C15—C16—H16120.5S1B—C1B—C2B108.0
C11—C16—H16120.5S1B—C1B—P1133.1 (4)
C13—C12—C11120.5 (4)C2B—C1B—P1118.8 (4)
C13—C12—H12119.7C3B—C2B—C1B108.0
C11—C12—H12119.7C3B—C2B—H2B126.0
C14—C13—C12119.8 (4)C1B—C2B—H2B126.0
C14—C13—H13120.1C2B—C3B—C4B108.0
C12—C13—H13120.1C2B—C3B—H3B126.0
C7—C6—C5120.2 (4)C4B—C3B—H3B126.0
C7—C6—H6119.9S1B—C4B—C3B108.0
C5—C6—H6119.9S1B—C4B—H4B126.0
C8—C7—C6120.5 (5)C3B—C4B—H4B126.0
C8—C7—H7119.8C1B—S1B—C4B108.0
C6—C7—H7119.8
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[PdCl2(C16H13PS)2]
Mr713.91
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.019 (2), 18.427 (4), 9.658 (2)
β (°) 110.14 (4)
V3)1507.0 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.20 × 0.20 × 0.16
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.812, 0.841
No. of measured, independent and
observed [I > 2σ(I)] reflections
20792, 3747, 3591
Rint0.019
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.111, 1.19
No. of reflections3747
No. of parameters198
No. of restraints40
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.54, 1.49

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus and XPREP (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

 

Acknowledgements

ARB thanks the University of Johannesburg and the South African National Research Foundation for financial support.

References

First citationBedford, R. B., Cazin, C. S. J. & Holder, D. (2004). Coord. Chem. Rev. 248, 2283–2321.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurgoyne, A. R., Meijboom, R. & Ogutu, H. (2012). Acta Cryst. E68, m404.  CSD CrossRef IUCr Journals Google Scholar
First citationDrew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346–349.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMeijboom, R. (2011). Acta Cryst. E67, m1663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuller, A. & Meijboom, R. (2010). Acta Cryst. E66, m1463.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOgutu, H. & Meijboom, R. (2011). Acta Cryst. E67, m1662.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131–135. New Jersey: Prentice Hall.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds