metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­aqua­bis­­(1H imidazolium-4,5-di­carboxyl­ato-κ2O4,O5)magnesium

aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: w.starosta@ichtj.waw.pl

(Received 18 April 2012; accepted 20 April 2012; online 28 April 2012)

The title compound, [Mg(C5H3N2O4)2(H2O)2], consists of centrosymmetric neutral monomers in which two O,O′-bidentate imidazolinium-4,5-dicarboxyl­ate ligands are bonded to the MgII ion. One of the carboxyl protons is transferred to the N atom of the imidazole ring. The octa­hedral metal-ion coordination is completed by two trans water O atoms. In the crystal, mol­ecules are linked by N—H⋯(O,O) and O—H⋯O hydrogen bonds.

Related literature

For the crystal structures of two CaII complexes with imidazole-4,5-dicarboxyl­ate and aqua ligands, see: Starosta et al. (2006[Starosta, W., Leciejewicz, J., Premkumar, T. & Govindarajan, S. (2006). J. Coord. Chem. 59, 557-564.]) and for the structure of a BaII complex, see: Starosta et al. (2007[Starosta, W., Leciejewicz, J., Premkumar, T. & Govindarajan, S. (2007). J. Coord. Chem. 60, 313-318.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(C5H3N2O4)2(H2O)2]

  • Mr = 370.53

  • Monoclinic, P 21 /c

  • a = 7.2545 (15) Å

  • b = 13.847 (3) Å

  • c = 6.9975 (14) Å

  • β = 115.46 (3)°

  • V = 634.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.22 × 0.21 × 0.15 mm

Data collection
  • Kuma KM-4 four-cricle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.957, Tmax = 0.970

  • 1955 measured reflections

  • 1821 independent reflections

  • 1439 reflections with I > 2σ(I)

  • Rint = 0.008

  • 3 standard reflections every 200 reflections intensity decay: 0.6%

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.101

  • S = 1.04

  • 1821 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

Mg1—O3 2.0212 (10)
Mg1—O1 2.0297 (12)
Mg1—O5 2.0553 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.92 (3) 1.85 (3) 2.7711 (16) 175 (2)
N1—H1⋯O1i 0.92 (3) 2.58 (2) 3.1446 (16) 119.6 (18)
N2—H3⋯O3ii 0.86 2.51 3.1192 (17) 129
N2—H3⋯O5ii 0.86 2.55 3.3678 (19) 159
O5—H51⋯O2iii 0.86 (3) 1.94 (3) 2.7936 (19) 176 (2)
O5—H52⋯O4iv 0.82 (3) 1.90 (3) 2.7108 (16) 167 (3)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z; (iii) -x+2, -y+2, -z+2; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The monoclinic structure of the title compound is built of monomeric molecules with MgII cation in an inversion centre coordinated by two equatorial imidazole-4,5-dicarboxylate ligands which use two carboxylate O atoms, each donated by a different carboxylate group (Fig.1). Hydrogen atom, clearly visible on a Fourier map, attached to the heteroring-N atom maintains charge balance. Two aqua O atoms at axial positions complete a slightly distorted octahedral coordination geometry of the MgII cation (Table 1). The imidazole ring is almost planar with r.m.s. deviation of 0.0033 (1) Å). The C6/O1/O2 and C7/O3/O4 groups make with the ring dihedral angles of 32.2 (2)° and 8.8 (1)°, respectively. Hydrogen bonds shorter than 3 Å (D···A separation) in which coordinated water O atoms act as donors and carboxylato O atoms in adjacent monomers as acceptors join the monomers into molecular columns. The latter are interconnected by hydrogen bonds in which protonated nitrogen atoms are donors and carboxylato O atoms are acceptors (see, Table 2 and Fig.2). A different coordination mode was reported in the structure of a CaII monomeric complex with the title ligand: the metal ion, besides four water O atoms, is coordinated by two N,O bonding moieties donated by two title ligand molecules. The second carboxylate O atom of this moiety remains protonated and forms a short hydrogen bond of 2.511 (2) Å to the O atom in the adjacent carboxylic group (Starosta et al., 2006). The polymeric structure of a BaII complex with the title ligand can be described as built of monomeric structural units in which a BaII ion, like in the CaII complex, is coordinated by two ligands via N,O chelating sites. Their second O atoms are protonated and make a short hydrogen bond of 2.495 (2) Å to the O atoms in the adjacent carboxylate group (Starosta et al., 2007).

Related literature top

For the crystal structures of two CaII complexes with imidazole-4,5-dicarboxylate and aqua ligands, see: Starosta et al. (2006) and for the structure of a BaII complex, see: Starosta et al. (2007).

Experimental top

1 mmol of magnesium(II) nitrate hexahydrate and 2 mmol s of imidazole-4,5-dicarboxylic acid (Aldrich) were dissolved in 20 ml of doubly distilled water, stirred for two hours, closed in a preasure vessel and kept at 363 K for three days. Then, the vessel was slowly cooled to room temperature. The deposited colourless blocks were washed with cold distilled water and dried in the air.

Refinement top

Water and attached to nitrogen hydrogen atoms were located in a difference map and refined isotropically, while the H atom attached to imidazole C atom was located at a calculated position and treated as riding on the parent atom with C—H=0.93 Å and Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A molecule of the title compound with 50% probability displacement ellipsoids. Symmetry code: (i) -x + 1, -y + 2, -z + 1.
[Figure 2] Fig. 2. Packing diagram of the structure.
trans-Diaquabis(1H-imidazol-3-ium-4,5-dicarboxylato- κ2O4,O5)magnesium top
Crystal data top
[Mg(C5H3N2O4)2(H2O)2]F(000) = 380
Mr = 370.53Dx = 1.939 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.2545 (15) Åθ = 6–15°
b = 13.847 (3) ŵ = 0.22 mm1
c = 6.9975 (14) ÅT = 293 K
β = 115.46 (3)°Blocks, colourless
V = 634.6 (2) Å30.22 × 0.21 × 0.15 mm
Z = 2
Data collection top
Kuma KM-4 four-cricle
diffractometer
1439 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.008
Graphite monochromatorθmax = 30.1°, θmin = 2.9°
profile data from ω/2θ scansh = 90
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 019
Tmin = 0.957, Tmax = 0.970l = 89
1955 measured reflections3 standard reflections every 200 reflections
1821 independent reflections intensity decay: 0.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.2647P]
where P = (Fo2 + 2Fc2)/3
1821 reflections(Δ/σ)max = 0.001
131 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Mg(C5H3N2O4)2(H2O)2]V = 634.6 (2) Å3
Mr = 370.53Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.2545 (15) ŵ = 0.22 mm1
b = 13.847 (3) ÅT = 293 K
c = 6.9975 (14) Å0.22 × 0.21 × 0.15 mm
β = 115.46 (3)°
Data collection top
Kuma KM-4 four-cricle
diffractometer
1439 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.008
Tmin = 0.957, Tmax = 0.9703 standard reflections every 200 reflections
1955 measured reflections intensity decay: 0.6%
1821 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.42 e Å3
1821 reflectionsΔρmin = 0.28 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.50001.00000.50000.01407 (15)
O21.12854 (15)1.02751 (7)0.85653 (17)0.0232 (2)
O10.80572 (15)1.02280 (7)0.62178 (18)0.0232 (2)
N21.18660 (17)0.84179 (8)0.72988 (19)0.0192 (2)
H31.29420.87560.75570.023*
N10.98697 (17)0.71976 (8)0.67452 (18)0.0179 (2)
O50.5127 (2)1.02541 (9)0.79479 (18)0.0302 (3)
C40.99878 (18)0.87861 (9)0.69967 (19)0.0143 (2)
C50.87167 (19)0.80067 (8)0.6632 (2)0.0142 (2)
C60.97418 (19)0.98431 (9)0.7277 (2)0.0145 (2)
C21.1754 (2)0.74620 (10)0.7128 (2)0.0206 (3)
C70.65335 (19)0.78744 (9)0.6267 (2)0.0170 (2)
H21.285 (3)0.7067 (15)0.725 (4)0.035 (6)*
H510.624 (4)1.0122 (17)0.904 (4)0.046 (7)*
O30.54299 (15)0.86069 (7)0.59542 (18)0.0233 (2)
O40.59912 (18)0.70322 (8)0.6313 (2)0.0367 (3)
H520.464 (4)1.075 (2)0.820 (4)0.050 (7)*
H10.942 (4)0.6569 (18)0.665 (4)0.045 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0116 (3)0.0123 (3)0.0169 (3)0.0021 (2)0.0048 (2)0.0014 (2)
O20.0148 (5)0.0144 (4)0.0315 (5)0.0017 (3)0.0017 (4)0.0022 (4)
O10.0128 (5)0.0144 (4)0.0346 (6)0.0016 (3)0.0028 (4)0.0040 (4)
N20.0121 (5)0.0174 (5)0.0267 (6)0.0012 (4)0.0070 (4)0.0018 (4)
N10.0163 (5)0.0119 (5)0.0233 (5)0.0027 (4)0.0064 (4)0.0002 (4)
O50.0307 (6)0.0379 (6)0.0189 (5)0.0178 (5)0.0077 (4)0.0015 (4)
C40.0113 (5)0.0128 (5)0.0175 (5)0.0011 (4)0.0049 (4)0.0018 (4)
C50.0132 (5)0.0103 (5)0.0174 (5)0.0017 (4)0.0051 (4)0.0014 (4)
C60.0133 (6)0.0107 (5)0.0191 (6)0.0008 (4)0.0065 (4)0.0016 (4)
C20.0159 (6)0.0182 (6)0.0261 (6)0.0052 (4)0.0076 (5)0.0011 (5)
C70.0132 (5)0.0132 (5)0.0221 (6)0.0005 (4)0.0053 (4)0.0031 (4)
O30.0156 (5)0.0152 (4)0.0393 (6)0.0037 (3)0.0120 (4)0.0066 (4)
O40.0217 (5)0.0142 (5)0.0715 (9)0.0022 (4)0.0177 (6)0.0077 (5)
Geometric parameters (Å, º) top
Mg1—O32.0212 (10)N1—C21.3266 (18)
Mg1—O3i2.0212 (10)N1—C51.3798 (15)
Mg1—O1i2.0297 (12)N1—H10.92 (3)
Mg1—O12.0297 (12)O5—H510.86 (3)
Mg1—O52.0553 (12)O5—H520.82 (3)
Mg1—O5i2.0553 (12)C4—C51.3703 (16)
O2—C61.2477 (16)C4—C61.4974 (17)
O1—C61.2442 (16)C5—C71.5032 (18)
N2—C21.3283 (18)C2—H20.94 (2)
N2—C41.3833 (16)C7—O41.2355 (16)
N2—H30.8600C7—O31.2517 (15)
O3—Mg1—O3i180.0C5—N1—H1125.1 (16)
O3—Mg1—O1i88.62 (4)Mg1—O5—H51118.4 (18)
O3i—Mg1—O1i91.38 (4)Mg1—O5—H52121.3 (17)
O3—Mg1—O191.38 (4)H51—O5—H52108 (2)
O3i—Mg1—O188.62 (4)C5—C4—N2106.13 (11)
O1i—Mg1—O1180.0C5—C4—C6133.29 (11)
O3—Mg1—O584.14 (5)N2—C4—C6120.34 (11)
O3i—Mg1—O595.86 (5)C4—C5—N1106.62 (11)
O1i—Mg1—O590.99 (6)C4—C5—C7134.67 (11)
O1—Mg1—O589.01 (6)N1—C5—C7118.64 (10)
O3—Mg1—O5i95.87 (5)O1—C6—O2124.86 (12)
O3i—Mg1—O5i84.13 (5)O1—C6—C4118.85 (11)
O1i—Mg1—O5i89.01 (6)O2—C6—C4116.28 (11)
O1—Mg1—O5i90.99 (6)N1—C2—N2108.12 (11)
O5—Mg1—O5i180.0N1—C2—H2128.0 (13)
C6—O1—Mg1143.10 (9)N2—C2—H2123.9 (13)
C2—N2—C4109.60 (11)O4—C7—O3125.63 (13)
C2—N2—H3125.2O4—C7—C5115.75 (12)
C4—N2—H3125.2O3—C7—C5118.62 (11)
C2—N1—C5109.51 (11)C7—O3—Mg1145.83 (9)
C2—N1—H1125.3 (15)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.92 (3)1.85 (3)2.7711 (16)175 (2)
N1—H1···O1ii0.92 (3)2.58 (2)3.1446 (16)119.6 (18)
N2—H3···O3iii0.862.513.1192 (17)129
N2—H3···O5iii0.862.553.3678 (19)159
O5—H51···O2iv0.86 (3)1.94 (3)2.7936 (19)176 (2)
O5—H52···O4v0.82 (3)1.90 (3)2.7108 (16)167 (3)
Symmetry codes: (ii) x+2, y1/2, z+3/2; (iii) x+1, y, z; (iv) x+2, y+2, z+2; (v) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Mg(C5H3N2O4)2(H2O)2]
Mr370.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.2545 (15), 13.847 (3), 6.9975 (14)
β (°) 115.46 (3)
V3)634.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.22 × 0.21 × 0.15
Data collection
DiffractometerKuma KM-4 four-cricle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.957, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
1955, 1821, 1439
Rint0.008
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.101, 1.04
No. of reflections1821
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.28

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mg1—O32.0212 (10)Mg1—O52.0553 (12)
Mg1—O12.0297 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.92 (3)1.85 (3)2.7711 (16)175 (2)
N1—H1···O1i0.92 (3)2.58 (2)3.1446 (16)119.6 (18)
N2—H3···O3ii0.862.513.1192 (17)129
N2—H3···O5ii0.862.553.3678 (19)159
O5—H51···O2iii0.86 (3)1.94 (3)2.7936 (19)176 (2)
O5—H52···O4iv0.82 (3)1.90 (3)2.7108 (16)167 (3)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y, z; (iii) x+2, y+2, z+2; (iv) x+1, y+1/2, z+3/2.
 

References

First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W., Leciejewicz, J., Premkumar, T. & Govindarajan, S. (2006). J. Coord. Chem. 59, 557–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationStarosta, W., Leciejewicz, J., Premkumar, T. & Govindarajan, S. (2007). J. Coord. Chem. 60, 313–318.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds