organic compounds
5,5,7,12,14,14-Hexamethyl-1,8-diaza-4,11-diazoniacyclotetradeca-4,11-diene dichloride trihydrate
aLow Carbon Energy Research Group, School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia, and bLaboratoire de Chimie de Coordination, UPR5241, 205, route de Narbonne 31077, Toulose Cedex 04, France
*Correspondence e-mail: bohari@ukm.my
In the title compound, C16H34N42+·2Cl−·3H2O, the two protonated N atoms in the macrocyclic ring of the dication are located at diagonally opposite positions. There are two intramolecular N—H⋯N hydrogen bonds in the cation. The features O—H⋯Cl, O—H⋯O, C—H⋯Cl and N—H⋯Cl hydrogen bonds.
Related literature
For related structures, see: Bi et al. (2008); He et al. (2010); Heeg et al. (1981); Heinlein & Tebbe (1985); Kennedy et al. (2011); Rohovec et al. (1999). For bond-length data, see: Allen et al. (1987). For the preparation, see: Curtis & Hay (1966); Curtis et al. (1975). For applications of macrocyclic compounds, see: Mittal et al. (2008); Yatsimirskii (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812016649/hg5196sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812016649/hg5196Isup2.hkl
All solvents and chemicals were of analytical grade and were used without purification. The macrocylic compound was prepared according to the literature methods (Curtis et al., 1966; Curtis et al., 1975) but with the addition of stoichiometric amounts of ammonium chloride (0.01 mol, 0.534 g) and ethylenediamine (0.01 mol, 0.601 g) in 30 ml acetone. Single crystals were obtained from the solution after one day of evaporation (yield 82%, m.p 372.1–372.8 K). IR(KBr)vmax, cm-1: 1667.1 (C=N); 3468.2 (NH); 1227.9 (C—N); 3012.4(CH3). Elemental analysis: Calc. for C16H40N4O3 Cl2(C: 47.2; N: 13.7; H: 9.4%) Found (C: 46.9; N: 13.26; H: 9.3%). 1H NMR (p.p.m.,CD3OH), δH: 1.5 (s,12H,C-(CH3)2); 2.1 (s,6H,C—CH3); 2.8 (s,4H,C—CH2—C); 3.3 (m,4H,CH2—CH2); 3.8 (m,4H,CH2—CH2); 5.1 (s,2H,NH2). 13C NMR (p.p.m.,CD3OH), δC: 175.9 (N=C—C); 58.4 (C—C—N); 47.4 (C=N—CH2); 43.91 (N—CH2—C); 40.0 (C—CH2—C); 23.47 (N=C—CH3); 20.65 (C-(CH3)2).
All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H= 0.96 Å for methyl or 0.97 Å for methylene groups with Uiso(H)=1.2Ueq(C) and 1.5Ueq(C) for methylene and methyl groups respectively. The hydrogen atoms attached to nitrogen and oxygen atoms were located from the Fourier difference map and refined isotropiclly. The rotating model was applied in the
of the methyl hydrogen atoms.Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).Fig. 1. The molecular structure of (I), with displacement ellipsods are drawn at the 50% probability level. The dashed line indicate intramolecular hydrogen bond. The unlabelled atoms are symmetrically generated (1-x, 1-y,-z). |
C16H34N42+·2Cl−·3H2O | Z = 2 |
Mr = 407.42 | F(000) = 444 |
Triclinic, P1 | Dx = 1.199 Mg m−3 |
Hall symbol: -P 1 | Melting point = 372.1–372.8 K |
a = 8.576 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.735 (4) Å | Cell parameters from 2072 reflections |
c = 13.438 (6) Å | θ = 1.6–25.0° |
α = 73.752 (9)° | µ = 0.31 mm−1 |
β = 86.085 (9)° | T = 298 K |
γ = 71.886 (8)° | Block, colourless |
V = 1128.7 (8) Å3 | 0.36 × 0.14 × 0.13 mm |
Bruker SMART APEX CCD area-detector diffractometer | 3987 independent reflections |
Radiation source: fine-focus sealed tube | 2878 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
Detector resolution: 83.66 pixels mm-1 | θmax = 25.0°, θmin = 1.6° |
ω scan | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | k = −12→12 |
Tmin = 0.897, Tmax = 0.961 | l = −15→15 |
11977 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.136 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0559P)2 + 0.1922P] where P = (Fo2 + 2Fc2)/3 |
3987 reflections | (Δ/σ)max < 0.001 |
248 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
C16H34N42+·2Cl−·3H2O | γ = 71.886 (8)° |
Mr = 407.42 | V = 1128.7 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.576 (4) Å | Mo Kα radiation |
b = 10.735 (4) Å | µ = 0.31 mm−1 |
c = 13.438 (6) Å | T = 298 K |
α = 73.752 (9)° | 0.36 × 0.14 × 0.13 mm |
β = 86.085 (9)° |
Bruker SMART APEX CCD area-detector diffractometer | 3987 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 2878 reflections with I > 2σ(I) |
Tmin = 0.897, Tmax = 0.961 | Rint = 0.051 |
11977 measured reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.136 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.28 e Å−3 |
3987 reflections | Δρmin = −0.16 e Å−3 |
248 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.54889 (10) | 0.63892 (9) | 0.26242 (6) | 0.0731 (3) | |
Cl2 | 0.91229 (9) | 0.98055 (8) | 0.24245 (6) | 0.0552 (2) | |
O1W | 0.2897 (3) | 0.9092 (3) | 0.3252 (2) | 0.1010 (9) | |
H1W1 | 0.2055 | 0.9197 | 0.2942 | 0.151* | |
H2W1 | 0.3523 | 0.8513 | 0.2998 | 0.151* | |
O2W | 0.2391 (3) | 0.5665 (3) | 0.18015 (19) | 0.0887 (8) | |
H1W2 | 0.1576 | 0.6126 | 0.2037 | 0.133* | |
H2W2 | 0.3136 | 0.5769 | 0.2095 | 0.133* | |
O3W | 0.9133 (3) | 0.6822 (2) | 0.26157 (19) | 0.0869 (8) | |
H1W3 | 0.8192 | 0.6909 | 0.2442 | 0.130* | |
H2W3 | 0.9170 | 0.7602 | 0.2532 | 0.130* | |
N1 | 1.1625 (2) | 0.3762 (2) | 0.45434 (15) | 0.0365 (5) | |
N2 | 0.8331 (3) | 0.4327 (2) | 0.42420 (16) | 0.0336 (5) | |
H1N2 | 0.754 (3) | 0.494 (3) | 0.377 (2) | 0.049 (8)* | |
H2N2 | 0.920 (3) | 0.463 (2) | 0.4218 (17) | 0.032 (7)* | |
N3 | 0.3084 (2) | 1.0996 (2) | 0.03415 (16) | 0.0394 (5) | |
N4 | 0.6102 (3) | 1.1063 (2) | 0.08282 (16) | 0.0335 (5) | |
H1N4 | 0.688 (3) | 1.061 (3) | 0.136 (2) | 0.054 (8)* | |
H2N4 | 0.542 (3) | 1.063 (2) | 0.0808 (17) | 0.026 (6)* | |
C1 | 1.2999 (3) | 0.4269 (3) | 0.4597 (2) | 0.0409 (6) | |
H1A | 1.3631 | 0.4267 | 0.3971 | 0.049* | |
H1B | 1.3712 | 0.3675 | 0.5182 | 0.049* | |
C2 | 1.1821 (3) | 0.2496 (3) | 0.47770 (18) | 0.0365 (6) | |
C3 | 1.0377 (3) | 0.2016 (3) | 0.4681 (2) | 0.0421 (6) | |
H3A | 0.9935 | 0.1775 | 0.5367 | 0.051* | |
H3B | 1.0785 | 0.1188 | 0.4460 | 0.051* | |
C4 | 0.8963 (3) | 0.2984 (2) | 0.39511 (19) | 0.0365 (6) | |
C5 | 0.7616 (3) | 0.4304 (3) | 0.52835 (19) | 0.0392 (6) | |
H5A | 0.8443 | 0.3738 | 0.5815 | 0.047* | |
H5B | 0.6717 | 0.3918 | 0.5368 | 0.047* | |
C6 | 1.3381 (3) | 0.1384 (3) | 0.5155 (3) | 0.0673 (9) | |
H6A | 1.4014 | 0.1686 | 0.5548 | 0.101* | |
H6B | 1.4000 | 0.1158 | 0.4573 | 0.101* | |
H6C | 1.3131 | 0.0595 | 0.5587 | 0.101* | |
C7 | 0.9524 (3) | 0.3337 (3) | 0.2835 (2) | 0.0477 (7) | |
H7A | 1.0376 | 0.3754 | 0.2794 | 0.072* | |
H7B | 0.8613 | 0.3959 | 0.2397 | 0.072* | |
H7C | 0.9936 | 0.2522 | 0.2612 | 0.072* | |
C8 | 0.7565 (3) | 0.2372 (3) | 0.4025 (2) | 0.0503 (7) | |
H8A | 0.7280 | 0.2089 | 0.4738 | 0.076* | |
H8B | 0.7904 | 0.1600 | 0.3746 | 0.076* | |
H8C | 0.6629 | 0.3043 | 0.3637 | 0.076* | |
C9 | 0.2026 (3) | 1.0191 (3) | 0.0267 (2) | 0.0434 (7) | |
H9A | 0.1299 | 1.0660 | −0.0334 | 0.052* | |
H9B | 0.1355 | 1.0093 | 0.0878 | 0.052* | |
C10 | 0.2476 (3) | 1.2250 (3) | 0.02649 (19) | 0.0392 (6) | |
C11 | 0.3598 (3) | 1.3067 (3) | 0.0326 (2) | 0.0446 (7) | |
H11A | 0.2945 | 1.3883 | 0.0511 | 0.054* | |
H11B | 0.4019 | 1.3353 | −0.0360 | 0.054* | |
C12 | 0.5058 (3) | 1.2355 (2) | 0.10895 (19) | 0.0385 (6) | |
C13 | 0.6969 (3) | 1.1195 (3) | −0.01763 (19) | 0.0418 (6) | |
H13A | 0.7678 | 1.1756 | −0.0216 | 0.050* | |
H13B | 0.6174 | 1.1634 | −0.0745 | 0.050* | |
C14 | 0.0690 (4) | 1.3023 (3) | 0.0107 (3) | 0.0748 (10) | |
H14A | 0.0055 | 1.2405 | 0.0349 | 0.112* | |
H14B | 0.0458 | 1.3466 | −0.0617 | 0.112* | |
H14C | 0.0409 | 1.3694 | 0.0489 | 0.112* | |
C15 | 0.6104 (3) | 1.3283 (3) | 0.1027 (2) | 0.0520 (7) | |
H15A | 0.7093 | 1.2782 | 0.1434 | 0.078* | |
H15B | 0.5504 | 1.4037 | 0.1290 | 0.078* | |
H15C | 0.6378 | 1.3616 | 0.0318 | 0.078* | |
C16 | 0.4492 (3) | 1.1912 (3) | 0.2195 (2) | 0.0495 (7) | |
H16A | 0.5431 | 1.1463 | 0.2654 | 0.074* | |
H16B | 0.3871 | 1.1296 | 0.2231 | 0.074* | |
H16C | 0.3818 | 1.2697 | 0.2396 | 0.074* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0542 (5) | 0.0882 (6) | 0.0592 (5) | −0.0075 (4) | −0.0185 (4) | −0.0037 (4) |
Cl2 | 0.0491 (4) | 0.0642 (5) | 0.0495 (4) | −0.0115 (4) | −0.0061 (3) | −0.0160 (3) |
O1W | 0.0910 (19) | 0.115 (2) | 0.105 (2) | −0.0405 (17) | −0.0193 (16) | −0.0280 (17) |
O2W | 0.0793 (17) | 0.102 (2) | 0.0905 (18) | −0.0236 (15) | −0.0020 (14) | −0.0391 (15) |
O3W | 0.0810 (17) | 0.0622 (15) | 0.112 (2) | −0.0201 (13) | 0.0023 (15) | −0.0176 (14) |
N1 | 0.0298 (11) | 0.0359 (13) | 0.0439 (12) | −0.0045 (9) | −0.0044 (9) | −0.0161 (10) |
N2 | 0.0287 (11) | 0.0356 (12) | 0.0376 (12) | −0.0097 (10) | −0.0039 (9) | −0.0109 (10) |
N3 | 0.0308 (11) | 0.0423 (13) | 0.0488 (13) | −0.0118 (10) | −0.0020 (9) | −0.0169 (10) |
N4 | 0.0335 (11) | 0.0338 (12) | 0.0365 (12) | −0.0138 (10) | −0.0049 (10) | −0.0096 (9) |
C1 | 0.0317 (13) | 0.0498 (16) | 0.0449 (15) | −0.0112 (12) | 0.0008 (11) | −0.0201 (13) |
C2 | 0.0345 (14) | 0.0353 (15) | 0.0347 (14) | −0.0032 (11) | 0.0008 (11) | −0.0101 (11) |
C3 | 0.0444 (15) | 0.0318 (14) | 0.0508 (16) | −0.0092 (12) | 0.0013 (12) | −0.0152 (12) |
C4 | 0.0386 (14) | 0.0360 (14) | 0.0412 (14) | −0.0130 (11) | −0.0019 (11) | −0.0177 (11) |
C5 | 0.0383 (14) | 0.0452 (15) | 0.0387 (14) | −0.0180 (12) | 0.0040 (11) | −0.0137 (12) |
C6 | 0.0405 (16) | 0.0421 (17) | 0.100 (3) | 0.0022 (14) | −0.0053 (16) | −0.0044 (17) |
C7 | 0.0495 (16) | 0.0565 (17) | 0.0431 (16) | −0.0176 (14) | 0.0012 (13) | −0.0214 (13) |
C8 | 0.0513 (17) | 0.0551 (18) | 0.0588 (18) | −0.0248 (14) | 0.0019 (14) | −0.0283 (15) |
C9 | 0.0345 (14) | 0.0575 (17) | 0.0491 (16) | −0.0210 (13) | 0.0061 (12) | −0.0249 (13) |
C10 | 0.0345 (14) | 0.0445 (16) | 0.0371 (14) | −0.0064 (12) | −0.0045 (11) | −0.0139 (12) |
C11 | 0.0440 (15) | 0.0339 (14) | 0.0525 (17) | −0.0050 (12) | −0.0091 (12) | −0.0117 (12) |
C12 | 0.0394 (14) | 0.0337 (14) | 0.0460 (15) | −0.0102 (11) | −0.0045 (12) | −0.0164 (12) |
C13 | 0.0436 (15) | 0.0476 (16) | 0.0419 (15) | −0.0244 (13) | 0.0028 (12) | −0.0127 (12) |
C14 | 0.0463 (18) | 0.063 (2) | 0.114 (3) | 0.0041 (16) | −0.0190 (18) | −0.041 (2) |
C15 | 0.0553 (17) | 0.0420 (16) | 0.0684 (19) | −0.0194 (14) | −0.0042 (15) | −0.0239 (14) |
C16 | 0.0498 (16) | 0.0545 (17) | 0.0488 (17) | −0.0144 (14) | −0.0010 (13) | −0.0226 (14) |
O1W—H1W1 | 0.8197 | C6—H6A | 0.9600 |
O1W—H2W1 | 0.8227 | C6—H6B | 0.9600 |
O2W—H1W2 | 0.8219 | C6—H6C | 0.9600 |
O2W—H2W2 | 0.8240 | C7—H7A | 0.9600 |
O3W—H1W3 | 0.8259 | C7—H7B | 0.9600 |
O3W—H2W3 | 0.8234 | C7—H7C | 0.9600 |
N1—C2 | 1.265 (3) | C8—H8A | 0.9600 |
N1—C1 | 1.457 (3) | C8—H8B | 0.9600 |
N2—C5 | 1.486 (3) | C8—H8C | 0.9600 |
N2—C4 | 1.525 (3) | C9—C13ii | 1.504 (4) |
N2—H1N2 | 0.92 (3) | C9—H9A | 0.9700 |
N2—H2N2 | 0.90 (2) | C9—H9B | 0.9700 |
N3—C10 | 1.260 (3) | C10—C14 | 1.495 (4) |
N3—C9 | 1.459 (3) | C10—C11 | 1.509 (3) |
N4—C13 | 1.489 (3) | C11—C12 | 1.532 (3) |
N4—C12 | 1.518 (3) | C11—H11A | 0.9700 |
N4—H1N4 | 0.93 (3) | C11—H11B | 0.9700 |
N4—H2N4 | 0.86 (2) | C12—C15 | 1.517 (3) |
C1—C5i | 1.508 (3) | C12—C16 | 1.522 (4) |
C1—H1A | 0.9700 | C13—C9ii | 1.504 (4) |
C1—H1B | 0.9700 | C13—H13A | 0.9700 |
C2—C6 | 1.494 (3) | C13—H13B | 0.9700 |
C2—C3 | 1.507 (3) | C14—H14A | 0.9600 |
C3—C4 | 1.523 (3) | C14—H14B | 0.9600 |
C3—H3A | 0.9700 | C14—H14C | 0.9600 |
C3—H3B | 0.9700 | C15—H15A | 0.9600 |
C4—C8 | 1.522 (3) | C15—H15B | 0.9600 |
C4—C7 | 1.523 (4) | C15—H15C | 0.9600 |
C5—C1i | 1.508 (3) | C16—H16A | 0.9600 |
C5—H5A | 0.9700 | C16—H16B | 0.9600 |
C5—H5B | 0.9700 | C16—H16C | 0.9600 |
H1W1—O1W—H2W1 | 98.0 | H7A—C7—H7C | 109.5 |
H1W2—O2W—H2W2 | 101.4 | H7B—C7—H7C | 109.5 |
H1W3—O3W—H2W3 | 105.5 | C4—C8—H8A | 109.5 |
C2—N1—C1 | 120.7 (2) | C4—C8—H8B | 109.5 |
C5—N2—C4 | 118.08 (19) | H8A—C8—H8B | 109.5 |
C5—N2—H1N2 | 106.4 (16) | C4—C8—H8C | 109.5 |
C4—N2—H1N2 | 109.7 (16) | H8A—C8—H8C | 109.5 |
C5—N2—H2N2 | 106.5 (15) | H8B—C8—H8C | 109.5 |
C4—N2—H2N2 | 105.8 (15) | N3—C9—C13ii | 110.7 (2) |
H1N2—N2—H2N2 | 110 (2) | N3—C9—H9A | 109.5 |
C10—N3—C9 | 120.1 (2) | C13ii—C9—H9A | 109.5 |
C13—N4—C12 | 118.30 (19) | N3—C9—H9B | 109.5 |
C13—N4—H1N4 | 108.3 (17) | C13ii—C9—H9B | 109.5 |
C12—N4—H1N4 | 106.2 (16) | H9A—C9—H9B | 108.1 |
C13—N4—H2N4 | 106.8 (15) | N3—C10—C14 | 124.9 (2) |
C12—N4—H2N4 | 104.3 (15) | N3—C10—C11 | 119.1 (2) |
H1N4—N4—H2N4 | 113 (2) | C14—C10—C11 | 116.0 (2) |
N1—C1—C5i | 110.30 (19) | C10—C11—C12 | 116.8 (2) |
N1—C1—H1A | 109.6 | C10—C11—H11A | 108.1 |
C5i—C1—H1A | 109.6 | C12—C11—H11A | 108.1 |
N1—C1—H1B | 109.6 | C10—C11—H11B | 108.1 |
C5i—C1—H1B | 109.6 | C12—C11—H11B | 108.1 |
H1A—C1—H1B | 108.1 | H11A—C11—H11B | 107.3 |
N1—C2—C6 | 126.2 (2) | C15—C12—N4 | 109.0 (2) |
N1—C2—C3 | 119.0 (2) | C15—C12—C16 | 110.2 (2) |
C6—C2—C3 | 114.9 (2) | N4—C12—C16 | 106.2 (2) |
C2—C3—C4 | 118.2 (2) | C15—C12—C11 | 110.4 (2) |
C2—C3—H3A | 107.8 | N4—C12—C11 | 109.54 (19) |
C4—C3—H3A | 107.8 | C16—C12—C11 | 111.3 (2) |
C2—C3—H3B | 107.8 | N4—C13—C9ii | 109.9 (2) |
C4—C3—H3B | 107.8 | N4—C13—H13A | 109.7 |
H3A—C3—H3B | 107.1 | C9ii—C13—H13A | 109.7 |
C8—C4—C3 | 110.6 (2) | N4—C13—H13B | 109.7 |
C8—C4—C7 | 110.3 (2) | C9ii—C13—H13B | 109.7 |
C3—C4—C7 | 111.4 (2) | H13A—C13—H13B | 108.2 |
C8—C4—N2 | 108.9 (2) | C10—C14—H14A | 109.5 |
C3—C4—N2 | 109.49 (19) | C10—C14—H14B | 109.5 |
C7—C4—N2 | 106.1 (2) | H14A—C14—H14B | 109.5 |
N2—C5—C1i | 109.9 (2) | C10—C14—H14C | 109.5 |
N2—C5—H5A | 109.7 | H14A—C14—H14C | 109.5 |
C1i—C5—H5A | 109.7 | H14B—C14—H14C | 109.5 |
N2—C5—H5B | 109.7 | C12—C15—H15A | 109.5 |
C1i—C5—H5B | 109.7 | C12—C15—H15B | 109.5 |
H5A—C5—H5B | 108.2 | H15A—C15—H15B | 109.5 |
C2—C6—H6A | 109.5 | C12—C15—H15C | 109.5 |
C2—C6—H6B | 109.5 | H15A—C15—H15C | 109.5 |
H6A—C6—H6B | 109.5 | H15B—C15—H15C | 109.5 |
C2—C6—H6C | 109.5 | C12—C16—H16A | 109.5 |
H6A—C6—H6C | 109.5 | C12—C16—H16B | 109.5 |
H6B—C6—H6C | 109.5 | H16A—C16—H16B | 109.5 |
C4—C7—H7A | 109.5 | C12—C16—H16C | 109.5 |
C4—C7—H7B | 109.5 | H16A—C16—H16C | 109.5 |
H7A—C7—H7B | 109.5 | H16B—C16—H16C | 109.5 |
C4—C7—H7C | 109.5 | ||
C2—N1—C1—C5i | −157.0 (2) | C10—N3—C9—C13ii | 169.2 (2) |
C1—N1—C2—C6 | 2.0 (4) | C9—N3—C10—C14 | 0.6 (4) |
C1—N1—C2—C3 | −178.3 (2) | C9—N3—C10—C11 | −179.0 (2) |
N1—C2—C3—C4 | 22.6 (3) | N3—C10—C11—C12 | −37.1 (4) |
C6—C2—C3—C4 | −157.6 (2) | C14—C10—C11—C12 | 143.3 (3) |
C2—C3—C4—C8 | −175.2 (2) | C13—N4—C12—C15 | −55.2 (3) |
C2—C3—C4—C7 | 61.8 (3) | C13—N4—C12—C16 | −174.0 (2) |
C2—C3—C4—N2 | −55.2 (3) | C13—N4—C12—C11 | 65.7 (3) |
C5—N2—C4—C8 | 58.2 (3) | C10—C11—C12—C15 | 177.6 (2) |
C5—N2—C4—C3 | −62.8 (3) | C10—C11—C12—N4 | 57.5 (3) |
C5—N2—C4—C7 | 176.9 (2) | C10—C11—C12—C16 | −59.7 (3) |
C4—N2—C5—C1i | −177.59 (19) | C12—N4—C13—C9ii | 178.0 (2) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N2···N1 | 0.90 (3) | 2.02 (3) | 2.732 (3) | 135.6 (18) |
N4—H2N4···N3 | 0.86 (3) | 2.03 (3) | 2.740 (3) | 140 (2) |
O1W—H2W1···Cl1 | 0.82 | 2.54 | 3.343 (4) | 167 |
O2W—H2W2···Cl1 | 0.82 | 2.51 | 3.324 (3) | 168 |
O3W—H1W3···Cl1 | 0.83 | 2.53 | 3.298 (3) | 156 |
O3W—H2W3···Cl2 | 0.82 | 2.32 | 3.138 (3) | 175 |
N2—H1N2···Cl1 | 0.92 (3) | 2.28 (3) | 3.201 (3) | 177 (3) |
N4—H1N4···Cl2 | 0.93 (3) | 2.27 (3) | 3.178 (3) | 167 (2) |
O1W—H1W1···Cl2iii | 0.82 | 2.49 | 3.282 (3) | 163 |
O2W—H1W2···O3Wiii | 0.82 | 2.16 | 2.955 (4) | 161 |
C9—H9B···Cl2iii | 0.97 | 2.75 | 3.709 (3) | 172 |
Symmetry code: (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C16H34N42+·2Cl−·3H2O |
Mr | 407.42 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 8.576 (4), 10.735 (4), 13.438 (6) |
α, β, γ (°) | 73.752 (9), 86.085 (9), 71.886 (8) |
V (Å3) | 1128.7 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.36 × 0.14 × 0.13 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.897, 0.961 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11977, 3987, 2878 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.136, 1.07 |
No. of reflections | 3987 |
No. of parameters | 248 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.28, −0.16 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N2···N1 | 0.90 (3) | 2.02 (3) | 2.732 (3) | 135.6 (18) |
N4—H2N4···N3 | 0.86 (3) | 2.03 (3) | 2.740 (3) | 140 (2) |
O1W—H2W1···Cl1 | 0.82 | 2.54 | 3.343 (4) | 167 |
O2W—H2W2···Cl1 | 0.82 | 2.51 | 3.324 (3) | 168 |
O3W—H1W3···Cl1 | 0.83 | 2.53 | 3.298 (3) | 156 |
O3W—H2W3···Cl2 | 0.82 | 2.32 | 3.138 (3) | 175 |
N2—H1N2···Cl1 | 0.92 (3) | 2.28 (3) | 3.201 (3) | 177 (3) |
N4—H1N4···Cl2 | 0.93 (3) | 2.27 (3) | 3.178 (3) | 167 (2) |
O1W—H1W1···Cl2i | 0.82 | 2.49 | 3.282 (3) | 163 |
O2W—H1W2···O3Wi | 0.82 | 2.16 | 2.955 (4) | 161 |
C9—H9B···Cl2i | 0.97 | 2.75 | 3.709 (3) | 172 |
Symmetry code: (i) x−1, y, z. |
Acknowledgements
The authors thank Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for research grant LRGS/BU/2011/USM-UKM/PG/02 and the Ministry of Science and Technology & Inovation (MOSTI) for an NSF scholarship to WI.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bi, J. H., Chen, Y., Huang, Z. X., Cui, M. & Hu, N. L. (2008). Asian J. Chem. 20, 4887–4890. CAS Google Scholar
Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Curtis, N. F. & Hay, R. W. (1966). J. Chem. Soc. Chem. Commun. pp. 524–525. Google Scholar
Curtis, N. F., Hay, R. W. & Lawrance, G. A. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 591–593. Google Scholar
He, X. L., Shi, F. & Lu, Y. (2010). Acta Cryst. E66, m1339. Web of Science CSD CrossRef IUCr Journals Google Scholar
Heeg, M. J., Endicott, J. F. & Glick, M. D. (1981). Inorg. Chem. 20, 1196–1201. CSD CrossRef CAS Web of Science Google Scholar
Heinlein, T. & Tebbe, K. F. (1985). Z. Kristallogr. 170, 70–71. Google Scholar
Kennedy, A. R., Lutta, S. T., Morrison, C. A., Okoth, M. O. & Orang'o, D. M. (2011). Acta Cryst. E67, o682–o683. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mittal, S. K., Kumar, S. K., Gupta, N. R., Ocak, M. & Ocak, U. (2008). Indian J. Chem. Sect. A, 47, 1676–1680. Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Rohovec, J., Vojtisek, P. & Lukes, I. (1999). Collect. Czech. Chem. Commun. 64, 73–88. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yatsimirskii, K. B. (1990). Usp. Khim. 59, 1960–1971. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structures of tetraazacyclotetradeca-4,11-diene macrocyclic complexes with metal such as cobalt, nickel, zinc have been extensively studied (Heeg et al., 1981; He et al., 2010; Heinlein et al., 1985). Some macrocyclic compounds and their complexes have been applied as ionophores for metal ions determination and catalyst for several reactions (Mittal et al., 2008; Yatsimirskii 1990). However, the structure of the macrocyclic salts are still less reported. So far, the macrocyclic salts with perchlorate, bromide and iodide anion have been reported (Rohovec et al., 1999; Kennedy et al., 2011; Bi et al., 2008). The unit-cell parameters for the bromide and iodide salt are similar and the two salts are indeed isostructural. The title compound (I) is similar to those salts but the presence of trihydrate water molecules caused the unit-cell parameters to be different. The unit cell of the salt consists of symmetrically generated macrocyclic dication, two chloride anions atoms and three water molecules of crystallization (Fig.1). The bond lengths are in normal ranges (Allen et al. 2003) and comparable to those in the bromide and iodide salts. There are seven intramolecular hydrogen bonds, two of them are in the macrocyclic ring N2-H1N2..N1 and N4-H2N4..N3 and the other five, O1-H2W1..Cl1, O2-H2W2..Cl1, O3-H1W3..Cl1, O3W-H2W3..Cl2 and N4-H1N4..Cl2 are formed between chlorine atom and hydrogen atom of the water molecule and nitrogen atom of the macrocyclic ring. In the crystal structure, the molecules are linked by intermolecular hydrogen bond, O1W-H1W1..Cl2, O2W-H1W2..O3W and C9—H9B..Cl2 (symmetry as in table 2) together with the OW—H..Cl and N—H..Cl intramolecular hydrogen bonds.