metal-organic compounds
Chlorido[4-chloro-2-(pyridin-2-ylmethyliminomethyl)phenolato-κ3N,N′,O]copper(II)
aDepartment of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China
*Correspondence e-mail: xxhxwang@126.com
In the title complex, [Cu(C13H10ClN2O)Cl], the CuII ion is coordinated by one O atom and two N atoms of the tridentate Schiff base ligand and one chloride ion, forming a slightly distorted square-planar geometry. Weak Cu⋯Cl interactions [2.793 (5) Å] result in the formation of a chain along the a axis.
Related literature
For background to the use of unsymmetrical tridentate Schiff base ligands and their hydrogenated derivatives in coordination chemistry for the assembly of alkoxo-or phenoxo-bridged clusters and polymers, see: Koizumi et al. (2005); Boskovic et al. (2003); Oshiob et al. (2005). For related structures, see: Bluhm et al. (2003); Kannappan et al. (2005); Sun et al. (2005).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812013359/hg5195sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812013359/hg5195Isup2.hkl
The Schiff base was obtained by condensation 2-(aminomethyl)pyridine and 5-chloro-2-hydroxy-benzaldehyde with the ratio 1:1 in methanol. The synthesis of the title complex was carried out by the reaction of CuCl2.6H2O and the Schiff-base ligand (1:1, molar ratio) in methanol under the stirring condition at room temperature. The filtrated solution was allowed to partial evaporation and blue single crystals suitable for X-ray diffraction were afforded with the yield about 60% sevral days later.
All the H atoms bonded to the C atoms were placed using the HFIX commands in SHELXL-97, with C—H distances of 0.93 and 0.96 Å, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).Fig. 1. View of the title compound with the atom-labelling scheme Displacement ellipsoids are drawn at the 30% probability level. All H-atoms are omitted for clarity. |
[Cu(C13H10ClN2O)Cl] | F(000) = 1384 |
Mr = 344.67 | Dx = 1.732 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 1346 reflections |
a = 7.7975 (11) Å | θ = 2.8–26.3° |
b = 13.638 (2) Å | µ = 2.05 mm−1 |
c = 24.854 (4) Å | T = 293 K |
V = 2643.1 (7) Å3 | Block, blue |
Z = 8 | 0.15 × 0.12 × 0.09 mm |
Bruker APEXII diffractometer | 2325 independent reflections |
Radiation source: fine-focus sealed tube | 1580 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −9→9 |
Tmin = 0.749, Tmax = 0.837 | k = −14→16 |
12098 measured reflections | l = −27→29 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0418P)2 + 1.4463P] where P = (Fo2 + 2Fc2)/3 |
2325 reflections | (Δ/σ)max = 0.006 |
172 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
[Cu(C13H10ClN2O)Cl] | V = 2643.1 (7) Å3 |
Mr = 344.67 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 7.7975 (11) Å | µ = 2.05 mm−1 |
b = 13.638 (2) Å | T = 293 K |
c = 24.854 (4) Å | 0.15 × 0.12 × 0.09 mm |
Bruker APEXII diffractometer | 2325 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | 1580 reflections with I > 2σ(I) |
Tmin = 0.749, Tmax = 0.837 | Rint = 0.053 |
12098 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.29 e Å−3 |
2325 reflections | Δρmin = −0.33 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.10863 (6) | 0.97468 (3) | 0.248134 (18) | 0.03844 (17) | |
Cl1 | 0.43484 (19) | 0.64978 (10) | 0.45552 (5) | 0.0755 (4) | |
Cl2 | −0.09768 (12) | 1.09117 (7) | 0.25915 (4) | 0.0441 (3) | |
O1 | 0.1221 (4) | 0.9585 (2) | 0.32421 (11) | 0.0504 (8) | |
N1 | 0.2305 (4) | 0.8517 (2) | 0.23433 (11) | 0.0349 (7) | |
N2 | 0.1071 (4) | 0.9820 (2) | 0.16720 (13) | 0.0407 (8) | |
C1 | 0.2746 (5) | 0.8043 (3) | 0.32695 (15) | 0.0358 (9) | |
C2 | 0.1939 (5) | 0.8871 (3) | 0.35062 (16) | 0.0399 (10) | |
C3 | 0.1894 (6) | 0.8900 (3) | 0.40777 (17) | 0.0524 (12) | |
H3 | 0.1355 | 0.9426 | 0.4246 | 0.063* | |
C4 | 0.2610 (6) | 0.8186 (3) | 0.43873 (17) | 0.0564 (12) | |
H4 | 0.2573 | 0.8231 | 0.4760 | 0.068* | |
C5 | 0.3394 (5) | 0.7391 (3) | 0.41436 (17) | 0.0472 (11) | |
C6 | 0.3446 (5) | 0.7312 (3) | 0.36013 (16) | 0.0414 (10) | |
H6 | 0.3953 | 0.6764 | 0.3446 | 0.050* | |
C7 | 0.2900 (5) | 0.7931 (3) | 0.27008 (15) | 0.0343 (9) | |
H7 | 0.3488 | 0.7381 | 0.2578 | 0.041* | |
C8 | 0.1920 (5) | 0.9084 (3) | 0.14267 (15) | 0.0392 (10) | |
C9 | 0.2162 (6) | 0.9091 (3) | 0.08752 (17) | 0.0544 (12) | |
H9 | 0.2736 | 0.8576 | 0.0709 | 0.065* | |
C10 | 0.1555 (6) | 0.9855 (4) | 0.05748 (19) | 0.0655 (14) | |
H10 | 0.1727 | 0.9868 | 0.0205 | 0.079* | |
C11 | 0.0687 (6) | 1.0606 (4) | 0.08264 (19) | 0.0646 (13) | |
H11 | 0.0268 | 1.1134 | 0.0630 | 0.077* | |
C12 | 0.0453 (6) | 1.0559 (3) | 0.13728 (17) | 0.0535 (12) | |
H12 | −0.0157 | 1.1057 | 0.1542 | 0.064* | |
C13 | 0.2559 (5) | 0.8271 (3) | 0.17772 (14) | 0.0407 (10) | |
H13A | 0.1948 | 0.7671 | 0.1693 | 0.049* | |
H13B | 0.3770 | 0.8163 | 0.1709 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0423 (3) | 0.0278 (3) | 0.0452 (3) | 0.0030 (2) | 0.0022 (3) | −0.0004 (2) |
Cl1 | 0.1064 (11) | 0.0612 (8) | 0.0589 (7) | 0.0109 (8) | −0.0199 (7) | 0.0129 (6) |
Cl2 | 0.0358 (5) | 0.0300 (5) | 0.0665 (7) | 0.0016 (4) | 0.0006 (5) | −0.0014 (5) |
O1 | 0.065 (2) | 0.0367 (17) | 0.0496 (17) | 0.0140 (15) | 0.0072 (15) | 0.0007 (14) |
N1 | 0.0397 (19) | 0.0258 (17) | 0.0392 (18) | −0.0030 (15) | 0.0042 (15) | −0.0022 (14) |
N2 | 0.040 (2) | 0.0336 (19) | 0.0484 (19) | −0.0033 (17) | −0.0025 (16) | 0.0041 (16) |
C1 | 0.034 (2) | 0.028 (2) | 0.045 (2) | −0.0045 (17) | 0.0006 (18) | −0.0028 (18) |
C2 | 0.041 (2) | 0.032 (2) | 0.047 (2) | −0.0053 (19) | 0.004 (2) | −0.0024 (19) |
C3 | 0.065 (3) | 0.044 (3) | 0.048 (3) | 0.007 (2) | 0.006 (2) | −0.007 (2) |
C4 | 0.070 (3) | 0.058 (3) | 0.042 (2) | −0.005 (3) | 0.002 (2) | −0.003 (2) |
C5 | 0.052 (3) | 0.041 (3) | 0.048 (3) | −0.003 (2) | −0.004 (2) | 0.003 (2) |
C6 | 0.044 (3) | 0.030 (2) | 0.050 (3) | −0.0025 (18) | −0.0013 (19) | −0.003 (2) |
C7 | 0.031 (2) | 0.024 (2) | 0.048 (2) | −0.0001 (17) | 0.0022 (18) | −0.0048 (18) |
C8 | 0.038 (2) | 0.035 (2) | 0.044 (2) | −0.0071 (19) | −0.0029 (19) | 0.000 (2) |
C9 | 0.063 (3) | 0.051 (3) | 0.049 (3) | 0.000 (2) | 0.000 (2) | −0.002 (2) |
C10 | 0.078 (4) | 0.074 (4) | 0.045 (3) | −0.004 (3) | −0.005 (2) | 0.009 (3) |
C11 | 0.074 (4) | 0.060 (3) | 0.059 (3) | 0.002 (3) | −0.008 (3) | 0.016 (3) |
C12 | 0.057 (3) | 0.045 (3) | 0.058 (3) | 0.001 (2) | −0.001 (2) | 0.004 (2) |
C13 | 0.044 (3) | 0.036 (2) | 0.042 (2) | 0.0012 (19) | 0.001 (2) | −0.0045 (18) |
Cu1—O1 | 1.907 (3) | C4—C5 | 1.384 (6) |
Cu1—N1 | 1.958 (3) | C4—H4 | 0.9300 |
Cu1—N2 | 2.014 (3) | C5—C6 | 1.353 (5) |
Cu1—Cl2 | 2.2775 (11) | C6—H6 | 0.9300 |
Cl1—C5 | 1.756 (4) | C7—H7 | 0.9300 |
O1—C2 | 1.300 (4) | C8—C9 | 1.383 (5) |
N1—C7 | 1.282 (4) | C8—C13 | 1.495 (5) |
N1—C13 | 1.460 (4) | C9—C10 | 1.367 (6) |
N2—C12 | 1.342 (5) | C9—H9 | 0.9300 |
N2—C8 | 1.348 (5) | C10—C11 | 1.377 (6) |
C1—C6 | 1.404 (5) | C10—H10 | 0.9300 |
C1—C2 | 1.421 (5) | C11—C12 | 1.372 (6) |
C1—C7 | 1.427 (5) | C11—H11 | 0.9300 |
C2—C3 | 1.422 (5) | C12—H12 | 0.9300 |
C3—C4 | 1.362 (6) | C13—H13A | 0.9700 |
C3—H3 | 0.9300 | C13—H13B | 0.9700 |
O1—Cu1—N1 | 92.74 (12) | C5—C6—C1 | 121.1 (4) |
O1—Cu1—N2 | 175.25 (13) | C5—C6—H6 | 119.4 |
N1—Cu1—N2 | 82.55 (13) | C1—C6—H6 | 119.4 |
O1—Cu1—Cl2 | 90.03 (9) | N1—C7—C1 | 126.1 (4) |
N1—Cu1—Cl2 | 164.03 (10) | N1—C7—H7 | 117.0 |
N2—Cu1—Cl2 | 94.67 (10) | C1—C7—H7 | 117.0 |
C2—O1—Cu1 | 127.7 (3) | N2—C8—C9 | 120.6 (4) |
C7—N1—C13 | 118.4 (3) | N2—C8—C13 | 116.9 (3) |
C7—N1—Cu1 | 126.0 (3) | C9—C8—C13 | 122.5 (4) |
C13—N1—Cu1 | 115.6 (2) | C10—C9—C8 | 120.0 (4) |
C12—N2—C8 | 119.0 (4) | C10—C9—H9 | 120.0 |
C12—N2—Cu1 | 126.4 (3) | C8—C9—H9 | 120.0 |
C8—N2—Cu1 | 114.3 (3) | C9—C10—C11 | 119.3 (5) |
C6—C1—C2 | 119.6 (4) | C9—C10—H10 | 120.4 |
C6—C1—C7 | 118.2 (4) | C11—C10—H10 | 120.4 |
C2—C1—C7 | 122.2 (3) | C12—C11—C10 | 118.7 (5) |
O1—C2—C1 | 125.2 (4) | C12—C11—H11 | 120.7 |
O1—C2—C3 | 118.2 (4) | C10—C11—H11 | 120.7 |
C1—C2—C3 | 116.5 (4) | N2—C12—C11 | 122.4 (4) |
C4—C3—C2 | 122.3 (4) | N2—C12—H12 | 118.8 |
C4—C3—H3 | 118.8 | C11—C12—H12 | 118.8 |
C2—C3—H3 | 118.8 | N1—C13—C8 | 110.2 (3) |
C3—C4—C5 | 119.6 (4) | N1—C13—H13A | 109.6 |
C3—C4—H4 | 120.2 | C8—C13—H13A | 109.6 |
C5—C4—H4 | 120.2 | N1—C13—H13B | 109.6 |
C6—C5—C4 | 120.8 (4) | C8—C13—H13B | 109.6 |
C6—C5—Cl1 | 120.8 (3) | H13A—C13—H13B | 108.1 |
C4—C5—Cl1 | 118.4 (3) |
Experimental details
Crystal data | |
Chemical formula | [Cu(C13H10ClN2O)Cl] |
Mr | 344.67 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 293 |
a, b, c (Å) | 7.7975 (11), 13.638 (2), 24.854 (4) |
V (Å3) | 2643.1 (7) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 2.05 |
Crystal size (mm) | 0.15 × 0.12 × 0.09 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008a) |
Tmin, Tmax | 0.749, 0.837 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12098, 2325, 1580 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.098, 1.02 |
No. of reflections | 2325 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.33 |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).
Acknowledgements
This work was supported by the Basic and Frontier Research Programs of Henan Province (No. 092300410194)
References
Bluhm, M. E., Ciesielski, M., Gorls, H., Walter, O. & Doring, M. (2003). Inorg. Chem. 42, 8878–8885. Web of Science CSD CrossRef PubMed CAS Google Scholar
Boskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046–14058. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA. Google Scholar
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383–388. Web of Science CSD CrossRef CAS Google Scholar
Koizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208–1210. Web of Science CSD CrossRef PubMed CAS Google Scholar
Oshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568–4569. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y.-X., Gao, Y.-Z., Zhang, H.-L., Kong, D.-S. & Yu, Y. (2005). Acta Cryst. E61, m1055–m1057. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff base complexes have all along attracted much attention due to their interesting structures and wide potential applications. Recently, the relative flexible unsymmetrical tridentate Schiff base ligands and their hydrogenerated derivatives have been introduced into the coordination chemistry to assemble alkoxo-or phenoxo-bridged clusters and polymers with beautiful molecular structures and interesting magnetic properties (Koizumi et al., 2005; Boskovic et al., 2003; Oshiob et al., 2005). Herein, we report the structure of a new copper complex based on an unsymmetric tridentate Schiff base ligand.
The molecular structure of title compound is shown in Fig. 1. The Cu ion is four coordinate forming a slightly distorted square planar coordination sphere, in which three positions are occupied by two N atoms and one O atom from the asymmetric tridentate Schiff base ligand, and the other one coming from a coordinated chloride ion. The CuN2O unit is located in a well plane with the mean deviation of 0.0035 (3) Å, while the chloro ion is obvious out of the above plane with deviation value 0.1249 (5) Å. The bond distances of Cu—O, Cu—N and Cu—Cl are in the normal range compared to the reported complexes containing the analogous unsymmetrical tridentate Schiff base ligands (Bluhm et al., 2003; Kannappan, et al., 2005; Sun et al., 2005). It is worth noting that the asymmetric unit can be linked into one dimensional double chain structure by the weak Cu···Cl intermolecular interactions.