organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1385

N-(2,6-Di­chloro­phen­yl)-2-(naphthalen-1-yl)acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 4 April 2012; accepted 4 April 2012; online 13 April 2012)

In the title compound, C18H13Cl2NO, the naphthalene ring system and the benzene ring form dihedral angles of 74.73 (13) and 62.53 (16)°, respectively, with the acetamide grouping [maximum deviation = 0.005 (3) Å]. The naphthalene ring system forms a dihedral angle of 75.14 (13)° with the benzene ring. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming C(4) chains propagating in [010]. The O atom also accepts two C—H⋯O inter­actions.

Related literature

For related structures, see: Fun et al. (2010[Fun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29-o30.], 2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2941-o2942.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2926-o2927.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13Cl2NO

  • Mr = 330.19

  • Monoclinic, P 21 /c

  • a = 13.1918 (13) Å

  • b = 4.7199 (5) Å

  • c = 24.878 (2) Å

  • β = 103.127 (3)°

  • V = 1508.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 100 K

  • 0.38 × 0.13 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.853, Tmax = 0.968

  • 13545 measured reflections

  • 4397 independent reflections

  • 3245 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.168

  • S = 1.08

  • 4397 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.84 (4) 2.00 (4) 2.823 (3) 165 (3)
C8—H8A⋯O1i 0.99 2.37 3.242 (4) 146
C8—H8B⋯O1ii 0.99 2.53 3.488 (4) 163
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on synthesis and structures of amides (Fun et al., 2010, 2011a,b) we report herein the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. Bond lengths are comparable to related structures (Fun et al., 2010, 2011a,b). The naphthalene ring system (C9-C18, maximum deviation of 0.017 (3) Å at atom C9) and the benzene ring (C1-C6) form dihedral angles of 74.73 (13) and 62.53 (16)°, respectively, with the acetamide moiety (O1/N1/C7/C8, maximum deviation of 0.005 (3) Å at atom C7). The naphthalene ring system forms a dihedral angle of 75.14 (13)° with the benzene ring.

In the crystal, Fig. 2, molecules are linked via N1–H1N1···O1, C8–H8A···O1 and C8–H8B···O1 hydrogen bonds (Table 1) into two-molecule-thick chains along [010].

Related literature top

For related structures, see: Fun et al. (2010, 2011a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

1-Naphthalene acetic acid (0.186 g, 1 mmol) and 2,6-dichloroaniline (0.162 g, 1 mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) and were dissolved in dichloromethane (20ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound. Colourless needles were grown from N,N-dimethyl formamide solution by the slow evaporation method (m.p.: 463K).

Refinement top

Atom H1N1 was located in a difference Fourier map and refined freely with N1-H1N1 = 0.85 (4) Å. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 or 0.99 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
N-(2,6-Dichlorophenyl)-2-(naphthalen-1-yl)acetamide top
Crystal data top
C18H13Cl2NOF(000) = 680
Mr = 330.19Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3979 reflections
a = 13.1918 (13) Åθ = 3.2–30.0°
b = 4.7199 (5) ŵ = 0.43 mm1
c = 24.878 (2) ÅT = 100 K
β = 103.127 (3)°Needle, colourless
V = 1508.5 (3) Å30.38 × 0.13 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4397 independent reflections
Radiation source: fine-focus sealed tube3245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1818
Tmin = 0.853, Tmax = 0.968k = 66
13545 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0606P)2 + 3.359P]
where P = (Fo2 + 2Fc2)/3
4397 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C18H13Cl2NOV = 1508.5 (3) Å3
Mr = 330.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1918 (13) ŵ = 0.43 mm1
b = 4.7199 (5) ÅT = 100 K
c = 24.878 (2) Å0.38 × 0.13 × 0.08 mm
β = 103.127 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4397 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3245 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.968Rint = 0.055
13545 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.53 e Å3
4397 reflectionsΔρmin = 0.56 e Å3
203 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46301 (6)0.58083 (17)1.15354 (3)0.02081 (18)
Cl20.13465 (6)0.0073 (2)1.03531 (3)0.0258 (2)
O10.36215 (16)0.0699 (5)1.02088 (9)0.0167 (4)
N10.32626 (19)0.3664 (5)1.04970 (10)0.0128 (5)
C10.3584 (2)0.3527 (7)1.15041 (12)0.0160 (6)
C20.3352 (2)0.2594 (8)1.19925 (13)0.0221 (7)
H2A0.37580.32041.23390.026*
C30.2519 (3)0.0759 (8)1.19680 (14)0.0247 (7)
H3A0.23570.00961.22990.030*
C40.1922 (3)0.0109 (7)1.14604 (14)0.0234 (7)
H4A0.13550.13751.14440.028*
C50.2158 (2)0.0887 (7)1.09772 (13)0.0186 (6)
C60.3005 (2)0.2685 (6)1.09881 (11)0.0136 (5)
C70.3562 (2)0.1873 (6)1.01372 (11)0.0123 (5)
C80.3845 (2)0.3240 (6)0.96339 (11)0.0125 (5)
H8A0.37330.53110.96450.015*
H8B0.45920.29100.96490.015*
C90.3199 (2)0.2055 (6)0.90964 (11)0.0128 (5)
C100.3612 (2)0.0027 (7)0.88140 (12)0.0156 (6)
H10A0.42930.06670.89650.019*
C110.3044 (2)0.1058 (7)0.83020 (12)0.0183 (6)
H11A0.33430.24740.81140.022*
C120.2067 (2)0.0057 (7)0.80799 (12)0.0177 (6)
H12A0.16910.07690.77350.021*
C130.1607 (2)0.2029 (6)0.83576 (12)0.0151 (6)
C140.0590 (2)0.3104 (7)0.81287 (12)0.0189 (6)
H14A0.02130.24160.77820.023*
C150.0150 (2)0.5103 (8)0.83999 (13)0.0213 (6)
H15A0.05270.58000.82400.026*
C160.0700 (2)0.6148 (7)0.89197 (13)0.0199 (6)
H16A0.03870.75210.91100.024*
C170.1686 (2)0.5172 (7)0.91479 (12)0.0171 (6)
H17A0.20520.59020.94940.021*
C180.2165 (2)0.3100 (6)0.88767 (12)0.0140 (5)
H1N10.332 (3)0.543 (8)1.0462 (14)0.014 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0224 (3)0.0174 (4)0.0219 (4)0.0038 (3)0.0033 (3)0.0046 (3)
Cl20.0198 (3)0.0294 (5)0.0285 (4)0.0066 (3)0.0058 (3)0.0084 (3)
O10.0234 (10)0.0077 (10)0.0203 (10)0.0022 (8)0.0077 (8)0.0007 (8)
N10.0208 (11)0.0034 (12)0.0152 (11)0.0017 (9)0.0057 (9)0.0020 (9)
C10.0189 (13)0.0116 (14)0.0176 (13)0.0024 (11)0.0045 (10)0.0000 (11)
C20.0277 (15)0.0230 (18)0.0161 (14)0.0069 (14)0.0062 (11)0.0013 (13)
C30.0322 (16)0.0236 (18)0.0224 (15)0.0066 (15)0.0148 (13)0.0064 (14)
C40.0271 (15)0.0159 (16)0.0317 (17)0.0004 (13)0.0163 (13)0.0055 (14)
C50.0205 (13)0.0154 (15)0.0211 (14)0.0029 (12)0.0070 (11)0.0011 (12)
C60.0196 (13)0.0059 (13)0.0170 (13)0.0030 (11)0.0077 (10)0.0021 (10)
C70.0132 (11)0.0091 (13)0.0142 (12)0.0003 (10)0.0021 (9)0.0017 (11)
C80.0161 (12)0.0068 (12)0.0148 (12)0.0002 (10)0.0041 (10)0.0002 (10)
C90.0161 (12)0.0091 (13)0.0139 (12)0.0023 (11)0.0051 (10)0.0015 (11)
C100.0182 (12)0.0120 (14)0.0172 (13)0.0008 (12)0.0052 (10)0.0002 (11)
C110.0257 (14)0.0131 (15)0.0174 (13)0.0008 (12)0.0075 (11)0.0030 (12)
C120.0238 (14)0.0140 (14)0.0146 (13)0.0025 (12)0.0032 (10)0.0021 (12)
C130.0192 (13)0.0108 (14)0.0154 (13)0.0045 (11)0.0042 (10)0.0009 (11)
C140.0200 (13)0.0174 (16)0.0175 (14)0.0017 (12)0.0004 (11)0.0010 (12)
C150.0151 (12)0.0230 (17)0.0248 (15)0.0009 (12)0.0029 (11)0.0031 (13)
C160.0220 (14)0.0157 (16)0.0231 (15)0.0017 (12)0.0075 (11)0.0010 (12)
C170.0208 (13)0.0136 (14)0.0175 (13)0.0006 (12)0.0054 (10)0.0002 (12)
C180.0164 (12)0.0098 (13)0.0164 (13)0.0009 (11)0.0053 (10)0.0006 (11)
Geometric parameters (Å, º) top
Cl1—C11.738 (3)C9—C101.371 (4)
Cl2—C51.734 (3)C9—C181.436 (4)
O1—C71.227 (4)C10—C111.418 (4)
N1—C71.354 (4)C10—H10A0.9500
N1—C61.418 (4)C11—C121.367 (4)
N1—H1N10.85 (4)C11—H11A0.9500
C1—C21.390 (4)C12—C131.416 (4)
C1—C61.394 (4)C12—H12A0.9500
C2—C31.390 (5)C13—C181.426 (4)
C2—H2A0.9500C13—C141.426 (4)
C3—C41.390 (5)C14—C151.364 (5)
C3—H3A0.9500C14—H14A0.9500
C4—C51.390 (4)C15—C161.420 (4)
C4—H4A0.9500C15—H15A0.9500
C5—C61.398 (4)C16—C171.375 (4)
C7—C81.528 (4)C16—H16A0.9500
C8—C91.520 (4)C17—C181.416 (4)
C8—H8A0.9900C17—H17A0.9500
C8—H8B0.9900
C7—N1—C6122.0 (3)C10—C9—C18119.9 (3)
C7—N1—H1N1120 (2)C10—C9—C8119.9 (3)
C6—N1—H1N1117 (2)C18—C9—C8120.2 (2)
C2—C1—C6122.1 (3)C9—C10—C11121.5 (3)
C2—C1—Cl1119.1 (2)C9—C10—H10A119.3
C6—C1—Cl1118.8 (2)C11—C10—H10A119.3
C3—C2—C1119.2 (3)C12—C11—C10119.7 (3)
C3—C2—H2A120.4C12—C11—H11A120.2
C1—C2—H2A120.4C10—C11—H11A120.2
C4—C3—C2120.2 (3)C11—C12—C13120.8 (3)
C4—C3—H3A119.9C11—C12—H12A119.6
C2—C3—H3A119.9C13—C12—H12A119.6
C3—C4—C5119.6 (3)C12—C13—C18119.9 (3)
C3—C4—H4A120.2C12—C13—C14121.4 (3)
C5—C4—H4A120.2C18—C13—C14118.7 (3)
C4—C5—C6121.6 (3)C15—C14—C13121.1 (3)
C4—C5—Cl2118.1 (3)C15—C14—H14A119.5
C6—C5—Cl2120.3 (2)C13—C14—H14A119.5
C1—C6—C5117.3 (3)C14—C15—C16120.3 (3)
C1—C6—N1120.8 (3)C14—C15—H15A119.9
C5—C6—N1121.9 (3)C16—C15—H15A119.9
O1—C7—N1122.7 (3)C17—C16—C15120.0 (3)
O1—C7—C8121.2 (3)C17—C16—H16A120.0
N1—C7—C8116.1 (3)C15—C16—H16A120.0
C9—C8—C7111.9 (2)C16—C17—C18121.1 (3)
C9—C8—H8A109.2C16—C17—H17A119.4
C7—C8—H8A109.2C18—C17—H17A119.4
C9—C8—H8B109.2C17—C18—C13118.8 (3)
C7—C8—H8B109.2C17—C18—C9122.9 (3)
H8A—C8—H8B107.9C13—C18—C9118.2 (3)
C6—C1—C2—C30.1 (5)C18—C9—C10—C110.7 (4)
Cl1—C1—C2—C3179.7 (3)C8—C9—C10—C11177.9 (3)
C1—C2—C3—C40.5 (5)C9—C10—C11—C120.5 (5)
C2—C3—C4—C50.5 (5)C10—C11—C12—C130.8 (5)
C3—C4—C5—C61.9 (5)C11—C12—C13—C180.2 (5)
C3—C4—C5—Cl2176.1 (3)C11—C12—C13—C14179.6 (3)
C2—C1—C6—C51.2 (4)C12—C13—C14—C15179.7 (3)
Cl1—C1—C6—C5178.9 (2)C18—C13—C14—C150.5 (5)
C2—C1—C6—N1179.8 (3)C13—C14—C15—C160.2 (5)
Cl1—C1—C6—N10.1 (4)C14—C15—C16—C170.9 (5)
C4—C5—C6—C12.3 (4)C15—C16—C17—C180.8 (5)
Cl2—C5—C6—C1175.8 (2)C16—C17—C18—C130.1 (5)
C4—C5—C6—N1178.7 (3)C16—C17—C18—C9179.0 (3)
Cl2—C5—C6—N13.2 (4)C12—C13—C18—C17179.6 (3)
C7—N1—C6—C1117.3 (3)C14—C13—C18—C170.5 (4)
C7—N1—C6—C563.7 (4)C12—C13—C18—C91.4 (4)
C6—N1—C7—O10.6 (4)C14—C13—C18—C9178.4 (3)
C6—N1—C7—C8178.3 (2)C10—C9—C18—C17179.4 (3)
O1—C7—C8—C957.7 (3)C8—C9—C18—C172.0 (4)
N1—C7—C8—C9123.3 (3)C10—C9—C18—C131.7 (4)
C7—C8—C9—C1099.9 (3)C8—C9—C18—C13176.9 (3)
C7—C8—C9—C1881.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.84 (4)2.00 (4)2.823 (3)165 (3)
C8—H8A···O1i0.992.373.242 (4)146
C8—H8B···O1ii0.992.533.488 (4)163
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC18H13Cl2NO
Mr330.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.1918 (13), 4.7199 (5), 24.878 (2)
β (°) 103.127 (3)
V3)1508.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.38 × 0.13 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.853, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
13545, 4397, 3245
Rint0.055
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.168, 1.08
No. of reflections4397
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.56

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.84 (4)2.00 (4)2.823 (3)165 (3)
C8—H8A···O1i0.992.373.242 (4)146
C8—H8B···O1ii0.992.533.488 (4)163
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors would like to thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). BN thanks the UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP–DRS–Phase 1 programme.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29–o30.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1385
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds