organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1455

N′-(2,6-Di­chloro­benzyl­­idene)furan-2-carbohydrazide

aDepartment of Quality Detection and Management, Zhengzhou College of Animal Husbandry Engineering, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: xujun20101996@yahoo.com.cn

(Received 14 April 2012; accepted 16 April 2012; online 21 April 2012)

In the title compound, C12H8Cl2N2O2, the dihedral angle between the furan and benzene rings is 72.90 (16)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, generating C(4) chains propagating in [100].

Related literature

For related structures, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Ohba (1996[Ohba, S. (1996). Acta Cryst. C52, 2118-2119.]); Bakir & Gyles (2003[Bakir, M. & Gyles, C. (2003). J. Mol. Struct. 649, 133-135.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8Cl2N2O2

  • Mr = 283.10

  • Monoclinic, P 21 /c

  • a = 4.9046 (3) Å

  • b = 19.1113 (12) Å

  • c = 12.9469 (9) Å

  • β = 91.565 (5)°

  • V = 1213.10 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 293 K

  • 0.21 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.814, Tmax = 0.847

  • 4654 measured reflections

  • 2464 independent reflections

  • 1679 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.126

  • S = 1.01

  • 2464 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.07 2.890 (2) 159
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Several phenylhydrazone derivatives have been shown to be potentially DNA-damaging and are mutagenic agents (Okabe et al., 1993). As part of our ongoing studies of these materials, we synthesized the title compound, (I), and the crystal structure is presented herein. In the molecular structure of the compound, the molecular is not planar, the furyl ring makes a dihedral angle of 72.90 (16)° with the benzene ring. Bond lengths and angles are in agreement with other hydrazone derivatives (Ohba, 1996; Bakir & Gyles, 2003).

In the crystal, molecules are linked by N—H···O hydrogen bonds, generating one-dimensional chains.

Related literature top

For related structures, see: Okabe et al. (1993); Ohba (1996); Bakir & Gyles (2003).

Experimental top

Furan-2-carbohydrazine (1 mmol, 0.126 g) was dissolved in anhydrous ethanol (10 ml), The mixture was stirred for several minitutes at 351k, 2,6-Dichlorobenzaldehyde (1 mmol, 0.175 g) in ethanol (20 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from DMF. Colorless blocks were obtained by slow evaporation of the compound dissoived in a mixture of ethanol and DMF.

Refinement top

All H atoms were positioned geometrically and refined as riding with C—H=0.93 (aromatic), 0.97(methylene) and N—H=0.86 Å, with Uiso(H)=1.2Ueq(CH, CH2 or NH).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Voew of (I). Displacement ellipsoids are drawn at the 30% probability level. showing the intramolecular hydrogen bonds as dashed lines.
[Figure 2] Fig. 2. The molecular packing of the title compound,
N'-(2,6-Dichlorobenzylidene)furan-2-carbohydrazide top
Crystal data top
C12H8Cl2N2O2F(000) = 576
Mr = 283.10Dx = 1.550 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2790 reflections
a = 4.9046 (3) Åθ = 3.2–26.3°
b = 19.1113 (12) ŵ = 0.53 mm1
c = 12.9469 (9) ÅT = 293 K
β = 91.565 (5)°Block, colorless
V = 1213.10 (14) Å30.21 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2464 independent reflections
Radiation source: fine-focus sealed tube1679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 26.4°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 56
Tmin = 0.814, Tmax = 0.847k = 2223
4654 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2769P]
where P = (Fo2 + 2Fc2)/3
2464 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C12H8Cl2N2O2V = 1213.10 (14) Å3
Mr = 283.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.9046 (3) ŵ = 0.53 mm1
b = 19.1113 (12) ÅT = 293 K
c = 12.9469 (9) Å0.21 × 0.18 × 0.17 mm
β = 91.565 (5)°
Data collection top
Bruker SMART CCD
diffractometer
2464 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1679 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.847Rint = 0.028
4654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
2464 reflectionsΔρmin = 0.30 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43228 (17)0.43978 (4)0.09622 (7)0.0649 (3)
Cl20.28672 (16)0.52357 (5)0.38143 (7)0.0679 (3)
O10.5843 (3)0.68141 (9)0.10167 (15)0.0429 (5)
N10.1507 (4)0.63974 (10)0.09980 (16)0.0345 (5)
H1A0.01750.64820.08380.041*
C50.3496 (5)0.68267 (12)0.06671 (19)0.0322 (6)
N20.2201 (4)0.58266 (10)0.15913 (16)0.0342 (5)
O0.4344 (4)0.78012 (11)0.04747 (17)0.0591 (6)
C70.0788 (5)0.47943 (13)0.2441 (2)0.0367 (6)
C40.2594 (5)0.72916 (12)0.0172 (2)0.0341 (6)
C120.0570 (5)0.46354 (15)0.3342 (2)0.0452 (7)
C60.0226 (5)0.54460 (13)0.1877 (2)0.0357 (6)
H6A0.15640.55810.17290.043*
C30.0404 (5)0.72915 (15)0.0800 (2)0.0464 (7)
H3A0.10860.69930.07610.056*
C110.0117 (7)0.40168 (19)0.3879 (3)0.0630 (9)
H11A0.10820.39200.44710.076*
C80.2643 (5)0.42899 (14)0.2112 (2)0.0440 (7)
C90.3144 (6)0.36796 (16)0.2651 (3)0.0596 (9)
H9A0.44120.33580.24180.071*
C10.3139 (6)0.81122 (17)0.1316 (3)0.0603 (9)
H1B0.39010.84770.16860.072*
C100.1756 (7)0.35512 (19)0.3533 (3)0.0698 (10)
H10A0.20940.31410.39010.084*
C20.0749 (6)0.78259 (17)0.1535 (2)0.0578 (8)
H2B0.04660.79510.20680.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0791 (6)0.0484 (5)0.0682 (6)0.0052 (4)0.0217 (4)0.0113 (4)
Cl20.0658 (5)0.0828 (7)0.0559 (5)0.0035 (4)0.0182 (4)0.0036 (5)
O10.0292 (9)0.0457 (11)0.0537 (12)0.0007 (7)0.0008 (8)0.0043 (10)
N10.0292 (10)0.0329 (11)0.0413 (13)0.0004 (8)0.0004 (9)0.0082 (11)
C50.0318 (12)0.0296 (12)0.0355 (14)0.0012 (9)0.0062 (10)0.0048 (12)
N20.0384 (11)0.0289 (10)0.0352 (12)0.0006 (9)0.0006 (9)0.0026 (10)
O0.0528 (11)0.0557 (13)0.0682 (15)0.0172 (9)0.0062 (10)0.0223 (12)
C70.0410 (13)0.0336 (13)0.0352 (14)0.0083 (10)0.0076 (11)0.0036 (12)
C40.0382 (12)0.0274 (12)0.0371 (14)0.0015 (10)0.0076 (11)0.0011 (12)
C120.0477 (15)0.0479 (17)0.0399 (16)0.0100 (12)0.0039 (12)0.0042 (14)
C60.0349 (13)0.0362 (13)0.0359 (15)0.0011 (10)0.0002 (11)0.0022 (12)
C30.0424 (14)0.0544 (17)0.0424 (16)0.0126 (12)0.0027 (12)0.0150 (15)
C110.074 (2)0.067 (2)0.0473 (19)0.0242 (18)0.0090 (16)0.0222 (18)
C80.0497 (15)0.0348 (14)0.0470 (17)0.0055 (12)0.0073 (13)0.0009 (14)
C90.0660 (19)0.0359 (16)0.076 (2)0.0018 (13)0.0177 (17)0.0025 (17)
C10.070 (2)0.0499 (18)0.061 (2)0.0085 (15)0.0033 (17)0.0271 (18)
C100.085 (2)0.051 (2)0.072 (3)0.0080 (17)0.025 (2)0.025 (2)
C20.0581 (18)0.064 (2)0.0505 (19)0.0017 (15)0.0056 (14)0.0179 (18)
Geometric parameters (Å, º) top
Cl1—C81.733 (3)C12—C111.387 (4)
Cl2—C121.731 (3)C6—H6A0.9300
O1—C51.226 (3)C3—C21.410 (4)
N1—C51.353 (3)C3—H3A0.9300
N1—N21.372 (3)C11—C101.363 (5)
N1—H1A0.8600C11—H11A0.9300
C5—C41.463 (3)C8—C91.378 (4)
N2—C61.275 (3)C9—C101.367 (4)
O—C11.362 (4)C9—H9A0.9300
O—C41.363 (3)C1—C21.318 (4)
C7—C121.392 (4)C1—H1B0.9300
C7—C81.400 (4)C10—H10A0.9300
C7—C61.466 (3)C2—H2B0.9300
C4—C31.329 (4)
C5—N1—N2119.29 (19)C4—C3—H3A126.2
C5—N1—H1A120.4C2—C3—H3A126.2
N2—N1—H1A120.4C10—C11—C12119.4 (3)
O1—C5—N1123.3 (2)C10—C11—H11A120.3
O1—C5—C4123.3 (2)C12—C11—H11A120.3
N1—C5—C4113.4 (2)C9—C8—C7122.5 (3)
C6—N2—N1115.94 (19)C9—C8—Cl1117.0 (2)
C1—O—C4106.2 (2)C7—C8—Cl1120.5 (2)
C12—C7—C8115.8 (2)C10—C9—C8119.3 (3)
C12—C7—C6121.0 (2)C10—C9—H9A120.4
C8—C7—C6123.3 (2)C8—C9—H9A120.4
C3—C4—O109.2 (2)C2—C1—O110.8 (3)
C3—C4—C5132.6 (2)C2—C1—H1B124.6
O—C4—C5117.9 (2)O—C1—H1B124.6
C11—C12—C7122.2 (3)C11—C10—C9120.8 (3)
C11—C12—Cl2119.0 (2)C11—C10—H10A119.6
C7—C12—Cl2118.8 (2)C9—C10—H10A119.6
N2—C6—C7119.7 (2)C1—C2—C3106.1 (3)
N2—C6—H6A120.2C1—C2—H2B126.9
C7—C6—H6A120.2C3—C2—H2B126.9
C4—C3—C2107.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.072.890 (2)159
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H8Cl2N2O2
Mr283.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.9046 (3), 19.1113 (12), 12.9469 (9)
β (°) 91.565 (5)
V3)1213.10 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.21 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.814, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
4654, 2464, 1679
Rint0.028
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.01
No. of reflections2464
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.30

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.072.890 (2)159
Symmetry code: (i) x1, y, z.
 

References

First citationBakir, M. & Gyles, C. (2003). J. Mol. Struct. 649, 133–135.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOhba, S. (1996). Acta Cryst. C52, 2118–2119.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1455
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds