organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1578

N-(2-Nitro­phenyl­carbamo­thio­yl)acetamide

aDepartment of Chemistry, Government College University, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, University of Engineering and Technology, Lahore 54000, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 17 April 2012; accepted 18 April 2012; online 28 April 2012)

In the title compound, C9H9N3O3S, the benzene ring and the N-carbamothio­ylacetamide unit are oriented at a dihedral angle of 54.82 (4)°. The dihedral angle between the ring and its attached nitro group is 28.54 (12)°. An intra­molecular, bifurcated N—H⋯(O,O) hydrogen bond generates two S(6) rings. In the crystal, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops. Weak C—H⋯O inter­actions link the dimers.

Related literature

For related structures, see: Shahwar et al. (2012a[Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012a). Acta Cryst. E68, o1189.],b[Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012b). Acta Cryst. E68, o1189.],c[Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Samiullah, (2012c). Acta Cryst. E68, o508.]). For graph–set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N3O3S

  • Mr = 239.25

  • Monoclinic, P 21 /n

  • a = 4.1992 (1) Å

  • b = 11.6081 (3) Å

  • c = 22.1035 (6) Å

  • β = 94.815 (1)°

  • V = 1073.63 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.35 × 0.15 × 0.13 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.965

  • 10065 measured reflections

  • 2711 independent reflections

  • 1969 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.01

  • 2711 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 2.23 2.661 (2) 111
N2—H2⋯O3 0.86 1.93 2.630 (2) 137
N3—H3A⋯S1i 0.86 2.59 3.4371 (14) 168
C9—H9C⋯O2ii 0.96 2.51 3.428 (3) 161
Symmetry codes: (i) -x+2, -y, -z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound I (Fig. 1) is in continuation to synthesize different derivatives of N-carbamothioylacetamide.

We have reported the crystal structures of N-(2-methylphenylcarbamothioyl)acetamide (Shahwar et al., 2012a), N-(3-chlorophenylcarbamothioyl)acetamide (Shahwar et al., 2012b) and N-(phenylcarbamothioyl)acetamide (Shahwar et al., 2012c) which are related to the (I).

In (I), the phenyl ring A (C1–C6) and the N-carbamothioylacetamide moiety B (N2/C7/S1/N3/C8/O3/C9) are planar with r. m. s. deviation of 0.0028 Å and 0.0181 Å, respectively. The dihedral angle between A/B is 54.82 (4)°. The nitro group C (O1/N1/O2) is of course planar. The dihedral angle between A/C and B/C are 28.68 (18) and 66.59 (12)°, respectively. There exist intramolecular H–bonding of N—H···O type (Table 1, Fig. 1) with two S(6) ring motifs (Bernstein et al., 1995). The molecules are dimerized due to N—H···S type of hydrogen bonds with R22(8) ring motifs (Table 1, Fig. 2). The dimers are interlinked from CH3 groups due to C—H···O H–bondings (Table 1, Fig. 2) with nitro groups.

Related literature top

For related structures, see: Shahwar et al. (2012a,b,c). For graph–set notation, see: Bernstein et al. (1995).

Experimental top

Acetylchloride (0.1 mol, 7.13 ml) was added dropwise to a stirred solution of KSCN (0.11 mol) in dry acetone (50 ml), followed by slow addition of 2-nitroaniline (0.1 mol) in dry acetone (25 ml). The mixture was refluxed for 5–10 min, then poured on ice cooled water, which resulted in crude precipitate. Recrystallization of the precipitate from ethylacetate yielded colourless needles.

Refinement top

The H-atoms were positioned geometrically (C—H = 0.93–0.96 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl groups and x = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted lines represent the intra-molecular H-bondings.
[Figure 2] Fig. 2. Partial packing diagram showing inversion dimers linked by pairs of N—H···S hydrogen bonds with R22(8) ring motifs.
N-(2-Nitrophenylcarbamothioyl)acetamide top
Crystal data top
C9H9N3O3SF(000) = 496
Mr = 239.25Dx = 1.480 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1969 reflections
a = 4.1992 (1) Åθ = 1.9–28.4°
b = 11.6081 (3) ŵ = 0.30 mm1
c = 22.1035 (6) ÅT = 296 K
β = 94.815 (1)°Needle, colourless
V = 1073.63 (5) Å30.35 × 0.15 × 0.13 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2711 independent reflections
Radiation source: fine-focus sealed tube1969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 7.50 pixels mm-1θmax = 28.4°, θmin = 1.9°
ω scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1515
Tmin = 0.945, Tmax = 0.965l = 2929
10065 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.3324P]
where P = (Fo2 + 2Fc2)/3
2711 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C9H9N3O3SV = 1073.63 (5) Å3
Mr = 239.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.1992 (1) ŵ = 0.30 mm1
b = 11.6081 (3) ÅT = 296 K
c = 22.1035 (6) Å0.35 × 0.15 × 0.13 mm
β = 94.815 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2711 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1969 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.965Rint = 0.029
10065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
2711 reflectionsΔρmin = 0.22 e Å3
146 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.09141 (12)0.18209 (4)0.01646 (2)0.0470 (2)
O11.0422 (5)0.23102 (15)0.24000 (7)0.0772 (7)
O21.4312 (4)0.3495 (2)0.25974 (8)0.1053 (8)
O30.5502 (4)0.04876 (12)0.17207 (6)0.0676 (5)
N11.1962 (4)0.31649 (18)0.22843 (7)0.0608 (6)
N20.8449 (4)0.22014 (12)0.12253 (6)0.0441 (5)
N30.7962 (3)0.03702 (12)0.08415 (6)0.0405 (4)
C10.9181 (4)0.33887 (14)0.12522 (7)0.0402 (5)
C21.0856 (4)0.38734 (16)0.17587 (8)0.0465 (6)
C31.1536 (5)0.50364 (19)0.17923 (11)0.0654 (8)
C41.0529 (6)0.57302 (19)0.13141 (12)0.0763 (9)
C50.8855 (6)0.52747 (18)0.08093 (11)0.0678 (8)
C60.8168 (5)0.41127 (16)0.07781 (9)0.0537 (7)
C70.9000 (4)0.14835 (14)0.07749 (7)0.0369 (5)
C80.6239 (4)0.00808 (16)0.12923 (8)0.0449 (6)
C90.5378 (5)0.13221 (17)0.12095 (8)0.0522 (6)
H20.756240.191420.152810.0529*
H31.266230.534340.213510.0785*
H3A0.844850.010780.056660.0485*
H41.097890.651450.133070.0915*
H50.817940.575300.048620.0814*
H60.701610.381460.043580.0645*
H9A0.726670.178580.127800.0784*
H9B0.444030.144420.080330.0784*
H9C0.387290.153430.149370.0784*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0619 (3)0.0391 (2)0.0416 (3)0.0060 (2)0.0135 (2)0.0040 (2)
O10.1231 (15)0.0614 (10)0.0455 (9)0.0175 (10)0.0028 (9)0.0020 (7)
O20.0672 (11)0.177 (2)0.0673 (11)0.0072 (12)0.0204 (9)0.0075 (12)
O30.0970 (11)0.0569 (9)0.0533 (8)0.0117 (8)0.0325 (8)0.0063 (7)
N10.0646 (11)0.0792 (13)0.0381 (9)0.0208 (10)0.0014 (8)0.0132 (9)
N20.0628 (9)0.0352 (7)0.0350 (8)0.0011 (7)0.0087 (7)0.0019 (6)
N30.0512 (8)0.0335 (7)0.0371 (7)0.0002 (6)0.0064 (6)0.0022 (6)
C10.0491 (10)0.0345 (9)0.0375 (9)0.0039 (7)0.0063 (7)0.0051 (7)
C20.0500 (10)0.0498 (10)0.0401 (9)0.0066 (8)0.0066 (8)0.0085 (8)
C30.0704 (14)0.0558 (13)0.0700 (14)0.0081 (11)0.0060 (11)0.0250 (11)
C40.0957 (18)0.0385 (11)0.0970 (19)0.0106 (11)0.0224 (15)0.0133 (12)
C50.0949 (17)0.0420 (11)0.0676 (14)0.0081 (11)0.0134 (13)0.0081 (10)
C60.0704 (13)0.0411 (10)0.0488 (11)0.0069 (9)0.0004 (9)0.0004 (8)
C70.0411 (9)0.0341 (8)0.0345 (8)0.0033 (7)0.0026 (7)0.0017 (6)
C80.0503 (10)0.0454 (10)0.0390 (9)0.0017 (8)0.0033 (8)0.0036 (8)
C90.0594 (12)0.0500 (11)0.0470 (10)0.0126 (9)0.0031 (9)0.0041 (8)
Geometric parameters (Å, º) top
S1—C71.6737 (17)C2—C31.381 (3)
O1—N11.223 (3)C3—C41.367 (3)
O2—N11.219 (2)C4—C51.374 (4)
O3—C81.215 (2)C5—C61.380 (3)
N1—C21.467 (2)C8—C91.493 (3)
N2—C11.412 (2)C3—H30.9300
N2—C71.333 (2)C4—H40.9300
N3—C71.376 (2)C5—H50.9300
N3—C81.383 (2)C6—H60.9300
N2—H20.8600C9—H9A0.9600
N3—H3A0.8600C9—H9B0.9600
C1—C61.382 (3)C9—H9C0.9600
C1—C21.390 (2)
O1—N1—O2123.61 (19)S1—C7—N3118.95 (12)
O1—N1—C2118.86 (16)N2—C7—N3115.52 (14)
O2—N1—C2117.45 (19)O3—C8—C9123.00 (17)
C1—N2—C7126.20 (14)N3—C8—C9114.40 (15)
C7—N3—C8128.50 (14)O3—C8—N3122.61 (17)
C1—N2—H2117.00C2—C3—H3120.00
C7—N2—H2117.00C4—C3—H3120.00
C7—N3—H3A116.00C3—C4—H4120.00
C8—N3—H3A116.00C5—C4—H4120.00
N2—C1—C2121.50 (15)C4—C5—H5120.00
N2—C1—C6120.62 (15)C6—C5—H5120.00
C2—C1—C6117.85 (16)C1—C6—H6120.00
C1—C2—C3121.84 (18)C5—C6—H6120.00
N1—C2—C1121.07 (16)C8—C9—H9A109.00
N1—C2—C3117.09 (17)C8—C9—H9B109.00
C2—C3—C4119.0 (2)C8—C9—H9C109.00
C3—C4—C5120.3 (2)H9A—C9—H9B109.00
C4—C5—C6120.5 (2)H9A—C9—H9C109.00
C1—C6—C5120.45 (19)H9B—C9—H9C109.00
S1—C7—N2125.50 (13)
O1—N1—C2—C3149.7 (2)C6—C1—C2—N1178.95 (17)
O1—N1—C2—C130.0 (3)C6—C1—C2—C30.7 (3)
O2—N1—C2—C1153.06 (19)N2—C1—C6—C5179.21 (19)
O2—N1—C2—C327.3 (3)C2—C1—C6—C50.9 (3)
C7—N2—C1—C2129.53 (19)N2—C1—C2—N10.7 (3)
C7—N2—C1—C652.2 (3)N2—C1—C2—C3178.95 (17)
C1—N2—C7—S14.5 (3)N1—C2—C3—C4179.54 (19)
C1—N2—C7—N3177.62 (15)C1—C2—C3—C40.1 (3)
C8—N3—C7—N24.8 (2)C2—C3—C4—C50.3 (3)
C7—N3—C8—O32.9 (3)C3—C4—C5—C60.0 (4)
C7—N3—C8—C9177.33 (16)C4—C5—C6—C10.6 (3)
C8—N3—C7—S1177.15 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.232.661 (2)111
N2—H2···O30.861.932.630 (2)137
N3—H3A···S1i0.862.593.4371 (14)168
C9—H9C···O2ii0.962.513.428 (3)161
Symmetry codes: (i) x+2, y, z; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H9N3O3S
Mr239.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)4.1992 (1), 11.6081 (3), 22.1035 (6)
β (°) 94.815 (1)
V3)1073.63 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.35 × 0.15 × 0.13
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.945, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
10065, 2711, 1969
Rint0.029
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.01
No. of reflections2711
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.232.661 (2)111
N2—H2···O30.861.932.630 (2)137
N3—H3A···S1i0.862.593.4371 (14)168
C9—H9C···O2ii0.962.513.428 (3)161
Symmetry codes: (i) x+2, y, z; (ii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012a). Acta Cryst. E68, o1189.  CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012b). Acta Cryst. E68, o1189.  CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Samiullah, (2012c). Acta Cryst. E68, o508.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1578
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds