metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m639-m640

[(E)-Oxido(pyridin-2-yl­methyl­­idene)amine-κ2N,N′][(E)-N-(pyridin-2-yl­methyl­­idene)hydroxyl­amine-κ2N,N′]silver(I) perchlorate–bis­­[(E)-N-(pyridin-2-yl­methyl­­idene)hydroxyl­amine-κ2N,N′]silver(I) (1/1)

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 10 April 2012; accepted 14 April 2012; online 21 April 2012)

In the title salt co-crystal, [Ag(C6H5N2O)(C6H6N2O)]ClO4·[Ag(C6H6N2O)2], the asymmetric unit comprises a [Ag(LH)2]+ cation, a perchlorate anion and a neutral (LH)AgL mol­ecule, where LH is pyridine-2-carboxaldoxime. Both silver-containing species feature N,N′-chelating LH and L ligands, which define an N4 donor set that is highly distorted [dihedral angles between AgC2N2 chelate rings = 45.7 (3) and 44.3 (2)°, respectively] owing, in part, to the close approach of a neighbouring Ag atom, leading to an argentophilic inter­action [Ag⋯Ag = 3.1868 (11) Å]. The mol­ecular conformations are stabilized by intra­molecular O—H⋯O hydrogen bonds. In the crystal, O—H⋯O inter­actions lead to supra­molecular chains along [010]. Chains aggregate into layers in the ab plane, defining channels along [100] in which reside the perchlorate anions; the latter are disordered over two overlapped orientations in a 50:50 ratio.

Related literature

For structural diversity in the structures of silver salts, see: Kundu et al. (2010[Kundu, N., Audhya, A., Towsif Abtab, Sk. Md., Ghosh, S., Tiekink, E. R. T. & Chaudhury, M. (2010). Cryst. Growth Des. 10, 1269-1282.]). For a related structure, see: Abu-Youssef et al. (2010[Abu-Youssef, M. A. M., Soliman, S. M., Langer, V., Gohar, Y. M., Hasanen, A. A., Makhyoun, M. A., Zaky, A. H. & Ohrstrom, L. R. (2010). Inorg. Chem. 49, 9788-9797.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C6H5N2O)(C6H6N2O)]ClO4·[Ag(C6H6N2O)2]

  • Mr = 802.69

  • Triclinic, [P \overline 1]

  • a = 7.3925 (18) Å

  • b = 8.3419 (19) Å

  • c = 25.626 (6) Å

  • α = 90.226 (6)°

  • β = 92.753 (6)°

  • γ = 114.409 (6)°

  • V = 1436.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 293 K

  • 0.21 × 0.13 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.356, Tmax = 1.000

  • 11387 measured reflections

  • 5042 independent reflections

  • 3660 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.187

  • S = 1.09

  • 5042 reflections

  • 430 parameters

  • 64 restraints

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—N1 2.280 (5)
Ag1—N2 2.392 (5)
Ag1—N3 2.281 (5)
Ag1—N4 2.384 (5)
Ag2—N5 2.235 (5)
Ag2—N6 2.448 (4)
Ag2—N7 2.256 (5)
Ag2—N8 2.401 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O4 0.84 1.91 2.673 (8) 151
O3—H3o⋯O2 0.84 1.81 2.610 (6) 160
O4—H4o⋯O2i 0.84 1.64 2.475 (6) 174
Symmetry code: (i) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC and Rigaku, 2002[Rigaku/MSC and Rigaku (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Nitrogen adducts of silver salts are notorious for their structural diversity with very different coordination geometries let alone supramolecular architectures being observed by a simple change in counter-ion, for example (Kundu et al., 2010). A molecule that has yet to attract significant interest in terms of coordination chemistry towards silver is pyridine-2-carboxaldoxime (LH) with only the Ag(LH)NO3 salt reported thus far (Abu-Youssef et al., 2010). Herein, the crystal structure determination of the perchlorate analogue (I) is described.

In (I), the asymmetric unit comprises a neutral (LH)AgL molecule, a [Ag(LH)2]+ cation and a perchlorate anion, Fig. 1. In both silver-containing species, the pyridine-2-carboxaldoxime and the derived anion are N,N-chelating, Table 1. The Ag—N(pyridine) and Ag—N(oxime) bond lengths are systematically shorter and longer, respectively, in the neutral molecule than in the cation, Table 1, and the Ag—N4(oximate) distance is shorter compared with the Ag—N(oxime) bond lengths, Table 1. Each five-membered AgC2N2 chelate ring is essentially planar with r.m.s. deviations of 0.062, 0.049, 0.080 and 0.035 Å, respectively for the N1, N3, N4 and N6-containing rings. The dihedral between the chelate rings involving the Ag1 atom is 44.3 (2)° indicating a distorted coordination geometry; the comparable angle for the Ag2-containing molecule is 45.7 (3)°. The close approach of a neighbouring silver atom contributes to the distortion as the silver atoms are connected by an agentophilic Ag1···Ag2 interaction, Table 1.

The most prominent feature of the crystal packing is the formation of a supramolecular chain along [010] mediated by O—H···O interactions, Fig. 2 and Table 2. In both the neutral (LH)AgL molecule and in the [Ag(LH)2]+ cation an intramolecular O—H···O interaction is formed. Links between molecules to form the chain are also of the type O—H···O and involve the formally anionic O2 atom which is bifurcated. A detailed analysis of the crystal packing is precluded owing to the disorder associated with the perchlorate anions. However, globally the Ag-containing molecules aggregate into layers in the ab plane to define channels along [100] in which reside the perchlorate anions, Fig. 3.

Related literature top

For structural diversity in the structures of silver salts, see: Kundu et al. (2010). For a related structure, see: Abu-Youssef et al. (2010).

Experimental top

Silver perchlorate (1 mmol) and picolinaldehyde oxime (1 mmol) was dissolved in methanol solution (10 ml). The solution was filtered and set aside, away from light, for the growth of crystals. Colourless prisms deposited after several days.

Refinement top

Carbon- and oxygen-bound H-atoms were placed in calculated positions (C—H = 0.93 and O—H = 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C,O).

The perchlorate anion is disordered over two sites of equal weight, with each of the two chlorides located on a centre of inversion. The oxygen atoms of each perchlorate anion are further disordered and assumed to have a 1:1 type of disorder. All Cl—O distances were restrained to 1.41±0.01 Å and the O···O distances to 2.30±0.01 Å. Each set of four oxygen atoms was restrained to have the same anisotropic displacement parameters and these were restrained to be nearly isotropic.

The final difference Fourier map had a peak at 0.91 Å from the Ag1 atom.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC and Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 20% probability level. Each perchlorate anion has half-weight and for each, only one orientation is shown.
[Figure 2] Fig. 2. A view of the supramolecular chain along [010] in (I). The O—H···O hydrogen bonds are shown as orange dashed lines.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents for (I). The O—H···O interactions are shown as orange dashed lines. Only one orientation of the disordered perchlorate anions is shown.
[(E)-Oxido(pyridin-2-ylmethylidene)amine- κ2N,N'][(E)-N-(pyridin-2- ylmethylidene)hydroxylamine-κ2N,N']silver(I) perchlorate– bis[(E)-N-(pyridin-2-ylmethylidene)hydroxylamine- κ2N,N']silver(I) (1/1) top
Crystal data top
[Ag(C6H5N2O)(C6H6N2O)]ClO4·[Ag(C6H6N2O)2]Z = 2
Mr = 802.69F(000) = 796
Triclinic, P1Dx = 1.855 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3925 (18) ÅCell parameters from 7282 reflections
b = 8.3419 (19) Åθ = 3.0–27.4°
c = 25.626 (6) ŵ = 1.52 mm1
α = 90.226 (6)°T = 293 K
β = 92.753 (6)°Prism, colourless
γ = 114.409 (6)°0.21 × 0.13 × 0.13 mm
V = 1436.9 (6) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5042 independent reflections
Radiation source: fine-focus sealed tube3660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scanθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 78
Tmin = 0.356, Tmax = 1.000k = 1010
11387 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0985P)2 + 1.259P]
where P = (Fo2 + 2Fc2)/3
5042 reflections(Δ/σ)max = 0.001
430 parametersΔρmax = 1.19 e Å3
64 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Ag(C6H5N2O)(C6H6N2O)]ClO4·[Ag(C6H6N2O)2]γ = 114.409 (6)°
Mr = 802.69V = 1436.9 (6) Å3
Triclinic, P1Z = 2
a = 7.3925 (18) ÅMo Kα radiation
b = 8.3419 (19) ŵ = 1.52 mm1
c = 25.626 (6) ÅT = 293 K
α = 90.226 (6)°0.21 × 0.13 × 0.13 mm
β = 92.753 (6)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5042 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3660 reflections with I > 2σ(I)
Tmin = 0.356, Tmax = 1.000Rint = 0.046
11387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05964 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.09Δρmax = 1.19 e Å3
5042 reflectionsΔρmin = 0.58 e Å3
430 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.70514 (8)0.49157 (7)0.260394 (19)0.0752 (2)
Ag20.27551 (9)0.48831 (8)0.23871 (2)0.0791 (2)
Cl10.50000.00000.00000.0665 (6)
Cl20.00001.00000.50000.0662 (6)
O50.580 (3)0.1840 (12)0.0097 (9)0.135 (5)0.25
O60.597 (3)0.072 (3)0.0356 (8)0.135 (5)0.25
O70.2954 (14)0.073 (3)0.0089 (9)0.135 (5)0.25
O80.530 (4)0.037 (3)0.0512 (5)0.135 (5)0.25
O90.170 (2)1.086 (2)0.4738 (7)0.110 (4)0.25
O100.089 (3)0.8170 (12)0.4851 (7)0.110 (4)0.25
O110.143 (2)1.069 (3)0.4902 (8)0.110 (4)0.25
O120.043 (3)1.008 (3)0.5550 (3)0.110 (4)0.25
O5'0.623 (3)0.1818 (14)0.0045 (10)0.151 (6)0.25
O6'0.433 (4)0.034 (3)0.0503 (5)0.151 (6)0.25
O7'0.336 (3)0.046 (4)0.0369 (8)0.151 (6)0.25
O8'0.610 (3)0.097 (3)0.0124 (10)0.151 (6)0.25
O9'0.040 (4)1.033 (4)0.4463 (4)0.148 (6)0.25
O10'0.136 (3)0.8217 (16)0.5034 (10)0.148 (6)0.25
O11'0.085 (4)1.111 (3)0.5179 (10)0.148 (6)0.25
O12'0.178 (2)1.031 (4)0.5285 (10)0.148 (6)0.25
O10.7001 (8)0.8834 (6)0.3068 (2)0.0852 (14)
H1o0.72150.90630.27520.128*
O20.4335 (6)0.0784 (5)0.20609 (19)0.0714 (12)
O30.2203 (8)0.0720 (5)0.2850 (2)0.0771 (13)
H3o0.26290.06800.25540.116*
O40.6262 (7)0.8966 (5)0.2041 (2)0.0786 (13)
H4o0.56280.95930.20710.118*
N10.6765 (7)0.3991 (6)0.3444 (2)0.0591 (12)
N20.6812 (7)0.7126 (6)0.3159 (2)0.0591 (12)
N30.8625 (7)0.5765 (6)0.18431 (19)0.0549 (11)
N40.5644 (7)0.2521 (5)0.1986 (2)0.0553 (11)
N50.1855 (7)0.5423 (6)0.3166 (2)0.0574 (12)
N60.2256 (7)0.2365 (6)0.2941 (2)0.0557 (11)
N70.2272 (7)0.4018 (6)0.1538 (2)0.0590 (12)
N80.4962 (7)0.7274 (6)0.1894 (2)0.0624 (13)
C10.6511 (10)0.2356 (9)0.3590 (3)0.0764 (19)
H1A0.66680.16100.33430.092*
C20.6039 (12)0.1754 (12)0.4076 (4)0.102 (3)
H20.58210.06030.41560.122*
C30.5889 (12)0.2856 (14)0.4448 (4)0.104 (3)
H3A0.55950.24720.47860.125*
C40.6173 (11)0.4529 (13)0.4322 (3)0.088 (2)
H4A0.60960.53020.45730.106*
C50.6581 (8)0.5058 (9)0.3807 (3)0.0591 (15)
C60.6811 (9)0.6802 (8)0.3638 (3)0.0659 (16)
H60.69570.76730.38850.079*
C70.9996 (9)0.7365 (8)0.1739 (3)0.0677 (17)
H71.04760.81970.20120.081*
C81.0742 (10)0.7860 (9)0.1258 (3)0.0757 (19)
H81.17150.89840.12080.091*
C91.0014 (10)0.6654 (10)0.0853 (3)0.0756 (19)
H91.04890.69430.05210.091*
C100.8557 (10)0.4994 (10)0.0943 (3)0.0698 (17)
H100.80160.41690.06700.084*
C110.7920 (8)0.4581 (7)0.1443 (2)0.0521 (13)
C120.6440 (8)0.2828 (8)0.1552 (2)0.0579 (14)
H120.60810.19300.12990.070*
C130.1915 (10)0.6977 (9)0.3323 (3)0.0738 (18)
H130.21200.78330.30740.089*
C140.1695 (10)0.7387 (9)0.3823 (3)0.0776 (19)
H140.17570.84920.39110.093*
C150.1382 (10)0.6140 (11)0.4194 (3)0.078 (2)
H150.12250.63850.45390.093*
C160.1301 (10)0.4511 (10)0.4051 (3)0.0703 (18)
H160.10770.36440.42980.084*
C170.1556 (7)0.4185 (7)0.3538 (2)0.0509 (13)
C180.1551 (9)0.2518 (7)0.3372 (2)0.0577 (14)
H180.10260.15480.35850.069*
C190.1015 (12)0.2427 (9)0.1338 (3)0.083 (2)
H190.01590.16190.15600.100*
C200.0939 (16)0.1945 (12)0.0825 (4)0.109 (3)
H200.00580.08280.07040.130*
C210.2162 (19)0.3111 (16)0.0493 (4)0.116 (3)
H210.21310.27920.01430.139*
C220.3443 (13)0.4759 (12)0.0674 (3)0.086 (2)
H220.42710.55800.04490.103*
C230.3474 (11)0.5172 (9)0.1202 (3)0.0662 (17)
C240.4803 (10)0.6905 (8)0.1411 (3)0.0661 (16)
H240.55550.77620.11830.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0860 (4)0.0851 (4)0.0572 (4)0.0386 (3)0.0006 (3)0.0154 (3)
Ag20.0911 (4)0.0918 (4)0.0588 (4)0.0408 (3)0.0170 (3)0.0185 (3)
Cl10.0764 (13)0.0598 (12)0.0535 (11)0.0180 (10)0.0091 (10)0.0010 (9)
Cl20.0880 (15)0.0592 (12)0.0552 (12)0.0340 (11)0.0075 (11)0.0040 (9)
O50.145 (8)0.127 (8)0.126 (8)0.046 (6)0.015 (7)0.004 (7)
O60.145 (8)0.127 (8)0.126 (8)0.046 (6)0.015 (7)0.004 (7)
O70.145 (8)0.127 (8)0.126 (8)0.046 (6)0.015 (7)0.004 (7)
O80.145 (8)0.127 (8)0.126 (8)0.046 (6)0.015 (7)0.004 (7)
O90.124 (7)0.113 (7)0.091 (7)0.048 (6)0.015 (6)0.018 (6)
O100.124 (7)0.113 (7)0.091 (7)0.048 (6)0.015 (6)0.018 (6)
O110.124 (7)0.113 (7)0.091 (7)0.048 (6)0.015 (6)0.018 (6)
O120.124 (7)0.113 (7)0.091 (7)0.048 (6)0.015 (6)0.018 (6)
O5'0.169 (9)0.133 (9)0.145 (10)0.054 (8)0.028 (8)0.012 (7)
O6'0.169 (9)0.133 (9)0.145 (10)0.054 (8)0.028 (8)0.012 (7)
O7'0.169 (9)0.133 (9)0.145 (10)0.054 (8)0.028 (8)0.012 (7)
O8'0.169 (9)0.133 (9)0.145 (10)0.054 (8)0.028 (8)0.012 (7)
O9'0.162 (9)0.143 (9)0.135 (9)0.060 (8)0.001 (8)0.023 (7)
O10'0.162 (9)0.143 (9)0.135 (9)0.060 (8)0.001 (8)0.023 (7)
O11'0.162 (9)0.143 (9)0.135 (9)0.060 (8)0.001 (8)0.023 (7)
O12'0.162 (9)0.143 (9)0.135 (9)0.060 (8)0.001 (8)0.023 (7)
O10.104 (4)0.050 (2)0.107 (4)0.039 (2)0.013 (3)0.011 (2)
O20.071 (3)0.043 (2)0.097 (3)0.0182 (18)0.019 (2)0.001 (2)
O30.093 (3)0.041 (2)0.102 (4)0.029 (2)0.028 (3)0.010 (2)
O40.075 (3)0.051 (2)0.111 (4)0.028 (2)0.006 (3)0.000 (2)
N10.051 (2)0.058 (3)0.067 (3)0.022 (2)0.003 (2)0.008 (2)
N20.060 (3)0.051 (3)0.069 (3)0.027 (2)0.002 (2)0.010 (2)
N30.053 (2)0.043 (2)0.068 (3)0.021 (2)0.004 (2)0.002 (2)
N40.055 (2)0.037 (2)0.071 (3)0.0168 (19)0.003 (2)0.005 (2)
N50.057 (3)0.048 (3)0.071 (3)0.024 (2)0.014 (2)0.010 (2)
N60.055 (2)0.042 (2)0.071 (3)0.0211 (19)0.001 (2)0.004 (2)
N70.063 (3)0.055 (3)0.065 (3)0.031 (2)0.009 (2)0.003 (2)
N80.064 (3)0.045 (3)0.081 (4)0.023 (2)0.015 (3)0.010 (2)
C10.067 (4)0.065 (4)0.097 (5)0.029 (3)0.018 (4)0.000 (4)
C20.078 (5)0.086 (6)0.126 (8)0.020 (4)0.006 (5)0.032 (6)
C30.074 (5)0.120 (7)0.101 (7)0.023 (5)0.003 (5)0.046 (6)
C40.066 (4)0.124 (7)0.074 (5)0.039 (4)0.004 (4)0.001 (5)
C50.050 (3)0.072 (4)0.058 (4)0.028 (3)0.001 (3)0.008 (3)
C60.063 (3)0.068 (4)0.072 (4)0.034 (3)0.010 (3)0.027 (3)
C70.067 (4)0.050 (3)0.087 (5)0.028 (3)0.014 (3)0.013 (3)
C80.064 (4)0.061 (4)0.099 (5)0.022 (3)0.012 (4)0.027 (4)
C90.068 (4)0.080 (5)0.083 (5)0.034 (3)0.017 (4)0.031 (4)
C100.066 (4)0.084 (5)0.060 (4)0.032 (3)0.001 (3)0.001 (3)
C110.050 (3)0.050 (3)0.058 (3)0.024 (2)0.003 (3)0.002 (3)
C120.058 (3)0.054 (3)0.062 (4)0.023 (3)0.003 (3)0.016 (3)
C130.069 (4)0.061 (4)0.098 (5)0.033 (3)0.016 (4)0.007 (4)
C140.062 (4)0.066 (4)0.106 (6)0.029 (3)0.005 (4)0.019 (4)
C150.062 (4)0.102 (6)0.076 (5)0.041 (4)0.000 (3)0.020 (4)
C160.060 (3)0.089 (5)0.068 (4)0.036 (3)0.006 (3)0.010 (4)
C170.043 (3)0.056 (3)0.053 (3)0.020 (2)0.003 (2)0.011 (3)
C180.061 (3)0.049 (3)0.065 (4)0.025 (3)0.013 (3)0.019 (3)
C190.093 (5)0.056 (4)0.107 (6)0.041 (4)0.020 (4)0.001 (4)
C200.143 (8)0.089 (6)0.110 (7)0.072 (6)0.061 (6)0.040 (5)
C210.175 (10)0.140 (9)0.078 (6)0.116 (8)0.038 (6)0.032 (6)
C220.102 (6)0.110 (6)0.065 (4)0.064 (5)0.003 (4)0.000 (4)
C230.081 (4)0.080 (4)0.059 (4)0.054 (4)0.006 (3)0.012 (3)
C240.068 (4)0.064 (4)0.067 (4)0.026 (3)0.010 (3)0.022 (3)
Geometric parameters (Å, º) top
Ag1—N12.280 (5)N5—C131.338 (8)
Ag1—N22.392 (5)N5—C171.365 (7)
Ag1—N32.281 (5)N6—C181.274 (7)
Ag1—N42.384 (5)N7—C191.348 (8)
Ag2—N52.235 (5)N7—C231.353 (8)
Ag2—N62.448 (4)N8—C241.263 (8)
Ag2—N72.256 (5)C1—C21.352 (11)
Ag2—N82.401 (5)C1—H1A0.9300
Ag1—Ag23.1868 (11)C2—C31.360 (13)
Cl1—O6'1.392 (8)C2—H20.9300
Cl1—O6'i1.392 (8)C3—C41.365 (12)
Cl1—O8i1.395 (8)C3—H3A0.9300
Cl1—O81.395 (8)C4—C51.399 (10)
Cl1—O8'1.407 (9)C4—H4A0.9300
Cl1—O8'i1.407 (9)C5—C61.464 (9)
Cl1—O71.409 (8)C6—H60.9300
Cl1—O7i1.409 (8)C7—C81.371 (10)
Cl1—O51.414 (8)C7—H70.9300
Cl1—O5i1.414 (8)C8—C91.366 (10)
Cl1—O7'i1.418 (9)C8—H80.9300
Cl1—O7'1.418 (9)C9—C101.387 (10)
Cl2—O91.375 (8)C9—H90.9300
Cl2—O9ii1.375 (8)C10—C111.382 (9)
Cl2—O11'ii1.400 (9)C10—H100.9300
Cl2—O11'1.400 (9)C11—C121.458 (8)
Cl2—O12'1.400 (9)C12—H120.9300
Cl2—O12'ii1.400 (9)C13—C141.359 (10)
Cl2—O11ii1.410 (8)C13—H130.9300
Cl2—O111.410 (8)C14—C151.367 (10)
Cl2—O10'1.415 (9)C14—H140.9300
Cl2—O10'ii1.415 (9)C15—C161.383 (11)
Cl2—O121.424 (8)C15—H150.9300
Cl2—O12ii1.424 (8)C16—C171.379 (9)
O1—N21.395 (6)C16—H160.9300
O1—H1o0.8400C17—C181.450 (8)
O2—N41.391 (6)C18—H180.9300
O3—N61.375 (6)C19—C201.365 (12)
O3—H3o0.8400C19—H190.9300
O4—N81.378 (6)C20—C211.357 (14)
O4—H4o0.8400C20—H200.9300
N1—C51.334 (8)C21—C221.370 (13)
N1—C11.354 (8)C21—H210.9300
N2—C61.257 (8)C22—C231.392 (10)
N3—C71.338 (7)C22—H220.9300
N3—C111.347 (7)C23—C241.453 (10)
N4—C121.261 (7)C24—H240.9300
N1—Ag1—N3154.92 (17)C2—C3—H3A120.1
N1—Ag1—N4112.19 (17)C4—C3—H3A120.1
N3—Ag1—N471.69 (16)C3—C4—C5118.7 (9)
N1—Ag1—N270.69 (18)C3—C4—H4A120.6
N3—Ag1—N2118.35 (16)C5—C4—H4A120.6
N4—Ag1—N2151.77 (17)N1—C5—C4121.6 (7)
N1—Ag1—Ag299.47 (12)N1—C5—C6116.6 (6)
N3—Ag1—Ag2105.57 (12)C4—C5—C6121.8 (7)
N4—Ag1—Ag279.91 (11)N2—C6—C5120.1 (6)
N2—Ag1—Ag272.01 (12)N2—C6—H6119.9
N5—Ag2—N7155.54 (18)C5—C6—H6119.9
N5—Ag2—N8119.88 (17)N3—C7—C8124.4 (6)
N7—Ag2—N872.02 (18)N3—C7—H7117.8
N5—Ag2—N671.74 (16)C8—C7—H7117.8
N7—Ag2—N6109.99 (17)C9—C8—C7118.0 (6)
N8—Ag2—N6148.63 (16)C9—C8—H8121.0
N5—Ag2—Ag1105.18 (13)C7—C8—H8121.0
N7—Ag2—Ag198.55 (12)C8—C9—C10119.3 (6)
N8—Ag2—Ag174.53 (12)C8—C9—H9120.4
N6—Ag2—Ag174.24 (11)C10—C9—H9120.4
O6'—Cl1—O8'111.4 (8)C11—C10—C9119.1 (7)
O8—Cl1—O7110.5 (8)C11—C10—H10120.4
O8—Cl1—O5110.4 (8)C9—C10—H10120.4
O7—Cl1—O5108.9 (8)N3—C11—C10121.9 (5)
O6'—Cl1—O7'110.0 (8)N3—C11—C12117.8 (5)
O8'—Cl1—O7'108.7 (8)C10—C11—C12120.3 (6)
O11'—Cl2—O12'111.0 (8)N4—C12—C11120.4 (5)
O9—Cl2—O11112.9 (8)N4—C12—H12119.8
O11'—Cl2—O10'110.1 (8)C11—C12—H12119.8
O12'—Cl2—O10'110.3 (8)N5—C13—C14124.4 (7)
O9—Cl2—O12111.2 (8)N5—C13—H13117.8
N2—O1—H1o109.5C14—C13—H13117.8
N6—O3—H3o109.5C13—C14—C15118.6 (7)
N8—O4—H4o109.5C13—C14—H14120.7
C5—N1—C1117.5 (6)C15—C14—H14120.7
C5—N1—Ag1117.3 (4)C14—C15—C16119.2 (7)
C1—N1—Ag1124.6 (5)C14—C15—H15120.4
C6—N2—O1112.4 (5)C16—C15—H15120.4
C6—N2—Ag1114.2 (4)C17—C16—C15119.3 (7)
O1—N2—Ag1132.4 (4)C17—C16—H16120.3
C7—N3—C11117.2 (5)C15—C16—H16120.3
C7—N3—Ag1126.8 (4)N5—C17—C16121.6 (6)
C11—N3—Ag1115.6 (3)N5—C17—C18117.2 (5)
C12—N4—O2115.8 (5)C16—C17—C18121.3 (5)
C12—N4—Ag1113.9 (4)N6—C18—C17120.8 (5)
O2—N4—Ag1129.4 (4)N6—C18—H18119.6
C13—N5—C17116.9 (6)C17—C18—H18119.6
C13—N5—Ag2124.8 (4)N7—C19—C20123.1 (8)
C17—N5—Ag2117.3 (4)N7—C19—H19118.4
C18—N6—O3113.6 (4)C20—C19—H19118.4
C18—N6—Ag2111.1 (4)C21—C20—C19119.4 (8)
O3—N6—Ag2133.8 (4)C21—C20—H20120.3
C19—N7—C23116.9 (6)C19—C20—H20120.3
C19—N7—Ag2126.6 (5)C20—C21—C22119.9 (9)
C23—N7—Ag2116.3 (4)C20—C21—H21120.1
C24—N8—O4115.8 (5)C22—C21—H21120.1
C24—N8—Ag2112.5 (4)C21—C22—C23118.3 (9)
O4—N8—Ag2131.6 (4)C21—C22—H22120.8
C2—C1—N1123.3 (8)C23—C22—H22120.8
C2—C1—H1A118.3N7—C23—C22122.4 (7)
N1—C1—H1A118.3N7—C23—C24117.3 (6)
C1—C2—C3119.0 (8)C22—C23—C24120.3 (7)
C1—C2—H2120.5N8—C24—C23121.5 (6)
C3—C2—H2120.5N8—C24—H24119.2
C2—C3—C4119.8 (8)C23—C24—H24119.2
N1—Ag1—Ag2—N529.36 (18)N6—Ag2—N7—C23143.4 (4)
N3—Ag1—Ag2—N5151.98 (17)Ag1—Ag2—N7—C2367.1 (4)
N4—Ag1—Ag2—N5140.41 (17)N5—Ag2—N8—C24156.9 (4)
N2—Ag1—Ag2—N536.65 (18)N7—Ag2—N8—C240.4 (4)
N1—Ag1—Ag2—N7144.67 (18)N6—Ag2—N8—C2498.7 (5)
N3—Ag1—Ag2—N734.00 (17)Ag1—Ag2—N8—C24104.2 (4)
N4—Ag1—Ag2—N733.61 (17)N5—Ag2—N8—O419.4 (5)
N2—Ag1—Ag2—N7149.33 (17)N7—Ag2—N8—O4175.9 (5)
N1—Ag1—Ag2—N8146.78 (19)N6—Ag2—N8—O485.0 (5)
N3—Ag1—Ag2—N834.56 (18)Ag1—Ag2—N8—O479.5 (5)
N4—Ag1—Ag2—N8102.17 (18)C5—N1—C1—C21.6 (9)
N2—Ag1—Ag2—N880.78 (19)Ag1—N1—C1—C2169.4 (5)
N1—Ag1—Ag2—N636.19 (17)N1—C1—C2—C32.8 (12)
N3—Ag1—Ag2—N6142.47 (17)C1—C2—C3—C41.4 (12)
N4—Ag1—Ag2—N674.86 (17)C2—C3—C4—C51.0 (12)
N2—Ag1—Ag2—N6102.20 (18)C1—N1—C5—C41.0 (8)
N3—Ag1—N1—C5117.1 (5)Ag1—N1—C5—C4172.7 (5)
N4—Ag1—N1—C5148.8 (4)C1—N1—C5—C6178.5 (5)
N2—Ag1—N1—C51.1 (4)Ag1—N1—C5—C66.8 (7)
Ag2—Ag1—N1—C565.9 (4)C3—C4—C5—N12.3 (10)
N3—Ag1—N1—C171.8 (6)C3—C4—C5—C6177.2 (7)
N4—Ag1—N1—C122.2 (5)O1—N2—C6—C5178.6 (5)
N2—Ag1—N1—C1172.1 (5)Ag1—N2—C6—C511.2 (7)
Ag2—Ag1—N1—C1105.1 (5)N1—C5—C6—N212.6 (9)
N1—Ag1—N2—C65.5 (4)C4—C5—C6—N2167.0 (6)
N3—Ag1—N2—C6148.9 (4)C11—N3—C7—C81.0 (9)
N4—Ag1—N2—C6106.6 (5)Ag1—N3—C7—C8172.7 (5)
Ag2—Ag1—N2—C6112.8 (4)N3—C7—C8—C91.3 (10)
N1—Ag1—N2—O1173.1 (5)C7—C8—C9—C100.3 (10)
N3—Ag1—N2—O118.8 (6)C8—C9—C10—C112.0 (10)
N4—Ag1—N2—O185.7 (6)C7—N3—C11—C100.8 (8)
Ag2—Ag1—N2—O179.6 (5)Ag1—N3—C11—C10171.8 (5)
N1—Ag1—N3—C781.3 (6)C7—N3—C11—C12179.4 (5)
N4—Ag1—N3—C7175.3 (5)Ag1—N3—C11—C128.0 (6)
N2—Ag1—N3—C724.1 (5)C9—C10—C11—N32.3 (10)
Ag2—Ag1—N3—C7101.8 (5)C9—C10—C11—C12177.9 (6)
N1—Ag1—N3—C11106.9 (5)O2—N4—C12—C11176.6 (5)
N4—Ag1—N3—C113.5 (4)Ag1—N4—C12—C116.6 (7)
N2—Ag1—N3—C11147.7 (4)N3—C11—C12—N410.1 (8)
Ag2—Ag1—N3—C1170.0 (4)C10—C11—C12—N4169.6 (6)
N1—Ag1—N4—C12151.8 (4)C17—N5—C13—C140.1 (9)
N3—Ag1—N4—C121.7 (4)Ag2—N5—C13—C14168.2 (5)
N2—Ag1—N4—C12117.9 (5)N5—C13—C14—C150.3 (10)
Ag2—Ag1—N4—C12112.0 (4)C13—C14—C15—C160.1 (10)
N1—Ag1—N4—O216.5 (5)C14—C15—C16—C170.6 (10)
N3—Ag1—N4—O2170.0 (5)C13—N5—C17—C160.9 (8)
N2—Ag1—N4—O273.8 (6)Ag2—N5—C17—C16169.8 (4)
Ag2—Ag1—N4—O279.7 (4)C13—N5—C17—C18178.1 (5)
N7—Ag2—N5—C1391.9 (6)Ag2—N5—C17—C189.2 (6)
N8—Ag2—N5—C1321.8 (6)C15—C16—C17—N51.1 (9)
N6—Ag2—N5—C13169.8 (5)C15—C16—C17—C18177.9 (6)
Ag1—Ag2—N5—C13102.5 (5)O3—N6—C18—C17177.9 (5)
N7—Ag2—N5—C17100.0 (5)Ag2—N6—C18—C1713.9 (7)
N8—Ag2—N5—C17146.2 (4)N5—C17—C18—N616.3 (8)
N6—Ag2—N5—C171.7 (4)C16—C17—C18—N6162.7 (6)
Ag1—Ag2—N5—C1765.6 (4)C23—N7—C19—C201.1 (10)
N5—Ag2—N6—C186.4 (4)Ag2—N7—C19—C20173.7 (6)
N7—Ag2—N6—C18147.7 (4)N7—C19—C20—C210.7 (12)
N8—Ag2—N6—C18124.2 (4)C19—C20—C21—C220.6 (14)
Ag1—Ag2—N6—C18118.7 (4)C20—C21—C22—C231.3 (13)
N5—Ag2—N6—O3171.5 (5)C19—N7—C23—C220.3 (9)
N7—Ag2—N6—O317.3 (5)Ag2—N7—C23—C22175.0 (5)
N8—Ag2—N6—O370.7 (6)C19—N7—C23—C24178.7 (6)
Ag1—Ag2—N6—O376.2 (5)Ag2—N7—C23—C246.0 (7)
N5—Ag2—N7—C1958.3 (7)C21—C22—C23—N70.9 (11)
N8—Ag2—N7—C19178.2 (5)C21—C22—C23—C24179.8 (7)
N6—Ag2—N7—C1931.4 (5)O4—N8—C24—C23179.6 (5)
Ag1—Ag2—N7—C19107.6 (5)Ag2—N8—C24—C232.7 (8)
N5—Ag2—N7—C23126.9 (5)N7—C23—C24—N86.0 (9)
N8—Ag2—N7—C233.4 (4)C22—C23—C24—N8175.0 (6)
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O40.841.912.673 (8)151
O3—H3o···O20.841.812.610 (6)160
O4—H4o···O2iii0.841.642.475 (6)174
Symmetry code: (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag(C6H5N2O)(C6H6N2O)]ClO4·[Ag(C6H6N2O)2]
Mr802.69
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.3925 (18), 8.3419 (19), 25.626 (6)
α, β, γ (°)90.226 (6), 92.753 (6), 114.409 (6)
V3)1436.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.21 × 0.13 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.356, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11387, 5042, 3660
Rint0.046
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.187, 1.09
No. of reflections5042
No. of parameters430
No. of restraints64
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 0.58

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC and Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ag1—N12.280 (5)Ag2—N52.235 (5)
Ag1—N22.392 (5)Ag2—N62.448 (4)
Ag1—N32.281 (5)Ag2—N72.256 (5)
Ag1—N42.384 (5)Ag2—N82.401 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O40.841.912.673 (8)151
O3—H3o···O20.841.812.610 (6)160
O4—H4o···O2i0.841.642.475 (6)174
Symmetry code: (i) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: shangao67@yahoo.com.

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (Nos. 12511z023 and 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationAbu-Youssef, M. A. M., Soliman, S. M., Langer, V., Gohar, Y. M., Hasanen, A. A., Makhyoun, M. A., Zaky, A. H. & Ohrstrom, L. R. (2010). Inorg. Chem. 49, 9788–9797.  Web of Science CAS PubMed Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKundu, N., Audhya, A., Towsif Abtab, Sk. Md., Ghosh, S., Tiekink, E. R. T. & Chaudhury, M. (2010). Cryst. Growth Des. 10, 1269–1282.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC and Rigaku (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m639-m640
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds