organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1279

5-(Thio­phen-2-ylmeth­yl)-1,3,4-thia­diazol-2-amine

aYeşilyurt Demir Çelik Vocational School, Ondokuz Mayıs University, Samsun, Turkey, bDepartment of Chemistry, Karadeniz Technical Universty, 61080 Trabzon, Turkey, cDepartment of Chemistry, Howard University, 525 College Street, NW, Washington, DC 2059, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eDepartment of Chemistry, Keene State College, 220 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 28 March 2012; accepted 29 March 2012; online 4 April 2012)

In the title mol­ecule, C7H7N3S2, the dihedral angle between the thio­phene and thia­diazole rings is 72.99 (5)°; the two rings are oriented so that the S atoms in each ring are on the same side. In the crystal, the three-dimensional network involves strong N—H⋯O hydrogen bonds, as well as C—H⋯π and ππ stacking inter­actions [centroid–centroid distances = 3.654 (1) and 3.495 (1) Å].

Related literature

For the anti­tumor activity of 2-amino-1,3,4-thia­diazole, 2-ethyl­amino-1,3,4-thia­diazole and 2,2′-(methyl­enediamino)­bis-1,3,4-thia­diazole, see: Olesan et al. (1955[Olesan, J. J., Sloboda, A., Troy, W. P., Halliday, S. L., Landes, M. J., Angier, R. B., Semb, J., Cvr, K. & Williams, J. H. (1955). J. Am. Chem. Soc. 77, 6713-6714.]); Mishra et al. (1995[Mishra, L., Said, M. K., Itokawa, H. & Takeva, K. (1995). Bioorg. Med. Chem. 3, 1241-1245.]). For their anti-HIV, anti­proliferative, germicidal and D2 dopamine­rgic activity, see: Mohareb et al. (2004[Mohareb, M., Sherif, M., Gaber, M., Ghabrial, S. & Aziz, I. (2004). Heteroat. Chem. 15, 15-20.]). For the synthesis of the title compound, see: Sancak et al., (2007[Sancak, K., Ünver, Y. & Er, M. (2007). Turk. J. Chem. 31, 125-134.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7N3S2

  • Mr = 197.28

  • Monoclinic, P 21 /c

  • a = 11.2970 (6) Å

  • b = 6.6094 (3) Å

  • c = 11.2480 (6) Å

  • β = 97.243 (5)°

  • V = 833.15 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.33 mm−1

  • T = 173 K

  • 0.46 × 0.28 × 0.15 mm

Data collection
  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.209, Tmax = 0.450

  • 4375 measured reflections

  • 1539 independent reflections

  • 1497 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.120

  • S = 1.09

  • 1539 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the S1/C1–C4 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯N1i 0.86 2.13 2.991 (2) 175
N3—H3A⋯N2ii 0.86 2.17 3.013 (2) 167
C1—H1⋯Cgiii 0.93 2.83 3.549 (2) 135
Symmetry codes: (i) [x, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y+3, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The antitumor activites of 2-amino-1,3,4-thiadiazole (ATDA, NSC-4728) and the related compounds: 2-ethylamino-1,3,4-thiadiazole (EATDA), 2,2'-(methylene-diamino) bis-1,3,4-thiadiazole (NSC-143019) were found in several experimental tumor systems about 50 years ago (Olesan et al., 1955). 2-Amino-1,3,4-thiadiazole (ATDA), as the most promising compound, was used in phase II clinical trials in patients with different tumors: renal, colon, ovarian, and others. Recently new derivatives with the 1,3,4-thiadiazole nucleus as well as Fe(II) / Fe (III) complexes of 2-amino-1,3,4-thiadiazoles have been synthesized and evaluated for their antiproliferative activity against a panel of human cancer cell lines (Mishra et al., 1995). Over recent years, there has been an increasing interest in the chemistry of thiophenes because of their biological significance. Many of them have been widely investigated for therapeutic uses, especially as antifungal, antibacterial, anti-inflammatory, anticonvulsant, antiasthmatic, and analgesic agents. They also were known to show anti-HIV, antiproliferative, germicidal, and D2 dopaminergic activities (Mohareb et al., 2004). In view of these facts, the aim of this present study is to obtain a structure of 1,3,4-oxadiazole incorporating the thiophene ring.

In the molecule of the title compound (Fig 1), the bond lengths are within normal ranges (Allen et al., 1987). In the molecule of (I) atom S1 is oriented towards the thiadiazol ring, Fig. 1. The dihedral angle between the planar thiophene (r.m.s. deviation = 0.007 Å) and planar thiadiazol (r.m.s. deviation = 0.004 Å) rings of 72.99 (5)° indicates a twist between planes as seen in the S1–C4–C5–C6 torsion angle of 94.86 (17) °. The amine group is effectively co-planar with the thiadiazol ring to which it is attached as seen in the N3–C7–S2–C6 torsion angle of 178.53 (16) °.

In the crystal structure, there are strong intermolecular N–H···N hydrogen bonds which lead to the formation of centrosymmetric dimers in the crystal. In addition there are C—H···π and π-π stacking interactions [Cg1···Cg1(1 - x, -y, -z) = 3.654 (1) Å and Cg2···Cg2(-x, 1 - y, -z) = 3.495 (1) Å, Cg1(S1/C1—C4) and Cg2(S2/N1/N2/C6/C7) are the centroids of the thiophene and thiadiazol rings]. This pattern is the primary supramolecular structure for this compound (Fig. 2).

Related literature top

For the antitumor activity of 2-amino-1,3,4-thiadiazole, 2-ethylamino-1,3,4-thiadiazole and 2,2'-(methylenediamino)bis-1,3,4-thiadiazole, see: Olesan et al. (1955); Mishra et al. (1995). For their anti-HIV, antiproliferative, germicidal and D2 dopaminergic activity, see: Mohareb et al. (2004). For the synthesis of the title compound, see: Sancak et al., (2007). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was synthesized using the published method (Sancak et al., 2007).

Refinement top

The amine H atoms were seen in a difference Fourier map and then idealized with Uiso(H) = 1.2Ueq(N) with N–H bond length of 0.86 Å. The C-bound H-atoms were positioned geometrically with C—H = 0.93 and 0.97 Å, for aromatic and CH2 H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). During the refinement it was noticed that for the strongest reflections (Fc/Fc(max) close to 1.00) the observed value (Fo) was much smaller than the calculated value (Fc) indicating detector saturation problems. These reflections were omitted from the refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-hydrogen atoms.
[Figure 2] Fig. 2. The packing view showing the hydrogen bonds network. Dashed lines indicate intermolecular N—H···N hydrogen bonds (see Table 1 for details).
5-(Thiophen-2-ylmethyl)-1,3,4-thiadiazol-2-amine top
Crystal data top
C7H7N3S2F(000) = 408
Mr = 197.28Dx = 1.573 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 2744 reflections
a = 11.2970 (6) Åθ = 3.9–70.0°
b = 6.6094 (3) ŵ = 5.33 mm1
c = 11.2480 (6) ÅT = 173 K
β = 97.243 (5)°Chunk, colorless
V = 833.15 (7) Å30.46 × 0.28 × 0.15 mm
Z = 4
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
1539 independent reflections
Radiation source: Enhance (Cu) X-ray Source1497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.1500 pixels mm-1θmax = 70.1°, θmin = 3.9°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 58
Tmin = 0.209, Tmax = 0.450l = 1213
4375 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0928P)2 + 0.0849P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1539 reflectionsΔρmax = 0.64 e Å3
110 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.035 (3)
Crystal data top
C7H7N3S2V = 833.15 (7) Å3
Mr = 197.28Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.2970 (6) ŵ = 5.33 mm1
b = 6.6094 (3) ÅT = 173 K
c = 11.2480 (6) Å0.46 × 0.28 × 0.15 mm
β = 97.243 (5)°
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
1539 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1497 reflections with I > 2σ(I)
Tmin = 0.209, Tmax = 0.450Rint = 0.036
4375 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.09Δρmax = 0.64 e Å3
1539 reflectionsΔρmin = 0.38 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.64166 (4)0.57641 (7)0.32224 (4)0.0210 (2)
S20.82410 (4)1.05521 (6)0.34150 (3)0.0182 (2)
N10.87197 (12)1.0981 (2)0.56747 (13)0.0175 (4)
N20.91662 (12)1.2714 (2)0.51908 (13)0.0179 (4)
N30.93579 (14)1.4168 (2)0.33358 (14)0.0251 (4)
H3A0.97321.51980.36650.030*
H3B0.92201.40850.25680.030*
C10.48911 (16)0.5889 (3)0.30609 (17)0.0216 (4)
H10.43950.53060.24300.026*
C20.44958 (15)0.6943 (3)0.39653 (16)0.0226 (4)
H20.36930.71600.40300.027*
C30.54422 (16)0.7680 (3)0.48045 (16)0.0206 (4)
H30.53230.84200.54830.025*
C40.65455 (15)0.7192 (2)0.45147 (15)0.0171 (4)
C50.77380 (16)0.7709 (3)0.51957 (16)0.0212 (4)
H5A0.83060.66680.50440.025*
H5B0.76670.76890.60460.025*
C60.82264 (14)0.9732 (3)0.48849 (14)0.0159 (4)
C70.89906 (14)1.2698 (3)0.40174 (15)0.0165 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0161 (3)0.0215 (4)0.0250 (4)0.00005 (14)0.0010 (2)0.00692 (15)
S20.0184 (3)0.0192 (3)0.0158 (3)0.00404 (13)0.0027 (2)0.00264 (13)
N10.0172 (7)0.0156 (7)0.0191 (7)0.0010 (5)0.0000 (6)0.0004 (5)
N20.0170 (7)0.0175 (8)0.0184 (7)0.0032 (5)0.0012 (5)0.0010 (5)
N30.0272 (9)0.0290 (9)0.0172 (8)0.0138 (6)0.0039 (6)0.0017 (6)
C10.0172 (8)0.0152 (8)0.0311 (9)0.0020 (6)0.0017 (7)0.0002 (7)
C20.0176 (8)0.0169 (9)0.0337 (10)0.0024 (6)0.0052 (7)0.0078 (7)
C30.0248 (9)0.0135 (9)0.0239 (9)0.0041 (6)0.0054 (7)0.0012 (6)
C40.0211 (8)0.0084 (8)0.0213 (9)0.0011 (6)0.0007 (7)0.0000 (6)
C50.0236 (9)0.0130 (9)0.0251 (9)0.0007 (6)0.0039 (7)0.0016 (7)
C60.0139 (7)0.0152 (8)0.0179 (8)0.0022 (6)0.0004 (6)0.0003 (6)
C70.0100 (7)0.0184 (9)0.0199 (8)0.0002 (6)0.0025 (6)0.0031 (6)
Geometric parameters (Å, º) top
S1—C11.7119 (18)C1—C21.354 (3)
S1—C41.7237 (17)C1—H10.9300
S2—C61.7419 (17)C2—C31.420 (3)
S2—C71.7445 (17)C2—H20.9300
N1—C61.287 (2)C3—C41.366 (2)
N1—N21.390 (2)C3—H30.9300
N2—C71.310 (2)C4—C51.503 (2)
N3—C71.336 (2)C5—C61.505 (2)
N3—H3A0.8600C5—H5A0.9700
N3—H3B0.8600C5—H5B0.9700
C1—S1—C492.29 (9)C3—C4—C5127.66 (16)
C6—S2—C786.93 (8)C3—C4—S1110.36 (13)
C6—N1—N2113.90 (14)C5—C4—S1121.96 (13)
C7—N2—N1111.83 (14)C4—C5—C6114.53 (14)
C7—N3—H3A120.0C4—C5—H5A108.6
C7—N3—H3B120.0C6—C5—H5A108.6
H3A—N3—H3B120.0C4—C5—H5B108.6
C2—C1—S1111.59 (14)C6—C5—H5B108.6
C2—C1—H1124.2H5A—C5—H5B107.6
S1—C1—H1124.2N1—C6—C5123.32 (15)
C1—C2—C3112.57 (16)N1—C6—S2113.61 (13)
C1—C2—H2123.7C5—C6—S2123.00 (12)
C3—C2—H2123.7N2—C7—N3123.65 (16)
C4—C3—C2113.16 (16)N2—C7—S2113.71 (13)
C4—C3—H3123.4N3—C7—S2122.63 (13)
C2—C3—H3123.4
C6—N1—N2—C70.27 (19)N2—N1—C6—C5176.73 (15)
C4—S1—C1—C21.08 (14)N2—N1—C6—S20.36 (18)
S1—C1—C2—C30.4 (2)C4—C5—C6—N1136.56 (17)
C1—C2—C3—C40.7 (2)C4—C5—C6—S246.6 (2)
C2—C3—C4—C5179.68 (15)C7—S2—C6—N10.64 (13)
C2—C3—C4—S11.50 (19)C7—S2—C6—C5176.45 (15)
C1—S1—C4—C31.47 (14)N1—N2—C7—N3178.55 (16)
C1—S1—C4—C5179.78 (14)N1—N2—C7—S20.78 (18)
C3—C4—C5—C687.1 (2)C6—S2—C7—N20.80 (13)
S1—C4—C5—C694.86 (17)C6—S2—C7—N3178.53 (16)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the S1/C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3B···N1i0.862.132.991 (2)175
N3—H3A···N2ii0.862.173.013 (2)167
C1—H1···Cgiii0.932.833.549 (2)135
Symmetry codes: (i) x, y+5/2, z1/2; (ii) x+2, y+3, z+1; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H7N3S2
Mr197.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)11.2970 (6), 6.6094 (3), 11.2480 (6)
β (°) 97.243 (5)
V3)833.15 (7)
Z4
Radiation typeCu Kα
µ (mm1)5.33
Crystal size (mm)0.46 × 0.28 × 0.15
Data collection
DiffractometerAgilent Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.209, 0.450
No. of measured, independent and
observed [I > 2σ(I)] reflections
4375, 1539, 1497
Rint0.036
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.120, 1.09
No. of reflections1539
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.38

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the S1/C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3B···N1i0.862.132.991 (2)174.6
N3—H3A···N2ii0.862.173.013 (2)166.7
C1—H1···Cgiii0.932.833.549 (2)135
Symmetry codes: (i) x, y+5/2, z1/2; (ii) x+2, y+3, z+1; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

References

First citationAgilent (2010). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationMishra, L., Said, M. K., Itokawa, H. & Takeva, K. (1995). Bioorg. Med. Chem. 3, 1241–1245.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMohareb, M., Sherif, M., Gaber, M., Ghabrial, S. & Aziz, I. (2004). Heteroat. Chem. 15, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationOlesan, J. J., Sloboda, A., Troy, W. P., Halliday, S. L., Landes, M. J., Angier, R. B., Semb, J., Cvr, K. & Williams, J. H. (1955). J. Am. Chem. Soc. 77, 6713–6714.  Google Scholar
First citationSancak, K., Ünver, Y. & Er, M. (2007). Turk. J. Chem. 31, 125–134.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1279
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds