organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1449

A monoclinic polymorph of (R,R)-4,4′-di­bromo-2,2′-[cyclo­hexane-1,2-diylbis(nitrilo­methanylyl­­idene)]diphenol

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 9 April 2012; accepted 15 April 2012; online 21 April 2012)

The title compound, C20H20Br2N2O2, a tetra­dentate Schiff base, is the enanti­omerically pure R,R-diastereomer of four possible stereoisomers. The mol­ecular structure reveals two strong intra­molecular O—H⋯N hydrogen bonds between the hy­droxy O atom and the imino N atom, which each generate S(6) rings. In the crystal, mol­ecules are stacked in columns along the a axis; when viewed down the b axis, successive columns are stacked in the opposite direction. The structure reported herein is the monoclinic polymorph of the previously reported ortho­rhom­bic form [Yi & Hu (2009[Yi, J. & Hu, S. (2009). Acta Cryst. E65, o2643.]). Acta Cryst. E65, o2643], in which the complete mol­ecule is generated by a crystallographic twofold axis.

Related literature

For the ortho­rhom­bic polymorph, see: Yi & Hu (2009[Yi, J. & Hu, S. (2009). Acta Cryst. E65, o2643.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20Br2N2O2

  • Mr = 480.20

  • Monoclinic, P 21

  • a = 5.9082 (5) Å

  • b = 18.8626 (15) Å

  • c = 9.0088 (7) Å

  • β = 91.867 (2)°

  • V = 1003.44 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.06 mm−1

  • T = 200 K

  • 0.31 × 0.17 × 0.16 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.786, Tmax = 1.000

  • 7343 measured reflections

  • 3868 independent reflections

  • 2484 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.03

  • 3868 reflections

  • 235 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1331 Friedel pairs

  • Flack parameter: −0.010 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.84 1.82 2.581 (7) 150
O2—H2O⋯N2 0.84 1.87 2.626 (7) 149

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structure of the title compound, C20H20Br2N2O2, was previously reported in the orthorhombic space group P21212 (Yi & Hu, 2009). The structure presented herein is essentially the same as the published structure and represents a monoclinic polymorph.

The title compound is a tetradentate Schiff base (Fig. 1), which can act as a dibasic ligand, i.e. the N and O donor atoms can coordinate one metal ion. The compound has two chiral C centres and is one of four possible stereoisomers. Crystallographically, the absolute configuration has been established by anomalous dispersion effects, and the R configuration of the asymmetric C atoms (C1 and C6) could be assigned. The Schiff base reveals strong intramolecular O—H···N hydrogen bonds between the hydroxy O atom and the imino N atom, with O···N distances of 2.581 (7) and 2.626 (7) Å, forming nearly planar six-membered rings (Fig. 2, Table 1). In the crystal structure, the benzene rings are not parallel: the dihedral angle between the benzene rings is 67.20 (15)°. The N—C bond lengths and the C—N—C bond angles indicate that the imino N atoms are sp2-hybridized [N1C7 = 1.274 (8) Å, N1—C1 = 1.461 (8) Å, <C7—N1—C1 = 118.7 (6)°; N2C14 = 1.280 (8) Å, N2—C6 = 1.474 (8) Å, <C14—N2—C6 = 118.3 (6)°]. The molecules are stacked in columns along the a axis. When viewed down the b axis, the successive compounds are stacked in the opposite direction. In the columns, the shortest centroid-centroid distance between aromatic rings is 4.709 (3) Å.

Related literature top

For the orthorhombic polymorph, see: Yi & Hu (2009).

Experimental top

1,2-Diaminocyclohexane (0.8007 g, 7.012 mmol) and 5-bromosalicylaldehyde (2.8204 g, 14.031 mmol) in EtOH (20 ml) were stirred for 1 h at room temperature. After addition of pentane (30 ml) to the reaction mixture, the formed precipitate was separated by filtration, washed with ether, and dried at 323 K, to give a yellow powder (1.7660 g). Yellow blocks were obtained by slow evaporation from a CH3CN solution at room temperature. The previous polymorph (Yi & Hu, 2009) was crystallised from methanol.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C). The hydroxy H atoms were located from the difference Fourier map then allowed to ride on their parent atoms in the final cycles of refinement with O—H = 0.84 Å and Uiso(H) = 1.5 Ueq(O). The highest peak (0.88 e Å-3) and the deepest hole (-0.47 e Å-3) in the difference Fourier map are located 1.34 Å and 0.86 Å, respectively, from the atoms Br1 and Br2. The absolute configuration was established by anomalous dispersion effects via diffraction measurements on the crystal. The Flack parameter is -0.010 (16) in the final cycles of refinement.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structure detail of the title compound, with atom numbering. Displacement ellipsoids are drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. A view of the unit-cell contents of the title compound. Intramolecular O—H···N hydrogen-bond interactions are drawn with dashed lines.
(R,R)-4,4'-dibromo-2,2'- [cyclohexane-1,2-diylbis(nitrilomethanylylidene)]diphenol top
Crystal data top
C20H20Br2N2O2F(000) = 480
Mr = 480.20Dx = 1.589 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2758 reflections
a = 5.9082 (5) Åθ = 2.5–25.8°
b = 18.8626 (15) ŵ = 4.06 mm1
c = 9.0088 (7) ÅT = 200 K
β = 91.867 (2)°Block, yellow
V = 1003.44 (14) Å30.31 × 0.17 × 0.16 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
3868 independent reflections
Radiation source: fine-focus sealed tube2484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 77
Tmin = 0.786, Tmax = 1.000k = 2025
7343 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0434P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3868 reflectionsΔρmax = 0.88 e Å3
235 parametersΔρmin = 0.47 e Å3
1 restraintAbsolute structure: Flack (1983), 1331 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (16)
Crystal data top
C20H20Br2N2O2V = 1003.44 (14) Å3
Mr = 480.20Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.9082 (5) ŵ = 4.06 mm1
b = 18.8626 (15) ÅT = 200 K
c = 9.0088 (7) Å0.31 × 0.17 × 0.16 mm
β = 91.867 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3868 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2484 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 1.000Rint = 0.031
7343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.108Δρmax = 0.88 e Å3
S = 1.03Δρmin = 0.47 e Å3
3868 reflectionsAbsolute structure: Flack (1983), 1331 Friedel pairs
235 parametersAbsolute structure parameter: 0.010 (16)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.25215 (12)0.33723 (3)0.33161 (7)0.0600 (3)
Br20.27364 (11)0.23777 (3)0.33104 (7)0.0551 (2)
O10.7141 (7)0.1204 (3)0.0604 (6)0.0539 (13)
H1O0.62450.10700.12520.081*
O20.2482 (8)0.0312 (3)0.0322 (6)0.0587 (14)
H2O0.15880.01270.09550.088*
N10.3538 (9)0.1159 (3)0.2147 (5)0.0428 (12)
N20.1109 (9)0.0185 (2)0.2097 (5)0.0427 (12)
C10.2247 (11)0.0899 (5)0.3390 (7)0.0414 (18)
H10.06340.10540.32570.050*
C20.3242 (15)0.1210 (4)0.4830 (7)0.0601 (19)
H2A0.48880.11110.48930.072*
H2B0.30380.17310.48160.072*
C30.2143 (15)0.0908 (5)0.6200 (10)0.068 (2)
H3A0.28930.11070.71060.081*
H3B0.05250.10450.61940.081*
C40.2344 (16)0.0103 (5)0.6219 (10)0.071 (3)
H4A0.15880.00890.70970.086*
H4B0.39610.00350.62880.086*
C50.1241 (15)0.0204 (4)0.4802 (7)0.061 (2)
H5A0.13850.07270.48180.073*
H5B0.03920.00850.47630.073*
C60.2343 (11)0.0086 (5)0.3428 (8)0.0452 (19)
H60.39570.00730.34160.054*
C70.2650 (10)0.1629 (4)0.1295 (7)0.0373 (15)
H70.11640.17950.14710.045*
C80.3885 (9)0.1916 (3)0.0051 (6)0.0344 (12)
C90.6051 (10)0.1676 (3)0.0268 (7)0.0439 (14)
C100.7125 (11)0.1940 (5)0.1518 (7)0.0477 (19)
H100.85860.17710.17510.057*
C110.6082 (11)0.2443 (3)0.2412 (6)0.0459 (15)
H110.68190.26230.32550.055*
C120.3947 (9)0.2685 (3)0.2071 (5)0.0406 (12)
C130.2877 (10)0.2432 (3)0.0852 (7)0.0381 (16)
H130.14280.26120.06220.046*
C140.2091 (10)0.0645 (4)0.1293 (7)0.0378 (15)
H140.35970.07840.15550.045*
C150.0974 (10)0.0959 (3)0.0004 (6)0.0366 (13)
C160.1247 (10)0.0773 (3)0.0454 (6)0.0387 (13)
C170.2241 (12)0.1068 (4)0.1734 (7)0.0443 (18)
H170.37420.09390.20320.053*
C180.1054 (10)0.1550 (3)0.2579 (6)0.0443 (14)
H180.17280.17520.34520.053*
C190.1098 (10)0.1725 (3)0.2129 (5)0.0416 (13)
C200.2136 (9)0.1450 (3)0.0861 (6)0.0333 (14)
H200.36280.15920.05720.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0820 (6)0.0589 (6)0.0384 (4)0.0047 (4)0.0070 (3)0.0073 (4)
Br20.0668 (5)0.0587 (6)0.0400 (4)0.0071 (4)0.0051 (3)0.0076 (4)
O10.042 (3)0.041 (3)0.080 (4)0.010 (2)0.004 (2)0.005 (3)
O20.044 (3)0.050 (3)0.082 (4)0.010 (2)0.003 (3)0.012 (3)
N10.049 (3)0.030 (3)0.049 (3)0.004 (2)0.000 (2)0.002 (2)
N20.056 (3)0.031 (3)0.042 (3)0.007 (2)0.003 (2)0.000 (2)
C10.049 (4)0.033 (4)0.042 (5)0.007 (3)0.004 (3)0.000 (3)
C20.089 (6)0.039 (4)0.053 (4)0.013 (4)0.007 (4)0.013 (3)
C30.100 (7)0.058 (6)0.046 (5)0.023 (5)0.006 (4)0.014 (5)
C40.111 (7)0.056 (6)0.046 (5)0.022 (5)0.001 (4)0.003 (5)
C50.086 (6)0.047 (4)0.049 (4)0.026 (4)0.003 (4)0.004 (3)
C60.060 (5)0.035 (5)0.041 (5)0.012 (3)0.001 (4)0.002 (3)
C70.036 (3)0.030 (4)0.045 (4)0.001 (3)0.002 (3)0.007 (3)
C80.031 (3)0.030 (3)0.041 (3)0.000 (2)0.002 (2)0.003 (2)
C90.041 (3)0.035 (3)0.056 (4)0.004 (3)0.000 (3)0.004 (3)
C100.038 (3)0.048 (5)0.058 (4)0.008 (3)0.011 (3)0.018 (3)
C110.051 (4)0.047 (4)0.040 (3)0.011 (3)0.007 (3)0.007 (3)
C120.054 (3)0.036 (3)0.031 (3)0.000 (3)0.001 (2)0.006 (3)
C130.040 (3)0.043 (4)0.031 (3)0.000 (3)0.001 (2)0.012 (3)
C140.038 (3)0.038 (4)0.038 (3)0.003 (3)0.003 (3)0.007 (3)
C150.042 (3)0.029 (3)0.038 (3)0.006 (2)0.001 (2)0.009 (2)
C160.039 (3)0.029 (3)0.049 (3)0.004 (2)0.006 (3)0.004 (3)
C170.044 (4)0.044 (4)0.044 (4)0.003 (3)0.003 (3)0.012 (3)
C180.056 (4)0.044 (4)0.032 (3)0.007 (3)0.005 (2)0.007 (3)
C190.047 (3)0.047 (4)0.031 (3)0.002 (3)0.002 (2)0.000 (3)
C200.029 (3)0.037 (4)0.033 (3)0.002 (2)0.001 (2)0.003 (3)
Geometric parameters (Å, º) top
Br1—C121.894 (6)C5—H5B0.9900
Br2—C191.912 (6)C6—H61.0000
O1—C91.337 (7)C7—C81.461 (8)
O1—H1O0.8400C7—H70.9500
O2—C161.345 (7)C8—C131.391 (8)
O2—H2O0.8400C8—C91.396 (8)
N1—C71.274 (8)C9—C101.403 (9)
N1—C11.461 (8)C10—C111.377 (10)
N2—C141.280 (8)C10—H100.9500
N2—C61.474 (8)C11—C121.385 (8)
C1—C21.524 (10)C11—H110.9500
C1—C61.534 (7)C12—C131.370 (8)
C1—H11.0000C13—H130.9500
C2—C31.523 (10)C14—C151.451 (9)
C2—H2A0.9900C14—H140.9500
C2—H2B0.9900C15—C201.398 (8)
C3—C41.522 (8)C15—C161.405 (8)
C3—H3A0.9900C16—C171.393 (9)
C3—H3B0.9900C17—C181.390 (9)
C4—C51.528 (11)C17—H170.9500
C4—H4A0.9900C18—C191.363 (8)
C4—H4B0.9900C18—H180.9500
C5—C61.520 (10)C19—C201.380 (8)
C5—H5A0.9900C20—H200.9500
C9—O1—H1O107.9N1—C7—H7119.6
C16—O2—H2O106.3C8—C7—H7119.6
C7—N1—C1118.7 (6)C13—C8—C9119.0 (5)
C14—N2—C6118.3 (6)C13—C8—C7119.6 (5)
N1—C1—C2109.1 (6)C9—C8—C7121.5 (5)
N1—C1—C6109.5 (7)O1—C9—C8121.4 (5)
C2—C1—C6110.6 (7)O1—C9—C10119.1 (6)
N1—C1—H1109.2C8—C9—C10119.4 (6)
C2—C1—H1109.2C11—C10—C9120.6 (6)
C6—C1—H1109.2C11—C10—H10119.7
C3—C2—C1112.5 (7)C9—C10—H10119.7
C3—C2—H2A109.1C10—C11—C12119.4 (6)
C1—C2—H2A109.1C10—C11—H11120.3
C3—C2—H2B109.1C12—C11—H11120.3
C1—C2—H2B109.1C13—C12—C11120.7 (5)
H2A—C2—H2B107.8C13—C12—Br1120.3 (4)
C4—C3—C2110.3 (8)C11—C12—Br1119.0 (4)
C4—C3—H3A109.6C12—C13—C8120.9 (5)
C2—C3—H3A109.6C12—C13—H13119.6
C4—C3—H3B109.6C8—C13—H13119.6
C2—C3—H3B109.6N2—C14—C15122.0 (6)
H3A—C3—H3B108.1N2—C14—H14119.0
C3—C4—C5109.8 (9)C15—C14—H14119.0
C3—C4—H4A109.7C20—C15—C16118.5 (5)
C5—C4—H4A109.7C20—C15—C14119.8 (5)
C3—C4—H4B109.7C16—C15—C14121.7 (5)
C5—C4—H4B109.7O2—C16—C17117.8 (6)
H4A—C4—H4B108.2O2—C16—C15122.0 (5)
C6—C5—C4111.2 (6)C17—C16—C15120.2 (6)
C6—C5—H5A109.4C18—C17—C16120.5 (6)
C4—C5—H5A109.4C18—C17—H17119.7
C6—C5—H5B109.4C16—C17—H17119.7
C4—C5—H5B109.4C19—C18—C17118.5 (6)
H5A—C5—H5B108.0C19—C18—H18120.7
N2—C6—C5108.9 (6)C17—C18—H18120.7
N2—C6—C1108.2 (7)C18—C19—C20122.7 (5)
C5—C6—C1111.2 (7)C18—C19—Br2118.3 (4)
N2—C6—H6109.5C20—C19—Br2119.0 (4)
C5—C6—H6109.5C19—C20—C15119.5 (5)
C1—C6—H6109.5C19—C20—H20120.2
N1—C7—C8120.9 (6)C15—C20—H20120.2
C7—N1—C1—C2106.0 (7)C9—C10—C11—C120.3 (10)
C7—N1—C1—C6132.8 (6)C10—C11—C12—C130.4 (9)
N1—C1—C2—C3174.3 (7)C10—C11—C12—Br1179.6 (5)
C6—C1—C2—C353.9 (9)C11—C12—C13—C81.4 (9)
C1—C2—C3—C456.4 (11)Br1—C12—C13—C8178.5 (4)
C2—C3—C4—C557.8 (10)C9—C8—C13—C122.4 (9)
C3—C4—C5—C658.7 (10)C7—C8—C13—C12176.7 (5)
C14—N2—C6—C5109.5 (7)C6—N2—C14—C15177.7 (6)
C14—N2—C6—C1129.6 (7)N2—C14—C15—C20178.8 (6)
C4—C5—C6—N2175.8 (7)N2—C14—C15—C160.4 (9)
C4—C5—C6—C156.7 (9)C20—C15—C16—O2179.1 (5)
N1—C1—C6—N266.8 (7)C14—C15—C16—O22.4 (8)
C2—C1—C6—N2173.0 (5)C20—C15—C16—C170.6 (9)
N1—C1—C6—C5173.7 (5)C14—C15—C16—C17177.9 (6)
C2—C1—C6—C553.5 (8)O2—C16—C17—C18179.7 (6)
C1—N1—C7—C8178.9 (6)C15—C16—C17—C180.1 (10)
N1—C7—C8—C13179.5 (6)C16—C17—C18—C190.1 (10)
N1—C7—C8—C91.5 (9)C17—C18—C19—C200.7 (9)
C13—C8—C9—O1176.9 (5)C17—C18—C19—Br2179.2 (5)
C7—C8—C9—O14.1 (9)C18—C19—C20—C151.3 (9)
C13—C8—C9—C102.3 (9)Br2—C19—C20—C15178.6 (4)
C7—C8—C9—C10176.7 (5)C16—C15—C20—C191.2 (8)
O1—C9—C10—C11177.9 (6)C14—C15—C20—C19177.3 (5)
C8—C9—C10—C111.3 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.841.822.581 (7)150
O2—H2O···N20.841.872.626 (7)149

Experimental details

Crystal data
Chemical formulaC20H20Br2N2O2
Mr480.20
Crystal system, space groupMonoclinic, P21
Temperature (K)200
a, b, c (Å)5.9082 (5), 18.8626 (15), 9.0088 (7)
β (°) 91.867 (2)
V3)1003.44 (14)
Z2
Radiation typeMo Kα
µ (mm1)4.06
Crystal size (mm)0.31 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.786, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7343, 3868, 2484
Rint0.031
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.03
No. of reflections3868
No. of parameters235
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.47
Absolute structureFlack (1983), 1331 Friedel pairs
Absolute structure parameter0.010 (16)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.841.822.581 (7)150
O2—H2O···N20.841.872.626 (7)149
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0030747).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYi, J. & Hu, S. (2009). Acta Cryst. E65, o2643.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1449
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds