metal-organic compounds
trans-Diaquabis[5-(pyridine-3-carboxamido)tetrazolido-κ2O,N1]zinc dihydrate
aState Key Laboratory Breeding Base of Photocatalysis, College of Chemistry & Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
*Correspondence e-mail: cchuang@fzu.edu.cn
The title compound, [Zn(C7H5N6O)2(H2O)2]·2H2O, consists of one ZnII ion located on the crystallographic inversion centre, two 5-(pyridine-3-carboxamido)tetrazolide ligands, two coordinated water molecules and two free water molecules. The ZnII ion adopts a slightly distorted octahedral coordination geometry formed by the N,O-chelating ligands and two O water atoms. The pyridine N atoms are not coordinated. In the crystal, complex molecules are connected by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, forming a three-dimensional network.
Related literature
For pharmaceutical applications of amide derivatives, see: Foster et al. (1999); Rauko et al. (2001); Rowland et al. (2001, 2002). For our recent work on the design and synthesis of amide complexes, see: Wang et al. (2010). For the use of nicotinoylamino in building novel complexes, see: Aakeröy et al. (2001); Li et al. (2008); Moncol et al. (2007); Kumar et al. (2005). For Zn—N and Zn—O bond lengths in related structures, see: Armstrong et al. (2003); Liu et al. (2009).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrystalClear (Rigaku, 2002); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812014997/hg5200sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812014997/hg5200Isup2.hkl
The title compound was synthesized by reacting the ligand (N-(1H-tetrazol-5-yl)-nicotinamide) (0.019 g,0.01 mmol) with Zn(CH3COO)2.2H2O (0.011 g, 0.05 mmol) in 5.0 ml of dimethyl sulfoxide followed by the addition of 4 ml of ethanol. The muddy solution obtained was stirred at room temperature for three hours, filtered and set aside to slowly crystallize at room temperature. The block-like crystals were obtained after about three weeks.
Four reflections, -2 1 1, -5 5 2, -5 2 3, -1 0 1, shaded by beamstop were omitted. All H atoms bonded to C and N atoms were refined in idealized positions using the riding-model approximation, with C–H = 0.93 Å, Uiso(H) = 1.2 Ueq(C) and N–H = 0.93 Å, Uiso(H) = 1.2 Ueq(N). In water molecule the O–H distances were restrained to 0.84 (5) Å, and the distance H···H to 1.32 (2) Å, with Uiso(H) = 1.5 Ueq(O).
Data collection: CrystalClear (Rigaku, 2002); cell
CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn(C7H5N6O)2(H2O)2]·2H2O | F(000) = 528 |
Mr = 515.79 | Dx = 1.665 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3552 reflections |
a = 7.2576 (15) Å | θ = 3.1–27.5° |
b = 12.008 (2) Å | µ = 1.26 mm−1 |
c = 11.917 (2) Å | T = 293 K |
β = 97.76 (3)° | Prism, colorless |
V = 1029.1 (3) Å3 | 0.22 × 0.15 × 0.1 mm |
Z = 2 |
Rigaku Saturn 724 CCD area-detector diffractometer | 2374 independent reflections |
Radiation source: fine-focus sealed tube | 2188 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
scintillation counter scans | θmax = 27.6°, θmin = 3.3° |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) | h = −9→7 |
Tmin = 0.819, Tmax = 1.000 | k = −15→14 |
8464 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.19 | w = 1/[σ2(Fo2) + (0.0354P)2 + 0.6596P] where P = (Fo2 + 2Fc2)/3 |
2374 reflections | (Δ/σ)max = 0.042 |
165 parameters | Δρmax = 0.24 e Å−3 |
6 restraints | Δρmin = −0.33 e Å−3 |
[Zn(C7H5N6O)2(H2O)2]·2H2O | V = 1029.1 (3) Å3 |
Mr = 515.79 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.2576 (15) Å | µ = 1.26 mm−1 |
b = 12.008 (2) Å | T = 293 K |
c = 11.917 (2) Å | 0.22 × 0.15 × 0.1 mm |
β = 97.76 (3)° |
Rigaku Saturn 724 CCD area-detector diffractometer | 2374 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) | 2188 reflections with I > 2σ(I) |
Tmin = 0.819, Tmax = 1.000 | Rint = 0.043 |
8464 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 6 restraints |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.19 | Δρmax = 0.24 e Å−3 |
2374 reflections | Δρmin = −0.33 e Å−3 |
165 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.0000 | 0.0000 | 0.0000 | 0.02817 (14) | |
O1 | 0.1128 (2) | 0.16405 (14) | −0.01319 (16) | 0.0348 (4) | |
C5 | 0.2633 (3) | 0.3319 (2) | 0.0481 (2) | 0.0274 (5) | |
C7 | 0.3943 (3) | 0.0364 (2) | 0.1181 (2) | 0.0259 (5) | |
C6 | 0.2446 (3) | 0.2086 (2) | 0.0460 (2) | 0.0281 (5) | |
N4 | 0.5071 (3) | −0.12357 (19) | 0.1550 (2) | 0.0364 (5) | |
N5 | 0.5487 (3) | −0.01344 (18) | 0.1645 (2) | 0.0342 (5) | |
N6 | 0.3527 (3) | 0.49961 (18) | 0.1502 (2) | 0.0370 (5) | |
C4 | 0.3380 (4) | 0.3890 (2) | 0.1451 (2) | 0.0333 (6) | |
H12 | 0.3799 | 0.3480 | 0.2097 | 0.040* | |
C3 | 0.1991 (4) | 0.3936 (2) | −0.0474 (2) | 0.0349 (6) | |
H13 | 0.1448 | 0.3584 | −0.1132 | 0.042* | |
C1 | 0.2944 (4) | 0.5576 (2) | 0.0566 (2) | 0.0377 (6) | |
H15 | 0.3064 | 0.6347 | 0.0586 | 0.045* | |
C2 | 0.2168 (4) | 0.5077 (2) | −0.0436 (3) | 0.0415 (7) | |
H16 | 0.1772 | 0.5506 | −0.1072 | 0.050* | |
N1 | 0.3798 (3) | 0.15158 (17) | 0.11143 (18) | 0.0309 (5) | |
H6 | 0.4637 | 0.1899 | 0.1523 | 0.037* | |
N3 | 0.3383 (3) | −0.13789 (18) | 0.1054 (2) | 0.0344 (5) | |
N2 | 0.2617 (3) | −0.03656 (18) | 0.08075 (18) | 0.0279 (4) | |
O2 | 0.0833 (3) | −0.05113 (17) | −0.15682 (16) | 0.0340 (4) | |
H2A | 0.186 (2) | −0.025 (3) | −0.169 (3) | 0.066 (12)* | |
H2B | 0.011 (3) | −0.037 (3) | −0.2160 (16) | 0.061 (11)* | |
O3 | 0.7255 (3) | 0.25284 (18) | 0.1891 (2) | 0.0517 (6) | |
H3A | 0.801 (4) | 0.208 (3) | 0.166 (3) | 0.078* | |
H3B | 0.787 (4) | 0.287 (3) | 0.243 (2) | 0.078* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0224 (2) | 0.0244 (2) | 0.0352 (2) | −0.00194 (15) | −0.00520 (16) | −0.00004 (16) |
O1 | 0.0314 (10) | 0.0247 (9) | 0.0444 (11) | −0.0060 (7) | −0.0087 (8) | 0.0033 (8) |
C5 | 0.0270 (12) | 0.0251 (12) | 0.0292 (12) | −0.0025 (9) | 0.0006 (10) | −0.0005 (10) |
C7 | 0.0250 (12) | 0.0264 (11) | 0.0248 (11) | −0.0005 (9) | −0.0015 (9) | 0.0007 (9) |
C6 | 0.0298 (13) | 0.0257 (12) | 0.0284 (12) | −0.0027 (10) | 0.0020 (10) | 0.0018 (10) |
N4 | 0.0299 (12) | 0.0346 (12) | 0.0426 (13) | 0.0043 (9) | −0.0025 (10) | 0.0052 (10) |
N5 | 0.0297 (12) | 0.0320 (12) | 0.0382 (13) | −0.0006 (9) | −0.0055 (9) | 0.0048 (9) |
N6 | 0.0414 (14) | 0.0302 (12) | 0.0374 (12) | −0.0022 (10) | −0.0019 (10) | −0.0053 (9) |
C4 | 0.0377 (15) | 0.0295 (13) | 0.0313 (13) | −0.0005 (11) | −0.0007 (11) | −0.0019 (10) |
C3 | 0.0400 (15) | 0.0312 (13) | 0.0312 (13) | −0.0004 (11) | −0.0030 (11) | −0.0018 (10) |
C1 | 0.0411 (16) | 0.0248 (13) | 0.0466 (17) | −0.0026 (11) | 0.0042 (13) | −0.0005 (11) |
C2 | 0.0529 (18) | 0.0323 (15) | 0.0372 (15) | 0.0014 (12) | −0.0014 (13) | 0.0083 (11) |
N1 | 0.0290 (11) | 0.0254 (10) | 0.0348 (11) | −0.0046 (9) | −0.0083 (9) | −0.0016 (9) |
N3 | 0.0317 (12) | 0.0257 (11) | 0.0437 (13) | 0.0020 (9) | −0.0026 (10) | 0.0036 (9) |
N2 | 0.0253 (11) | 0.0243 (10) | 0.0325 (11) | −0.0001 (8) | −0.0023 (9) | 0.0008 (8) |
O2 | 0.0280 (10) | 0.0396 (11) | 0.0332 (10) | −0.0005 (8) | −0.0005 (8) | −0.0006 (8) |
O3 | 0.0387 (12) | 0.0347 (12) | 0.0765 (17) | −0.0038 (9) | −0.0109 (11) | −0.0120 (10) |
Zn1—N2 | 2.058 (2) | N4—N5 | 1.358 (3) |
Zn1—N2i | 2.058 (2) | N6—C4 | 1.333 (3) |
Zn1—O2i | 2.131 (2) | N6—C1 | 1.334 (4) |
Zn1—O2 | 2.131 (2) | C4—H12 | 0.9300 |
Zn1—O1 | 2.1470 (17) | C3—C2 | 1.376 (4) |
Zn1—O1i | 2.1470 (17) | C3—H13 | 0.9300 |
O1—C6 | 1.232 (3) | C1—C2 | 1.386 (4) |
C5—C3 | 1.385 (4) | C1—H15 | 0.9300 |
C5—C4 | 1.389 (3) | C2—H16 | 0.9300 |
C5—C6 | 1.487 (3) | N1—H6 | 0.8600 |
C7—N5 | 1.323 (3) | N3—N2 | 1.353 (3) |
C7—N2 | 1.332 (3) | O2—H2A | 0.840 (5) |
C7—N1 | 1.389 (3) | O2—H2B | 0.839 (5) |
C6—N1 | 1.354 (3) | O3—H3A | 0.837 (5) |
N4—N3 | 1.298 (3) | O3—H3B | 0.838 (5) |
N2—Zn1—N2i | 180.00 (16) | C7—N5—N4 | 103.8 (2) |
N2—Zn1—O2i | 90.26 (8) | C4—N6—C1 | 117.9 (2) |
N2i—Zn1—O2i | 89.74 (8) | N6—C4—C5 | 123.3 (2) |
N2—Zn1—O2 | 89.74 (8) | N6—C4—H12 | 118.3 |
N2i—Zn1—O2 | 90.26 (8) | C5—C4—H12 | 118.3 |
O2i—Zn1—O2 | 180.0 | C2—C3—C5 | 119.0 (3) |
N2—Zn1—O1 | 83.86 (8) | C2—C3—H13 | 120.5 |
N2i—Zn1—O1 | 96.14 (8) | C5—C3—H13 | 120.5 |
O2i—Zn1—O1 | 87.47 (8) | N6—C1—C2 | 122.7 (2) |
O2—Zn1—O1 | 92.53 (8) | N6—C1—H15 | 118.6 |
N2—Zn1—O1i | 96.14 (8) | C2—C1—H15 | 118.6 |
N2i—Zn1—O1i | 83.86 (8) | C3—C2—C1 | 119.0 (3) |
O2i—Zn1—O1i | 92.53 (8) | C3—C2—H16 | 120.5 |
O2—Zn1—O1i | 87.47 (8) | C1—C2—H16 | 120.5 |
O1—Zn1—O1i | 180.00 (11) | C6—N1—C7 | 125.5 (2) |
C6—O1—Zn1 | 129.12 (16) | C6—N1—H6 | 117.3 |
C3—C5—C4 | 118.1 (2) | C7—N1—H6 | 117.3 |
C3—C5—C6 | 120.0 (2) | N4—N3—N2 | 108.3 (2) |
C4—C5—C6 | 122.0 (2) | C7—N2—N3 | 105.2 (2) |
N5—C7—N2 | 112.0 (2) | C7—N2—Zn1 | 126.55 (18) |
N5—C7—N1 | 121.8 (2) | N3—N2—Zn1 | 128.27 (16) |
N2—C7—N1 | 126.1 (2) | Zn1—O2—H2A | 114 (2) |
O1—C6—N1 | 123.8 (2) | Zn1—O2—H2B | 117 (2) |
O1—C6—C5 | 120.3 (2) | H2A—O2—H2B | 104.1 (12) |
N1—C6—C5 | 115.9 (2) | H3A—O3—H3B | 104.7 (13) |
N3—N4—N5 | 110.7 (2) |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H6···O3 | 0.86 | 2.04 | 2.829 (3) | 153 |
O2—H2A···N5ii | 0.84 (1) | 1.97 (1) | 2.795 (3) | 165 (3) |
O2—H2B···N6iii | 0.84 (1) | 1.89 (1) | 2.727 (3) | 178 (3) |
O3—H3A···O2ii | 0.84 (1) | 2.08 (2) | 2.843 (3) | 152 (4) |
O3—H3B···N4iv | 0.84 (1) | 2.09 (1) | 2.907 (3) | 164 (4) |
Symmetry codes: (ii) −x+1, −y, −z; (iii) x−1/2, −y+1/2, z−1/2; (iv) −x+3/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C7H5N6O)2(H2O)2]·2H2O |
Mr | 515.79 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 7.2576 (15), 12.008 (2), 11.917 (2) |
β (°) | 97.76 (3) |
V (Å3) | 1029.1 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.26 |
Crystal size (mm) | 0.22 × 0.15 × 0.1 |
Data collection | |
Diffractometer | Rigaku Saturn 724 CCD area-detector diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2002) |
Tmin, Tmax | 0.819, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8464, 2374, 2188 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.100, 1.19 |
No. of reflections | 2374 |
No. of parameters | 165 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.24, −0.33 |
Computer programs: CrystalClear (Rigaku, 2002), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H6···O3 | 0.86 | 2.04 | 2.829 (3) | 152.8 |
O2—H2A···N5i | 0.840 (5) | 1.974 (9) | 2.795 (3) | 165 (3) |
O2—H2B···N6ii | 0.839 (5) | 1.889 (6) | 2.727 (3) | 178 (3) |
O3—H3A···O2i | 0.837 (5) | 2.08 (2) | 2.843 (3) | 152 (4) |
O3—H3B···N4iii | 0.838 (5) | 2.092 (13) | 2.907 (3) | 164 (4) |
Symmetry codes: (i) −x+1, −y, −z; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+3/2, y+1/2, −z+1/2. |
References
Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2001). Angew. Chem. Int. Ed. 40, 3240–3242. Web of Science CrossRef CAS Google Scholar
Armstrong, C. M., Bernhardt, P. V., Chin, P. & Richardson, D. R. (2003). Eur. J. Inorg. Chem. pp. 1145–1156. CSD CrossRef Google Scholar
Foster, J. E., Nicholson, J. M., Butcher, R., Stables, J. P., Edafiogho, I. O., Goodwin, A. M., Henson, M. C., Smith, C. A. & Scott, K. R. (1999). Bioorg. Med. Chem. 7, 2415–2425. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kumar, D. K., Jose, D. A., Das, A. & Dastidar, P. (2005). Inorg. Chem. 44, 6933–6935. Web of Science CSD CrossRef PubMed CAS Google Scholar
Li, C., Chen, M. & Shao, C. (2008). Acta Cryst. E64, m424. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, D.-S., Huang, G.-S., Huang, C.-C., Huang, X.-H., Chen, J.-Z. & You, X.-Z. (2009). Cryst. Growth Des. 9, 5117–5127. Web of Science CSD CrossRef CAS Google Scholar
Moncol, J., Mudra, M., Lönnecke, P., Hewitt, M., Valko, M., Morris, H., Svorec, J., Melnik, M., Mazur, M. & Koman, M. (2007). Inorg. Chim. Acta, 360, 3213–3225. Web of Science CSD CrossRef CAS Google Scholar
Rauko, P., Novotny, L., Dovinova, I., Hunakova, L., Szekeres, T. & Jayaram, H. N. (2001). Eur. J. Pharm. Sci. 12, 387–394. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rowland, J. M., Olmstead, M. & Mascharak, P. K. (2001). Inorg. Chem. 40, 2810–2817. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rowland, J. M., Olmstead, M. & Mascharak, P. K. (2002). Inorg. Chim. Acta, 332, 37–40. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Y.-B., Liu, D.-S., Pan, T.-H., Liang, Q., Huang, X.-H., Wu, S.-T. & Huang, C.-C. (2010). CrystEngComm, 12, 3886–3893. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, many metal compounds derived from amides, have been prepared and characterized, and have been found to possess a wide variety of pharmic applications (Foster et al., 1999; Rauko et al., 2001; Rowland et al., 2001; Rowland et al., 2002). Amides were used to construct extended frameworks sustained both by hydrogen bonds and coordination bonds owing to the inherent coordination and hydrogenbonding donor/acceptor functionalities (Aakeröy et al., 2001; Li et al., 2008; Moncol et al., 2007; Kumar et al., 2005). In this paper, we report the crystal structure of the zinc-amide complex.
The asymmetric unit of complex, (I), contains one ZnII ion located on an inversion centre, one independent N-(tetrazol-5-yl)-nicotinamide ligand, one coordination water molecule and one free water molecule. The central ZnII ion adopts a slightly distorted octahedral coordination geometry by two ligands and two coordination water molecules. The equatorial plane is formed by two tetrazole N atoms and two O atoms in bis-N, O-chelating coordination from two N-(tetrazol-5-yl)-nicotinamide ligands, while the axial positions are occupied by two O atoms from two coordination water molecules. The Zn–N bond length is 2.058 (2) Å. The bond lengths of Zn–O are in the range 2.131 (2)–2.147 (1) Å. All the Zn–N or Zn–O bond lengths are comparable to those reported previously for zinc compounds (Armstrong et al., 2003; Liu et al., 2009). The dihedral angle between tetrazole and pyridine groups is 45.988 (1)°.
In the crystal, the complex molecules are connected to a two dimensional layer by intermolecular N–H···Ofree (O atoms from free water molecules) hydrogen bonds (Fig. 2, Table 2). The layered strcture form a three-dimensional network via Ofree–H···Ocoord (O atoms from coordination water molecules), Ofree–H···N and Ocoord–H···N hydrogen bonds.