metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido[4-chloro-2-(pyridin-2-yl­methyl­imino­meth­yl)phenolato-κ3N,N′,O]copper(II)

aDepartment of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China
*Correspondence e-mail: xxhxwang@126.com

(Received 20 March 2012; accepted 27 March 2012; online 4 April 2012)

In the title complex, [Cu(C13H10ClN2O)Cl], the CuII ion is coordinated by one O atom and two N atoms of the tridentate Schiff base ligand and one chloride ion, forming a slightly distorted square-planar geometry. Weak Cu⋯Cl inter­actions [2.793 (5) Å] result in the formation of a chain along the a axis.

Related literature

For background to the use of unsymmetrical tridentate Schiff base ligands and their hydrogenated derivatives in coordin­ation chemistry for the assembly of alkoxo-or phenoxo-bridged clusters and polymers, see: Koizumi et al. (2005[Koizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208-1210.]); Boskovic et al. (2003[Boskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046-14058.]); Oshiob et al. (2005[Oshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568-4569.]). For related structures, see: Bluhm et al. (2003[Bluhm, M. E., Ciesielski, M., Gorls, H., Walter, O. & Doring, M. (2003). Inorg. Chem. 42, 8878-8885.]); Kannappan et al. (2005[Kannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383-388.]); Sun et al. (2005[Sun, Y.-X., Gao, Y.-Z., Zhang, H.-L., Kong, D.-S. & Yu, Y. (2005). Acta Cryst. E61, m1055-m1057.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H10ClN2O)Cl]

  • Mr = 344.67

  • Orthorhombic, P b c a

  • a = 7.7975 (11) Å

  • b = 13.638 (2) Å

  • c = 24.854 (4) Å

  • V = 2643.1 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.05 mm−1

  • T = 293 K

  • 0.15 × 0.12 × 0.09 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.749, Tmax = 0.837

  • 12098 measured reflections

  • 2325 independent reflections

  • 1580 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.098

  • S = 1.02

  • 2325 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base complexes have all along attracted much attention due to their interesting structures and wide potential applications. Recently, the relative flexible unsymmetrical tridentate Schiff base ligands and their hydrogenerated derivatives have been introduced into the coordination chemistry to assemble alkoxo-or phenoxo-bridged clusters and polymers with beautiful molecular structures and interesting magnetic properties (Koizumi et al., 2005; Boskovic et al., 2003; Oshiob et al., 2005). Herein, we report the structure of a new copper complex based on an unsymmetric tridentate Schiff base ligand.

The molecular structure of title compound is shown in Fig. 1. The Cu ion is four coordinate forming a slightly distorted square planar coordination sphere, in which three positions are occupied by two N atoms and one O atom from the asymmetric tridentate Schiff base ligand, and the other one coming from a coordinated chloride ion. The CuN2O unit is located in a well plane with the mean deviation of 0.0035 (3) Å, while the chloro ion is obvious out of the above plane with deviation value 0.1249 (5) Å. The bond distances of Cu—O, Cu—N and Cu—Cl are in the normal range compared to the reported complexes containing the analogous unsymmetrical tridentate Schiff base ligands (Bluhm et al., 2003; Kannappan, et al., 2005; Sun et al., 2005). It is worth noting that the asymmetric unit can be linked into one dimensional double chain structure by the weak Cu···Cl intermolecular interactions.

Related literature top

For background to the use of unsymmetrical tridentate Schiff base ligands and their hydrogenerated derivatives in coordination chemistry for the assembly of

alkoxo-or phenoxo-bridged clusters and polymers, see: Koizumi et al. (2005); Boskovic et al. (2003); Oshiob et al. (2005). For related structures, see: Bluhm et al. (2003); Kannappan et al. (2005); Sun et al. (2005).

Experimental top

The Schiff base was obtained by condensation 2-(aminomethyl)pyridine and 5-chloro-2-hydroxy-benzaldehyde with the ratio 1:1 in methanol. The synthesis of the title complex was carried out by the reaction of CuCl2.6H2O and the Schiff-base ligand (1:1, molar ratio) in methanol under the stirring condition at room temperature. The filtrated solution was allowed to partial evaporation and blue single crystals suitable for X-ray diffraction were afforded with the yield about 60% sevral days later.

Refinement top

All the H atoms bonded to the C atoms were placed using the HFIX commands in SHELXL-97, with C—H distances of 0.93 and 0.96 Å, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom-labelling scheme Displacement ellipsoids are drawn at the 30% probability level. All H-atoms are omitted for clarity.
Chlorido[4-chloro-2-(pyridin-2-ylmethyliminomethyl)phenolato- κ3N,N',O]copper(II) top
Crystal data top
[Cu(C13H10ClN2O)Cl]F(000) = 1384
Mr = 344.67Dx = 1.732 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1346 reflections
a = 7.7975 (11) Åθ = 2.8–26.3°
b = 13.638 (2) ŵ = 2.05 mm1
c = 24.854 (4) ÅT = 293 K
V = 2643.1 (7) Å3Block, blue
Z = 80.15 × 0.12 × 0.09 mm
Data collection top
Bruker APEXII
diffractometer
2325 independent reflections
Radiation source: fine-focus sealed tube1580 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 99
Tmin = 0.749, Tmax = 0.837k = 1416
12098 measured reflectionsl = 2729
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0418P)2 + 1.4463P]
where P = (Fo2 + 2Fc2)/3
2325 reflections(Δ/σ)max = 0.006
172 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu(C13H10ClN2O)Cl]V = 2643.1 (7) Å3
Mr = 344.67Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.7975 (11) ŵ = 2.05 mm1
b = 13.638 (2) ÅT = 293 K
c = 24.854 (4) Å0.15 × 0.12 × 0.09 mm
Data collection top
Bruker APEXII
diffractometer
2325 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1580 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.837Rint = 0.053
12098 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
2325 reflectionsΔρmin = 0.33 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.10863 (6)0.97468 (3)0.248134 (18)0.03844 (17)
Cl10.43484 (19)0.64978 (10)0.45552 (5)0.0755 (4)
Cl20.09768 (12)1.09117 (7)0.25915 (4)0.0441 (3)
O10.1221 (4)0.9585 (2)0.32421 (11)0.0504 (8)
N10.2305 (4)0.8517 (2)0.23433 (11)0.0349 (7)
N20.1071 (4)0.9820 (2)0.16720 (13)0.0407 (8)
C10.2746 (5)0.8043 (3)0.32695 (15)0.0358 (9)
C20.1939 (5)0.8871 (3)0.35062 (16)0.0399 (10)
C30.1894 (6)0.8900 (3)0.40777 (17)0.0524 (12)
H30.13550.94260.42460.063*
C40.2610 (6)0.8186 (3)0.43873 (17)0.0564 (12)
H40.25730.82310.47600.068*
C50.3394 (5)0.7391 (3)0.41436 (17)0.0472 (11)
C60.3446 (5)0.7312 (3)0.36013 (16)0.0414 (10)
H60.39530.67640.34460.050*
C70.2900 (5)0.7931 (3)0.27008 (15)0.0343 (9)
H70.34880.73810.25780.041*
C80.1920 (5)0.9084 (3)0.14267 (15)0.0392 (10)
C90.2162 (6)0.9091 (3)0.08752 (17)0.0544 (12)
H90.27360.85760.07090.065*
C100.1555 (6)0.9855 (4)0.05748 (19)0.0655 (14)
H100.17270.98680.02050.079*
C110.0687 (6)1.0606 (4)0.08264 (19)0.0646 (13)
H110.02681.11340.06300.077*
C120.0453 (6)1.0559 (3)0.13728 (17)0.0535 (12)
H120.01571.10570.15420.064*
C130.2559 (5)0.8271 (3)0.17772 (14)0.0407 (10)
H13A0.19480.76710.16930.049*
H13B0.37700.81630.17090.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0423 (3)0.0278 (3)0.0452 (3)0.0030 (2)0.0022 (3)0.0004 (2)
Cl10.1064 (11)0.0612 (8)0.0589 (7)0.0109 (8)0.0199 (7)0.0129 (6)
Cl20.0358 (5)0.0300 (5)0.0665 (7)0.0016 (4)0.0006 (5)0.0014 (5)
O10.065 (2)0.0367 (17)0.0496 (17)0.0140 (15)0.0072 (15)0.0007 (14)
N10.0397 (19)0.0258 (17)0.0392 (18)0.0030 (15)0.0042 (15)0.0022 (14)
N20.040 (2)0.0336 (19)0.0484 (19)0.0033 (17)0.0025 (16)0.0041 (16)
C10.034 (2)0.028 (2)0.045 (2)0.0045 (17)0.0006 (18)0.0028 (18)
C20.041 (2)0.032 (2)0.047 (2)0.0053 (19)0.004 (2)0.0024 (19)
C30.065 (3)0.044 (3)0.048 (3)0.007 (2)0.006 (2)0.007 (2)
C40.070 (3)0.058 (3)0.042 (2)0.005 (3)0.002 (2)0.003 (2)
C50.052 (3)0.041 (3)0.048 (3)0.003 (2)0.004 (2)0.003 (2)
C60.044 (3)0.030 (2)0.050 (3)0.0025 (18)0.0013 (19)0.003 (2)
C70.031 (2)0.024 (2)0.048 (2)0.0001 (17)0.0022 (18)0.0048 (18)
C80.038 (2)0.035 (2)0.044 (2)0.0071 (19)0.0029 (19)0.000 (2)
C90.063 (3)0.051 (3)0.049 (3)0.000 (2)0.000 (2)0.002 (2)
C100.078 (4)0.074 (4)0.045 (3)0.004 (3)0.005 (2)0.009 (3)
C110.074 (4)0.060 (3)0.059 (3)0.002 (3)0.008 (3)0.016 (3)
C120.057 (3)0.045 (3)0.058 (3)0.001 (2)0.001 (2)0.004 (2)
C130.044 (3)0.036 (2)0.042 (2)0.0012 (19)0.001 (2)0.0045 (18)
Geometric parameters (Å, º) top
Cu1—O11.907 (3)C4—C51.384 (6)
Cu1—N11.958 (3)C4—H40.9300
Cu1—N22.014 (3)C5—C61.353 (5)
Cu1—Cl22.2775 (11)C6—H60.9300
Cl1—C51.756 (4)C7—H70.9300
O1—C21.300 (4)C8—C91.383 (5)
N1—C71.282 (4)C8—C131.495 (5)
N1—C131.460 (4)C9—C101.367 (6)
N2—C121.342 (5)C9—H90.9300
N2—C81.348 (5)C10—C111.377 (6)
C1—C61.404 (5)C10—H100.9300
C1—C21.421 (5)C11—C121.372 (6)
C1—C71.427 (5)C11—H110.9300
C2—C31.422 (5)C12—H120.9300
C3—C41.362 (6)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
O1—Cu1—N192.74 (12)C5—C6—C1121.1 (4)
O1—Cu1—N2175.25 (13)C5—C6—H6119.4
N1—Cu1—N282.55 (13)C1—C6—H6119.4
O1—Cu1—Cl290.03 (9)N1—C7—C1126.1 (4)
N1—Cu1—Cl2164.03 (10)N1—C7—H7117.0
N2—Cu1—Cl294.67 (10)C1—C7—H7117.0
C2—O1—Cu1127.7 (3)N2—C8—C9120.6 (4)
C7—N1—C13118.4 (3)N2—C8—C13116.9 (3)
C7—N1—Cu1126.0 (3)C9—C8—C13122.5 (4)
C13—N1—Cu1115.6 (2)C10—C9—C8120.0 (4)
C12—N2—C8119.0 (4)C10—C9—H9120.0
C12—N2—Cu1126.4 (3)C8—C9—H9120.0
C8—N2—Cu1114.3 (3)C9—C10—C11119.3 (5)
C6—C1—C2119.6 (4)C9—C10—H10120.4
C6—C1—C7118.2 (4)C11—C10—H10120.4
C2—C1—C7122.2 (3)C12—C11—C10118.7 (5)
O1—C2—C1125.2 (4)C12—C11—H11120.7
O1—C2—C3118.2 (4)C10—C11—H11120.7
C1—C2—C3116.5 (4)N2—C12—C11122.4 (4)
C4—C3—C2122.3 (4)N2—C12—H12118.8
C4—C3—H3118.8C11—C12—H12118.8
C2—C3—H3118.8N1—C13—C8110.2 (3)
C3—C4—C5119.6 (4)N1—C13—H13A109.6
C3—C4—H4120.2C8—C13—H13A109.6
C5—C4—H4120.2N1—C13—H13B109.6
C6—C5—C4120.8 (4)C8—C13—H13B109.6
C6—C5—Cl1120.8 (3)H13A—C13—H13B108.1
C4—C5—Cl1118.4 (3)

Experimental details

Crystal data
Chemical formula[Cu(C13H10ClN2O)Cl]
Mr344.67
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)7.7975 (11), 13.638 (2), 24.854 (4)
V3)2643.1 (7)
Z8
Radiation typeMo Kα
µ (mm1)2.05
Crystal size (mm)0.15 × 0.12 × 0.09
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.749, 0.837
No. of measured, independent and
observed [I > 2σ(I)] reflections
12098, 2325, 1580
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.02
No. of reflections2325
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

This work was supported by the Basic and Frontier Research Programs of Henan Province (No. 092300410194)

References

First citationBluhm, M. E., Ciesielski, M., Gorls, H., Walter, O. & Doring, M. (2003). Inorg. Chem. 42, 8878–8885.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBoskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046–14058.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383–388.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208–1210.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568–4569.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-X., Gao, Y.-Z., Zhang, H.-L., Kong, D.-S. & Yu, Y. (2005). Acta Cryst. E61, m1055–m1057.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds