organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1476-o1477

5,5,7,12,14,14-Hexa­methyl-1,8-di­aza-4,11-diazo­nia­cyclo­tetra­deca-4,11-diene dichloride trihydrate

aLow Carbon Energy Research Group, School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia, and bLaboratoire de Chimie de Coordination, UPR5241, 205, route de Narbonne 31077, Toulose Cedex 04, France
*Correspondence e-mail: bohari@ukm.my

(Received 20 March 2012; accepted 16 April 2012; online 21 April 2012)

In the title compound, C16H34N42+·2Cl·3H2O, the two protonated N atoms in the macrocyclic ring of the dication are located at diagonally opposite positions. There are two intramolecular N—H⋯N hydrogen bonds in the cation. The crystal structure features O—H⋯Cl, O—H⋯O, C—H⋯Cl and N—H⋯Cl hydrogen bonds.

Related literature

For related structures, see: Bi et al. (2008[Bi, J. H., Chen, Y., Huang, Z. X., Cui, M. & Hu, N. L. (2008). Asian J. Chem. 20, 4887-4890.]); He et al. (2010[He, X. L., Shi, F. & Lu, Y. (2010). Acta Cryst. E66, m1339.]); Heeg et al. (1981[Heeg, M. J., Endicott, J. F. & Glick, M. D. (1981). Inorg. Chem. 20, 1196-1201.]); Heinlein & Tebbe (1985[Heinlein, T. & Tebbe, K. F. (1985). Z. Kristallogr. 170, 70-71.]); Kennedy et al. (2011[Kennedy, A. R., Lutta, S. T., Morrison, C. A., Okoth, M. O. & Orang'o, D. M. (2011). Acta Cryst. E67, o682-o683.]); Rohovec et al. (1999[Rohovec, J., Vojtisek, P. & Lukes, I. (1999). Collect. Czech. Chem. Commun. 64, 73-88.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the preparation, see: Curtis & Hay (1966[Curtis, N. F. & Hay, R. W. (1966). J. Chem. Soc. Chem. Commun. pp. 524-525.]); Curtis et al. (1975[Curtis, N. F., Hay, R. W. & Lawrance, G. A. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 591-593.]). For applications of macrocyclic compounds, see: Mittal et al. (2008[Mittal, S. K., Kumar, S. K., Gupta, N. R., Ocak, M. & Ocak, U. (2008). Indian J. Chem. Sect. A, 47, 1676-1680.]); Yatsimirskii (1990[Yatsimirskii, K. B. (1990). Usp. Khim. 59, 1960-1971.]).

[Scheme 1]

Experimental

Crystal data
  • C16H34N42+·2Cl·3H2O

  • Mr = 407.42

  • Triclinic, [P \overline 1]

  • a = 8.576 (4) Å

  • b = 10.735 (4) Å

  • c = 13.438 (6) Å

  • α = 73.752 (9)°

  • β = 86.085 (9)°

  • γ = 71.886 (8)°

  • V = 1128.7 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 K

  • 0.36 × 0.14 × 0.13 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.897, Tmax = 0.961

  • 11977 measured reflections

  • 3987 independent reflections

  • 2878 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.136

  • S = 1.07

  • 3987 reflections

  • 248 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N2⋯N1 0.90 (3) 2.02 (3) 2.732 (3) 135.6 (18)
N4—H2N4⋯N3 0.86 (3) 2.03 (3) 2.740 (3) 140 (2)
O1W—H2W1⋯Cl1 0.82 2.54 3.343 (4) 167
O2W—H2W2⋯Cl1 0.82 2.51 3.324 (3) 168
O3W—H1W3⋯Cl1 0.83 2.53 3.298 (3) 156
O3W—H2W3⋯Cl2 0.82 2.32 3.138 (3) 175
N2—H1N2⋯Cl1 0.92 (3) 2.28 (3) 3.201 (3) 177 (3)
N4—H1N4⋯Cl2 0.93 (3) 2.27 (3) 3.178 (3) 167 (2)
O1W—H1W1⋯Cl2i 0.82 2.49 3.282 (3) 163
O2W—H1W2⋯O3Wi 0.82 2.16 2.955 (4) 161
C9—H9B⋯Cl2i 0.97 2.75 3.709 (3) 172
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The structures of tetraazacyclotetradeca-4,11-diene macrocyclic complexes with metal such as cobalt, nickel, zinc have been extensively studied (Heeg et al., 1981; He et al., 2010; Heinlein et al., 1985). Some macrocyclic compounds and their complexes have been applied as ionophores for metal ions determination and catalyst for several reactions (Mittal et al., 2008; Yatsimirskii 1990). However, the structure of the macrocyclic salts are still less reported. So far, the macrocyclic salts with perchlorate, bromide and iodide anion have been reported (Rohovec et al., 1999; Kennedy et al., 2011; Bi et al., 2008). The unit-cell parameters for the bromide and iodide salt are similar and the two salts are indeed isostructural. The title compound (I) is similar to those salts but the presence of trihydrate water molecules caused the unit-cell parameters to be different. The unit cell of the salt consists of symmetrically generated macrocyclic dication, two chloride anions atoms and three water molecules of crystallization (Fig.1). The bond lengths are in normal ranges (Allen et al. 2003) and comparable to those in the bromide and iodide salts. There are seven intramolecular hydrogen bonds, two of them are in the macrocyclic ring N2-H1N2..N1 and N4-H2N4..N3 and the other five, O1-H2W1..Cl1, O2-H2W2..Cl1, O3-H1W3..Cl1, O3W-H2W3..Cl2 and N4-H1N4..Cl2 are formed between chlorine atom and hydrogen atom of the water molecule and nitrogen atom of the macrocyclic ring. In the crystal structure, the molecules are linked by intermolecular hydrogen bond, O1W-H1W1..Cl2, O2W-H1W2..O3W and C9—H9B..Cl2 (symmetry as in table 2) together with the OW—H..Cl and N—H..Cl intramolecular hydrogen bonds.

Related literature top

For related structures, see: Bi et al. (2008); He et al. (2010); Heeg et al. (1981); Heinlein & Tebbe (1985); Kennedy et al. (2011); Rohovec et al. (1999). For bond-length data, see: Allen et al. (1987). For the preparation, see: Curtis & Hay (1966); Curtis et al. (1975). For applications of macrocyclic compounds, see: Mittal et al. (2008); Yatsimirskii (1990).

Experimental top

All solvents and chemicals were of analytical grade and were used without purification. The macrocylic compound was prepared according to the literature methods (Curtis et al., 1966; Curtis et al., 1975) but with the addition of stoichiometric amounts of ammonium chloride (0.01 mol, 0.534 g) and ethylenediamine (0.01 mol, 0.601 g) in 30 ml acetone. Single crystals were obtained from the solution after one day of evaporation (yield 82%, m.p 372.1–372.8 K). IR(KBr)vmax, cm-1: 1667.1 (C=N); 3468.2 (NH); 1227.9 (C—N); 3012.4(CH3). Elemental analysis: Calc. for C16H40N4O3 Cl2(C: 47.2; N: 13.7; H: 9.4%) Found (C: 46.9; N: 13.26; H: 9.3%). 1H NMR (p.p.m.,CD3OH), δH: 1.5 (s,12H,C-(CH3)2); 2.1 (s,6H,C—CH3); 2.8 (s,4H,C—CH2—C); 3.3 (m,4H,CH2—CH2); 3.8 (m,4H,CH2—CH2); 5.1 (s,2H,NH2). 13C NMR (p.p.m.,CD3OH), δC: 175.9 (N=C—C); 58.4 (C—C—N); 47.4 (C=N—CH2); 43.91 (N—CH2—C); 40.0 (C—CH2—C); 23.47 (N=C—CH3); 20.65 (C-(CH3)2).

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H= 0.96 Å for methyl or 0.97 Å for methylene groups with Uiso(H)=1.2Ueq(C) and 1.5Ueq(C) for methylene and methyl groups respectively. The hydrogen atoms attached to nitrogen and oxygen atoms were located from the Fourier difference map and refined isotropiclly. The rotating model was applied in the refinement of the methyl hydrogen atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsods are drawn at the 50% probability level. The dashed line indicate intramolecular hydrogen bond. The unlabelled atoms are symmetrically generated (1-x, 1-y,-z).
5,5,7,12,14,14-Hexamethyl-1,8-diaza-4,11-diazoniacyclotetradeca-4,11-diene dichloride trihydrate top
Crystal data top
C16H34N42+·2Cl·3H2OZ = 2
Mr = 407.42F(000) = 444
Triclinic, P1Dx = 1.199 Mg m3
Hall symbol: -P 1Melting point = 372.1–372.8 K
a = 8.576 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.735 (4) ÅCell parameters from 2072 reflections
c = 13.438 (6) Åθ = 1.6–25.0°
α = 73.752 (9)°µ = 0.31 mm1
β = 86.085 (9)°T = 298 K
γ = 71.886 (8)°Block, colourless
V = 1128.7 (8) Å30.36 × 0.14 × 0.13 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3987 independent reflections
Radiation source: fine-focus sealed tube2878 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 83.66 pixels mm-1θmax = 25.0°, θmin = 1.6°
ω scanh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1212
Tmin = 0.897, Tmax = 0.961l = 1515
11977 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.1922P]
where P = (Fo2 + 2Fc2)/3
3987 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C16H34N42+·2Cl·3H2Oγ = 71.886 (8)°
Mr = 407.42V = 1128.7 (8) Å3
Triclinic, P1Z = 2
a = 8.576 (4) ÅMo Kα radiation
b = 10.735 (4) ŵ = 0.31 mm1
c = 13.438 (6) ÅT = 298 K
α = 73.752 (9)°0.36 × 0.14 × 0.13 mm
β = 86.085 (9)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3987 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2878 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.961Rint = 0.051
11977 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.28 e Å3
3987 reflectionsΔρmin = 0.16 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.54889 (10)0.63892 (9)0.26242 (6)0.0731 (3)
Cl20.91229 (9)0.98055 (8)0.24245 (6)0.0552 (2)
O1W0.2897 (3)0.9092 (3)0.3252 (2)0.1010 (9)
H1W10.20550.91970.29420.151*
H2W10.35230.85130.29980.151*
O2W0.2391 (3)0.5665 (3)0.18015 (19)0.0887 (8)
H1W20.15760.61260.20370.133*
H2W20.31360.57690.20950.133*
O3W0.9133 (3)0.6822 (2)0.26157 (19)0.0869 (8)
H1W30.81920.69090.24420.130*
H2W30.91700.76020.25320.130*
N11.1625 (2)0.3762 (2)0.45434 (15)0.0365 (5)
N20.8331 (3)0.4327 (2)0.42420 (16)0.0336 (5)
H1N20.754 (3)0.494 (3)0.377 (2)0.049 (8)*
H2N20.920 (3)0.463 (2)0.4218 (17)0.032 (7)*
N30.3084 (2)1.0996 (2)0.03415 (16)0.0394 (5)
N40.6102 (3)1.1063 (2)0.08282 (16)0.0335 (5)
H1N40.688 (3)1.061 (3)0.136 (2)0.054 (8)*
H2N40.542 (3)1.063 (2)0.0808 (17)0.026 (6)*
C11.2999 (3)0.4269 (3)0.4597 (2)0.0409 (6)
H1A1.36310.42670.39710.049*
H1B1.37120.36750.51820.049*
C21.1821 (3)0.2496 (3)0.47770 (18)0.0365 (6)
C31.0377 (3)0.2016 (3)0.4681 (2)0.0421 (6)
H3A0.99350.17750.53670.051*
H3B1.07850.11880.44600.051*
C40.8963 (3)0.2984 (2)0.39511 (19)0.0365 (6)
C50.7616 (3)0.4304 (3)0.52835 (19)0.0392 (6)
H5A0.84430.37380.58150.047*
H5B0.67170.39180.53680.047*
C61.3381 (3)0.1384 (3)0.5155 (3)0.0673 (9)
H6A1.40140.16860.55480.101*
H6B1.40000.11580.45730.101*
H6C1.31310.05950.55870.101*
C70.9524 (3)0.3337 (3)0.2835 (2)0.0477 (7)
H7A1.03760.37540.27940.072*
H7B0.86130.39590.23970.072*
H7C0.99360.25220.26120.072*
C80.7565 (3)0.2372 (3)0.4025 (2)0.0503 (7)
H8A0.72800.20890.47380.076*
H8B0.79040.16000.37460.076*
H8C0.66290.30430.36370.076*
C90.2026 (3)1.0191 (3)0.0267 (2)0.0434 (7)
H9A0.12991.06600.03340.052*
H9B0.13551.00930.08780.052*
C100.2476 (3)1.2250 (3)0.02649 (19)0.0392 (6)
C110.3598 (3)1.3067 (3)0.0326 (2)0.0446 (7)
H11A0.29451.38830.05110.054*
H11B0.40191.33530.03600.054*
C120.5058 (3)1.2355 (2)0.10895 (19)0.0385 (6)
C130.6969 (3)1.1195 (3)0.01763 (19)0.0418 (6)
H13A0.76781.17560.02160.050*
H13B0.61741.16340.07450.050*
C140.0690 (4)1.3023 (3)0.0107 (3)0.0748 (10)
H14A0.00551.24050.03490.112*
H14B0.04581.34660.06170.112*
H14C0.04091.36940.04890.112*
C150.6104 (3)1.3283 (3)0.1027 (2)0.0520 (7)
H15A0.70931.27820.14340.078*
H15B0.55041.40370.12900.078*
H15C0.63781.36160.03180.078*
C160.4492 (3)1.1912 (3)0.2195 (2)0.0495 (7)
H16A0.54311.14630.26540.074*
H16B0.38711.12960.22310.074*
H16C0.38181.26970.23960.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0542 (5)0.0882 (6)0.0592 (5)0.0075 (4)0.0185 (4)0.0037 (4)
Cl20.0491 (4)0.0642 (5)0.0495 (4)0.0115 (4)0.0061 (3)0.0160 (3)
O1W0.0910 (19)0.115 (2)0.105 (2)0.0405 (17)0.0193 (16)0.0280 (17)
O2W0.0793 (17)0.102 (2)0.0905 (18)0.0236 (15)0.0020 (14)0.0391 (15)
O3W0.0810 (17)0.0622 (15)0.112 (2)0.0201 (13)0.0023 (15)0.0176 (14)
N10.0298 (11)0.0359 (13)0.0439 (12)0.0045 (9)0.0044 (9)0.0161 (10)
N20.0287 (11)0.0356 (12)0.0376 (12)0.0097 (10)0.0039 (9)0.0109 (10)
N30.0308 (11)0.0423 (13)0.0488 (13)0.0118 (10)0.0020 (9)0.0169 (10)
N40.0335 (11)0.0338 (12)0.0365 (12)0.0138 (10)0.0049 (10)0.0096 (9)
C10.0317 (13)0.0498 (16)0.0449 (15)0.0112 (12)0.0008 (11)0.0201 (13)
C20.0345 (14)0.0353 (15)0.0347 (14)0.0032 (11)0.0008 (11)0.0101 (11)
C30.0444 (15)0.0318 (14)0.0508 (16)0.0092 (12)0.0013 (12)0.0152 (12)
C40.0386 (14)0.0360 (14)0.0412 (14)0.0130 (11)0.0019 (11)0.0177 (11)
C50.0383 (14)0.0452 (15)0.0387 (14)0.0180 (12)0.0040 (11)0.0137 (12)
C60.0405 (16)0.0421 (17)0.100 (3)0.0022 (14)0.0053 (16)0.0044 (17)
C70.0495 (16)0.0565 (17)0.0431 (16)0.0176 (14)0.0012 (13)0.0214 (13)
C80.0513 (17)0.0551 (18)0.0588 (18)0.0248 (14)0.0019 (14)0.0283 (15)
C90.0345 (14)0.0575 (17)0.0491 (16)0.0210 (13)0.0061 (12)0.0249 (13)
C100.0345 (14)0.0445 (16)0.0371 (14)0.0064 (12)0.0045 (11)0.0139 (12)
C110.0440 (15)0.0339 (14)0.0525 (17)0.0050 (12)0.0091 (12)0.0117 (12)
C120.0394 (14)0.0337 (14)0.0460 (15)0.0102 (11)0.0045 (12)0.0164 (12)
C130.0436 (15)0.0476 (16)0.0419 (15)0.0244 (13)0.0028 (12)0.0127 (12)
C140.0463 (18)0.063 (2)0.114 (3)0.0041 (16)0.0190 (18)0.041 (2)
C150.0553 (17)0.0420 (16)0.0684 (19)0.0194 (14)0.0042 (15)0.0239 (14)
C160.0498 (16)0.0545 (17)0.0488 (17)0.0144 (14)0.0010 (13)0.0226 (14)
Geometric parameters (Å, º) top
O1W—H1W10.8197C6—H6A0.9600
O1W—H2W10.8227C6—H6B0.9600
O2W—H1W20.8219C6—H6C0.9600
O2W—H2W20.8240C7—H7A0.9600
O3W—H1W30.8259C7—H7B0.9600
O3W—H2W30.8234C7—H7C0.9600
N1—C21.265 (3)C8—H8A0.9600
N1—C11.457 (3)C8—H8B0.9600
N2—C51.486 (3)C8—H8C0.9600
N2—C41.525 (3)C9—C13ii1.504 (4)
N2—H1N20.92 (3)C9—H9A0.9700
N2—H2N20.90 (2)C9—H9B0.9700
N3—C101.260 (3)C10—C141.495 (4)
N3—C91.459 (3)C10—C111.509 (3)
N4—C131.489 (3)C11—C121.532 (3)
N4—C121.518 (3)C11—H11A0.9700
N4—H1N40.93 (3)C11—H11B0.9700
N4—H2N40.86 (2)C12—C151.517 (3)
C1—C5i1.508 (3)C12—C161.522 (4)
C1—H1A0.9700C13—C9ii1.504 (4)
C1—H1B0.9700C13—H13A0.9700
C2—C61.494 (3)C13—H13B0.9700
C2—C31.507 (3)C14—H14A0.9600
C3—C41.523 (3)C14—H14B0.9600
C3—H3A0.9700C14—H14C0.9600
C3—H3B0.9700C15—H15A0.9600
C4—C81.522 (3)C15—H15B0.9600
C4—C71.523 (4)C15—H15C0.9600
C5—C1i1.508 (3)C16—H16A0.9600
C5—H5A0.9700C16—H16B0.9600
C5—H5B0.9700C16—H16C0.9600
H1W1—O1W—H2W198.0H7A—C7—H7C109.5
H1W2—O2W—H2W2101.4H7B—C7—H7C109.5
H1W3—O3W—H2W3105.5C4—C8—H8A109.5
C2—N1—C1120.7 (2)C4—C8—H8B109.5
C5—N2—C4118.08 (19)H8A—C8—H8B109.5
C5—N2—H1N2106.4 (16)C4—C8—H8C109.5
C4—N2—H1N2109.7 (16)H8A—C8—H8C109.5
C5—N2—H2N2106.5 (15)H8B—C8—H8C109.5
C4—N2—H2N2105.8 (15)N3—C9—C13ii110.7 (2)
H1N2—N2—H2N2110 (2)N3—C9—H9A109.5
C10—N3—C9120.1 (2)C13ii—C9—H9A109.5
C13—N4—C12118.30 (19)N3—C9—H9B109.5
C13—N4—H1N4108.3 (17)C13ii—C9—H9B109.5
C12—N4—H1N4106.2 (16)H9A—C9—H9B108.1
C13—N4—H2N4106.8 (15)N3—C10—C14124.9 (2)
C12—N4—H2N4104.3 (15)N3—C10—C11119.1 (2)
H1N4—N4—H2N4113 (2)C14—C10—C11116.0 (2)
N1—C1—C5i110.30 (19)C10—C11—C12116.8 (2)
N1—C1—H1A109.6C10—C11—H11A108.1
C5i—C1—H1A109.6C12—C11—H11A108.1
N1—C1—H1B109.6C10—C11—H11B108.1
C5i—C1—H1B109.6C12—C11—H11B108.1
H1A—C1—H1B108.1H11A—C11—H11B107.3
N1—C2—C6126.2 (2)C15—C12—N4109.0 (2)
N1—C2—C3119.0 (2)C15—C12—C16110.2 (2)
C6—C2—C3114.9 (2)N4—C12—C16106.2 (2)
C2—C3—C4118.2 (2)C15—C12—C11110.4 (2)
C2—C3—H3A107.8N4—C12—C11109.54 (19)
C4—C3—H3A107.8C16—C12—C11111.3 (2)
C2—C3—H3B107.8N4—C13—C9ii109.9 (2)
C4—C3—H3B107.8N4—C13—H13A109.7
H3A—C3—H3B107.1C9ii—C13—H13A109.7
C8—C4—C3110.6 (2)N4—C13—H13B109.7
C8—C4—C7110.3 (2)C9ii—C13—H13B109.7
C3—C4—C7111.4 (2)H13A—C13—H13B108.2
C8—C4—N2108.9 (2)C10—C14—H14A109.5
C3—C4—N2109.49 (19)C10—C14—H14B109.5
C7—C4—N2106.1 (2)H14A—C14—H14B109.5
N2—C5—C1i109.9 (2)C10—C14—H14C109.5
N2—C5—H5A109.7H14A—C14—H14C109.5
C1i—C5—H5A109.7H14B—C14—H14C109.5
N2—C5—H5B109.7C12—C15—H15A109.5
C1i—C5—H5B109.7C12—C15—H15B109.5
H5A—C5—H5B108.2H15A—C15—H15B109.5
C2—C6—H6A109.5C12—C15—H15C109.5
C2—C6—H6B109.5H15A—C15—H15C109.5
H6A—C6—H6B109.5H15B—C15—H15C109.5
C2—C6—H6C109.5C12—C16—H16A109.5
H6A—C6—H6C109.5C12—C16—H16B109.5
H6B—C6—H6C109.5H16A—C16—H16B109.5
C4—C7—H7A109.5C12—C16—H16C109.5
C4—C7—H7B109.5H16A—C16—H16C109.5
H7A—C7—H7B109.5H16B—C16—H16C109.5
C4—C7—H7C109.5
C2—N1—C1—C5i157.0 (2)C10—N3—C9—C13ii169.2 (2)
C1—N1—C2—C62.0 (4)C9—N3—C10—C140.6 (4)
C1—N1—C2—C3178.3 (2)C9—N3—C10—C11179.0 (2)
N1—C2—C3—C422.6 (3)N3—C10—C11—C1237.1 (4)
C6—C2—C3—C4157.6 (2)C14—C10—C11—C12143.3 (3)
C2—C3—C4—C8175.2 (2)C13—N4—C12—C1555.2 (3)
C2—C3—C4—C761.8 (3)C13—N4—C12—C16174.0 (2)
C2—C3—C4—N255.2 (3)C13—N4—C12—C1165.7 (3)
C5—N2—C4—C858.2 (3)C10—C11—C12—C15177.6 (2)
C5—N2—C4—C362.8 (3)C10—C11—C12—N457.5 (3)
C5—N2—C4—C7176.9 (2)C10—C11—C12—C1659.7 (3)
C4—N2—C5—C1i177.59 (19)C12—N4—C13—C9ii178.0 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N2···N10.90 (3)2.02 (3)2.732 (3)135.6 (18)
N4—H2N4···N30.86 (3)2.03 (3)2.740 (3)140 (2)
O1W—H2W1···Cl10.822.543.343 (4)167
O2W—H2W2···Cl10.822.513.324 (3)168
O3W—H1W3···Cl10.832.533.298 (3)156
O3W—H2W3···Cl20.822.323.138 (3)175
N2—H1N2···Cl10.92 (3)2.28 (3)3.201 (3)177 (3)
N4—H1N4···Cl20.93 (3)2.27 (3)3.178 (3)167 (2)
O1W—H1W1···Cl2iii0.822.493.282 (3)163
O2W—H1W2···O3Wiii0.822.162.955 (4)161
C9—H9B···Cl2iii0.972.753.709 (3)172
Symmetry code: (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H34N42+·2Cl·3H2O
Mr407.42
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.576 (4), 10.735 (4), 13.438 (6)
α, β, γ (°)73.752 (9), 86.085 (9), 71.886 (8)
V3)1128.7 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.36 × 0.14 × 0.13
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.897, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
11977, 3987, 2878
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.136, 1.07
No. of reflections3987
No. of parameters248
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.16

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N2···N10.90 (3)2.02 (3)2.732 (3)135.6 (18)
N4—H2N4···N30.86 (3)2.03 (3)2.740 (3)140 (2)
O1W—H2W1···Cl10.822.543.343 (4)167
O2W—H2W2···Cl10.822.513.324 (3)168
O3W—H1W3···Cl10.832.533.298 (3)156
O3W—H2W3···Cl20.822.323.138 (3)175
N2—H1N2···Cl10.92 (3)2.28 (3)3.201 (3)177 (3)
N4—H1N4···Cl20.93 (3)2.27 (3)3.178 (3)167 (2)
O1W—H1W1···Cl2i0.822.493.282 (3)163
O2W—H1W2···O3Wi0.822.162.955 (4)161
C9—H9B···Cl2i0.972.753.709 (3)172
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for research grant LRGS/BU/2011/USM-UKM/PG/02 and the Ministry of Science and Technology & Inovation (MOSTI) for an NSF scholarship to WI.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBi, J. H., Chen, Y., Huang, Z. X., Cui, M. & Hu, N. L. (2008). Asian J. Chem. 20, 4887–4890.  CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCurtis, N. F. & Hay, R. W. (1966). J. Chem. Soc. Chem. Commun. pp. 524–525.  Google Scholar
First citationCurtis, N. F., Hay, R. W. & Lawrance, G. A. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 591–593.  Google Scholar
First citationHe, X. L., Shi, F. & Lu, Y. (2010). Acta Cryst. E66, m1339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHeeg, M. J., Endicott, J. F. & Glick, M. D. (1981). Inorg. Chem. 20, 1196–1201.  CSD CrossRef CAS Web of Science Google Scholar
First citationHeinlein, T. & Tebbe, K. F. (1985). Z. Kristallogr. 170, 70–71.  Google Scholar
First citationKennedy, A. R., Lutta, S. T., Morrison, C. A., Okoth, M. O. & Orang'o, D. M. (2011). Acta Cryst. E67, o682–o683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMittal, S. K., Kumar, S. K., Gupta, N. R., Ocak, M. & Ocak, U. (2008). Indian J. Chem. Sect. A, 47, 1676–1680.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRohovec, J., Vojtisek, P. & Lukes, I. (1999). Collect. Czech. Chem. Commun. 64, 73–88.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYatsimirskii, K. B. (1990). Usp. Khim. 59, 1960–1971.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1476-o1477
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds