metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m653-m654

trans-Di­aqua­bis­­[5-(pyridine-3-carboxamido)­tetra­zolido-κ2O,N1]zinc dihydrate

aState Key Laboratory Breeding Base of Photocatalysis, College of Chemistry & Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
*Correspondence e-mail: cchuang@fzu.edu.cn

(Received 24 March 2012; accepted 5 April 2012; online 21 April 2012)

The title compound, [Zn(C7H5N6O)2(H2O)2]·2H2O, consists of one ZnII ion located on the crystallographic inversion centre, two 5-(pyridine-3-carboxamido)­tetra­zolide ligands, two coordinated water mol­ecules and two free water mol­ecules. The ZnII ion adopts a slightly distorted octa­hedral coordination geometry formed by the N,O-chelating ligands and two O water atoms. The pyridine N atoms are not coordinated. In the crystal, complex mol­ecules are connected by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For pharmaceutical applications of amide derivatives, see: Foster et al. (1999[Foster, J. E., Nicholson, J. M., Butcher, R., Stables, J. P., Edafiogho, I. O., Goodwin, A. M., Henson, M. C., Smith, C. A. & Scott, K. R. (1999). Bioorg. Med. Chem. 7, 2415-2425.]); Rauko et al. (2001[Rauko, P., Novotny, L., Dovinova, I., Hunakova, L., Szekeres, T. & Jayaram, H. N. (2001). Eur. J. Pharm. Sci. 12, 387-394.]); Rowland et al. (2001[Rowland, J. M., Olmstead, M. & Mascharak, P. K. (2001). Inorg. Chem. 40, 2810-2817.], 2002[Rowland, J. M., Olmstead, M. & Mascharak, P. K. (2002). Inorg. Chim. Acta, 332, 37-40.]). For our recent work on the design and synthesis of amide complexes, see: Wang et al. (2010[Wang, Y.-B., Liu, D.-S., Pan, T.-H., Liang, Q., Huang, X.-H., Wu, S.-T. & Huang, C.-C. (2010). CrystEngComm, 12, 3886-3893.]). For the use of nicotinoyl­amino in building novel complexes, see: Aakeröy et al. (2001[Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2001). Angew. Chem. Int. Ed. 40, 3240-3242.]); Li et al. (2008[Li, C., Chen, M. & Shao, C. (2008). Acta Cryst. E64, m424.]); Moncol et al. (2007[Moncol, J., Mudra, M., Lönnecke, P., Hewitt, M., Valko, M., Morris, H., Svorec, J., Melnik, M., Mazur, M. & Koman, M. (2007). Inorg. Chim. Acta, 360, 3213-3225.]); Kumar et al. (2005[Kumar, D. K., Jose, D. A., Das, A. & Dastidar, P. (2005). Inorg. Chem. 44, 6933-6935.]). For Zn—N and Zn—O bond lengths in related structures, see: Armstrong et al. (2003[Armstrong, C. M., Bernhardt, P. V., Chin, P. & Richardson, D. R. (2003). Eur. J. Inorg. Chem. pp. 1145-1156.]); Liu et al. (2009[Liu, D.-S., Huang, G.-S., Huang, C.-C., Huang, X.-H., Chen, J.-Z. & You, X.-Z. (2009). Cryst. Growth Des. 9, 5117-5127.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H5N6O)2(H2O)2]·2H2O

  • Mr = 515.79

  • Monoclinic, P 21 /n

  • a = 7.2576 (15) Å

  • b = 12.008 (2) Å

  • c = 11.917 (2) Å

  • β = 97.76 (3)°

  • V = 1029.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 293 K

  • 0.22 × 0.15 × 0.1 mm

Data collection
  • Rigaku Saturn 724 CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.819, Tmax = 1.000

  • 8464 measured reflections

  • 2374 independent reflections

  • 2188 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.100

  • S = 1.19

  • 2374 reflections

  • 165 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N2 2.058 (2)
Zn1—O2 2.131 (2)
Zn1—O1 2.1470 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H6⋯O3 0.86 2.04 2.829 (3) 153
O2—H2A⋯N5i 0.84 (1) 1.97 (1) 2.795 (3) 165 (3)
O2—H2B⋯N6ii 0.84 (1) 1.89 (1) 2.727 (3) 178 (3)
O3—H3A⋯O2i 0.84 (1) 2.08 (2) 2.843 (3) 152 (4)
O3—H3B⋯N4iii 0.84 (1) 2.09 (1) 2.907 (3) 164 (4)
Symmetry codes: (i) -x+1, -y, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, many metal compounds derived from amides, have been prepared and characterized, and have been found to possess a wide variety of pharmic applications (Foster et al., 1999; Rauko et al., 2001; Rowland et al., 2001; Rowland et al., 2002). Amides were used to construct extended frameworks sustained both by hydrogen bonds and coordination bonds owing to the inherent coordination and hydrogenbonding donor/acceptor functionalities (Aakeröy et al., 2001; Li et al., 2008; Moncol et al., 2007; Kumar et al., 2005). In this paper, we report the crystal structure of the zinc-amide complex.

The asymmetric unit of complex, (I), contains one ZnII ion located on an inversion centre, one independent N-(tetrazol-5-yl)-nicotinamide ligand, one coordination water molecule and one free water molecule. The central ZnII ion adopts a slightly distorted octahedral coordination geometry by two ligands and two coordination water molecules. The equatorial plane is formed by two tetrazole N atoms and two O atoms in bis-N, O-chelating coordination from two N-(tetrazol-5-yl)-nicotinamide ligands, while the axial positions are occupied by two O atoms from two coordination water molecules. The Zn–N bond length is 2.058 (2) Å. The bond lengths of Zn–O are in the range 2.131 (2)–2.147 (1) Å. All the Zn–N or Zn–O bond lengths are comparable to those reported previously for zinc compounds (Armstrong et al., 2003; Liu et al., 2009). The dihedral angle between tetrazole and pyridine groups is 45.988 (1)°.

In the crystal, the complex molecules are connected to a two dimensional layer by intermolecular N–H···Ofree (O atoms from free water molecules) hydrogen bonds (Fig. 2, Table 2). The layered strcture form a three-dimensional network via Ofree–H···Ocoord (O atoms from coordination water molecules), Ofree–H···N and Ocoord–H···N hydrogen bonds.

Related literature top

For pharmaceutical applications of amide derivatives, see: Foster et al. (1999); Rauko et al. (2001); Rowland et al. (2001, 2002). For our recent work on the design and synthesis of amide complexes, see: Wang et al. (2010). For the use of nicotinoylamino in building novel complexes, see: Aakeröy et al. (2001); Li et al. (2008); Moncol et al. (2007); Kumar et al. (2005). For Zn—N and Zn—O bond lengths in related structures, see: Armstrong et al. (2003); Liu et al. (2009).

Experimental top

The title compound was synthesized by reacting the ligand (N-(1H-tetrazol-5-yl)-nicotinamide) (0.019 g,0.01 mmol) with Zn(CH3COO)2.2H2O (0.011 g, 0.05 mmol) in 5.0 ml of dimethyl sulfoxide followed by the addition of 4 ml of ethanol. The muddy solution obtained was stirred at room temperature for three hours, filtered and set aside to slowly crystallize at room temperature. The block-like crystals were obtained after about three weeks.

Refinement top

Four reflections, -2 1 1, -5 5 2, -5 2 3, -1 0 1, shaded by beamstop were omitted. All H atoms bonded to C and N atoms were refined in idealized positions using the riding-model approximation, with C–H = 0.93 Å, Uiso(H) = 1.2 Ueq(C) and N–H = 0.93 Å, Uiso(H) = 1.2 Ueq(N). In water molecule the O–H distances were restrained to 0.84 (5) Å, and the distance H···H to 1.32 (2) Å, with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the coordination environment of Zn2+ in title compound at 50%. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, -y, -z.]
[Figure 2] Fig. 2. A view of the two-dimensional structure formed via hydrogen bonds.
trans-Diaquabis[5-(pyridine-3-carboxamido)tetrazolido- κ2O,N1]zinc dihydrate top
Crystal data top
[Zn(C7H5N6O)2(H2O)2]·2H2OF(000) = 528
Mr = 515.79Dx = 1.665 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3552 reflections
a = 7.2576 (15) Åθ = 3.1–27.5°
b = 12.008 (2) ŵ = 1.26 mm1
c = 11.917 (2) ÅT = 293 K
β = 97.76 (3)°Prism, colorless
V = 1029.1 (3) Å30.22 × 0.15 × 0.1 mm
Z = 2
Data collection top
Rigaku Saturn 724 CCD area-detector
diffractometer
2374 independent reflections
Radiation source: fine-focus sealed tube2188 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
scintillation counter scansθmax = 27.6°, θmin = 3.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
h = 97
Tmin = 0.819, Tmax = 1.000k = 1514
8464 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.6596P]
where P = (Fo2 + 2Fc2)/3
2374 reflections(Δ/σ)max = 0.042
165 parametersΔρmax = 0.24 e Å3
6 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Zn(C7H5N6O)2(H2O)2]·2H2OV = 1029.1 (3) Å3
Mr = 515.79Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.2576 (15) ŵ = 1.26 mm1
b = 12.008 (2) ÅT = 293 K
c = 11.917 (2) Å0.22 × 0.15 × 0.1 mm
β = 97.76 (3)°
Data collection top
Rigaku Saturn 724 CCD area-detector
diffractometer
2374 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
2188 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 1.000Rint = 0.043
8464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0456 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.24 e Å3
2374 reflectionsΔρmin = 0.33 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.00000.00000.02817 (14)
O10.1128 (2)0.16405 (14)0.01319 (16)0.0348 (4)
C50.2633 (3)0.3319 (2)0.0481 (2)0.0274 (5)
C70.3943 (3)0.0364 (2)0.1181 (2)0.0259 (5)
C60.2446 (3)0.2086 (2)0.0460 (2)0.0281 (5)
N40.5071 (3)0.12357 (19)0.1550 (2)0.0364 (5)
N50.5487 (3)0.01344 (18)0.1645 (2)0.0342 (5)
N60.3527 (3)0.49961 (18)0.1502 (2)0.0370 (5)
C40.3380 (4)0.3890 (2)0.1451 (2)0.0333 (6)
H120.37990.34800.20970.040*
C30.1991 (4)0.3936 (2)0.0474 (2)0.0349 (6)
H130.14480.35840.11320.042*
C10.2944 (4)0.5576 (2)0.0566 (2)0.0377 (6)
H150.30640.63470.05860.045*
C20.2168 (4)0.5077 (2)0.0436 (3)0.0415 (7)
H160.17720.55060.10720.050*
N10.3798 (3)0.15158 (17)0.11143 (18)0.0309 (5)
H60.46370.18990.15230.037*
N30.3383 (3)0.13789 (18)0.1054 (2)0.0344 (5)
N20.2617 (3)0.03656 (18)0.08075 (18)0.0279 (4)
O20.0833 (3)0.05113 (17)0.15682 (16)0.0340 (4)
H2A0.186 (2)0.025 (3)0.169 (3)0.066 (12)*
H2B0.011 (3)0.037 (3)0.2160 (16)0.061 (11)*
O30.7255 (3)0.25284 (18)0.1891 (2)0.0517 (6)
H3A0.801 (4)0.208 (3)0.166 (3)0.078*
H3B0.787 (4)0.287 (3)0.243 (2)0.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0224 (2)0.0244 (2)0.0352 (2)0.00194 (15)0.00520 (16)0.00004 (16)
O10.0314 (10)0.0247 (9)0.0444 (11)0.0060 (7)0.0087 (8)0.0033 (8)
C50.0270 (12)0.0251 (12)0.0292 (12)0.0025 (9)0.0006 (10)0.0005 (10)
C70.0250 (12)0.0264 (11)0.0248 (11)0.0005 (9)0.0015 (9)0.0007 (9)
C60.0298 (13)0.0257 (12)0.0284 (12)0.0027 (10)0.0020 (10)0.0018 (10)
N40.0299 (12)0.0346 (12)0.0426 (13)0.0043 (9)0.0025 (10)0.0052 (10)
N50.0297 (12)0.0320 (12)0.0382 (13)0.0006 (9)0.0055 (9)0.0048 (9)
N60.0414 (14)0.0302 (12)0.0374 (12)0.0022 (10)0.0019 (10)0.0053 (9)
C40.0377 (15)0.0295 (13)0.0313 (13)0.0005 (11)0.0007 (11)0.0019 (10)
C30.0400 (15)0.0312 (13)0.0312 (13)0.0004 (11)0.0030 (11)0.0018 (10)
C10.0411 (16)0.0248 (13)0.0466 (17)0.0026 (11)0.0042 (13)0.0005 (11)
C20.0529 (18)0.0323 (15)0.0372 (15)0.0014 (12)0.0014 (13)0.0083 (11)
N10.0290 (11)0.0254 (10)0.0348 (11)0.0046 (9)0.0083 (9)0.0016 (9)
N30.0317 (12)0.0257 (11)0.0437 (13)0.0020 (9)0.0026 (10)0.0036 (9)
N20.0253 (11)0.0243 (10)0.0325 (11)0.0001 (8)0.0023 (9)0.0008 (8)
O20.0280 (10)0.0396 (11)0.0332 (10)0.0005 (8)0.0005 (8)0.0006 (8)
O30.0387 (12)0.0347 (12)0.0765 (17)0.0038 (9)0.0109 (11)0.0120 (10)
Geometric parameters (Å, º) top
Zn1—N22.058 (2)N4—N51.358 (3)
Zn1—N2i2.058 (2)N6—C41.333 (3)
Zn1—O2i2.131 (2)N6—C11.334 (4)
Zn1—O22.131 (2)C4—H120.9300
Zn1—O12.1470 (17)C3—C21.376 (4)
Zn1—O1i2.1470 (17)C3—H130.9300
O1—C61.232 (3)C1—C21.386 (4)
C5—C31.385 (4)C1—H150.9300
C5—C41.389 (3)C2—H160.9300
C5—C61.487 (3)N1—H60.8600
C7—N51.323 (3)N3—N21.353 (3)
C7—N21.332 (3)O2—H2A0.840 (5)
C7—N11.389 (3)O2—H2B0.839 (5)
C6—N11.354 (3)O3—H3A0.837 (5)
N4—N31.298 (3)O3—H3B0.838 (5)
N2—Zn1—N2i180.00 (16)C7—N5—N4103.8 (2)
N2—Zn1—O2i90.26 (8)C4—N6—C1117.9 (2)
N2i—Zn1—O2i89.74 (8)N6—C4—C5123.3 (2)
N2—Zn1—O289.74 (8)N6—C4—H12118.3
N2i—Zn1—O290.26 (8)C5—C4—H12118.3
O2i—Zn1—O2180.0C2—C3—C5119.0 (3)
N2—Zn1—O183.86 (8)C2—C3—H13120.5
N2i—Zn1—O196.14 (8)C5—C3—H13120.5
O2i—Zn1—O187.47 (8)N6—C1—C2122.7 (2)
O2—Zn1—O192.53 (8)N6—C1—H15118.6
N2—Zn1—O1i96.14 (8)C2—C1—H15118.6
N2i—Zn1—O1i83.86 (8)C3—C2—C1119.0 (3)
O2i—Zn1—O1i92.53 (8)C3—C2—H16120.5
O2—Zn1—O1i87.47 (8)C1—C2—H16120.5
O1—Zn1—O1i180.00 (11)C6—N1—C7125.5 (2)
C6—O1—Zn1129.12 (16)C6—N1—H6117.3
C3—C5—C4118.1 (2)C7—N1—H6117.3
C3—C5—C6120.0 (2)N4—N3—N2108.3 (2)
C4—C5—C6122.0 (2)C7—N2—N3105.2 (2)
N5—C7—N2112.0 (2)C7—N2—Zn1126.55 (18)
N5—C7—N1121.8 (2)N3—N2—Zn1128.27 (16)
N2—C7—N1126.1 (2)Zn1—O2—H2A114 (2)
O1—C6—N1123.8 (2)Zn1—O2—H2B117 (2)
O1—C6—C5120.3 (2)H2A—O2—H2B104.1 (12)
N1—C6—C5115.9 (2)H3A—O3—H3B104.7 (13)
N3—N4—N5110.7 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H6···O30.862.042.829 (3)153
O2—H2A···N5ii0.84 (1)1.97 (1)2.795 (3)165 (3)
O2—H2B···N6iii0.84 (1)1.89 (1)2.727 (3)178 (3)
O3—H3A···O2ii0.84 (1)2.08 (2)2.843 (3)152 (4)
O3—H3B···N4iv0.84 (1)2.09 (1)2.907 (3)164 (4)
Symmetry codes: (ii) x+1, y, z; (iii) x1/2, y+1/2, z1/2; (iv) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C7H5N6O)2(H2O)2]·2H2O
Mr515.79
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.2576 (15), 12.008 (2), 11.917 (2)
β (°) 97.76 (3)
V3)1029.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.22 × 0.15 × 0.1
Data collection
DiffractometerRigaku Saturn 724 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.819, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8464, 2374, 2188
Rint0.043
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.100, 1.19
No. of reflections2374
No. of parameters165
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.33

Computer programs: CrystalClear (Rigaku, 2002), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N22.058 (2)Zn1—O12.1470 (17)
Zn1—O22.131 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H6···O30.862.042.829 (3)152.8
O2—H2A···N5i0.840 (5)1.974 (9)2.795 (3)165 (3)
O2—H2B···N6ii0.839 (5)1.889 (6)2.727 (3)178 (3)
O3—H3A···O2i0.837 (5)2.08 (2)2.843 (3)152 (4)
O3—H3B···N4iii0.838 (5)2.092 (13)2.907 (3)164 (4)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z1/2; (iii) x+3/2, y+1/2, z+1/2.
 

References

First citationAakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2001). Angew. Chem. Int. Ed. 40, 3240–3242.  Web of Science CrossRef CAS Google Scholar
First citationArmstrong, C. M., Bernhardt, P. V., Chin, P. & Richardson, D. R. (2003). Eur. J. Inorg. Chem. pp. 1145–1156.  CSD CrossRef Google Scholar
First citationFoster, J. E., Nicholson, J. M., Butcher, R., Stables, J. P., Edafiogho, I. O., Goodwin, A. M., Henson, M. C., Smith, C. A. & Scott, K. R. (1999). Bioorg. Med. Chem. 7, 2415–2425.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKumar, D. K., Jose, D. A., Das, A. & Dastidar, P. (2005). Inorg. Chem. 44, 6933–6935.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, C., Chen, M. & Shao, C. (2008). Acta Cryst. E64, m424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, D.-S., Huang, G.-S., Huang, C.-C., Huang, X.-H., Chen, J.-Z. & You, X.-Z. (2009). Cryst. Growth Des. 9, 5117–5127.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoncol, J., Mudra, M., Lönnecke, P., Hewitt, M., Valko, M., Morris, H., Svorec, J., Melnik, M., Mazur, M. & Koman, M. (2007). Inorg. Chim. Acta, 360, 3213–3225.  Web of Science CSD CrossRef CAS Google Scholar
First citationRauko, P., Novotny, L., Dovinova, I., Hunakova, L., Szekeres, T. & Jayaram, H. N. (2001). Eur. J. Pharm. Sci. 12, 387–394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRowland, J. M., Olmstead, M. & Mascharak, P. K. (2001). Inorg. Chem. 40, 2810–2817.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRowland, J. M., Olmstead, M. & Mascharak, P. K. (2002). Inorg. Chim. Acta, 332, 37–40.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-B., Liu, D.-S., Pan, T.-H., Liang, Q., Huang, X.-H., Wu, S.-T. & Huang, C.-C. (2010). CrystEngComm, 12, 3886–3893.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m653-m654
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds