organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1457

Ethyl 2-benzoyl-6-methyl­indolizine-7-carboxyl­ate

aSchool of New Energy Science and Engineering, Xinyu University, Xinyu 338000, People's Republic of China, and, Key Laboratory of Jiangxi University for Silicon Materials, Xinyu 338000, People's Republic of China
*Correspondence e-mail: liaoshangtie@163.com

(Received 30 March 2012; accepted 14 April 2012; online 21 April 2012)

The title compound, C19H17NO3, was synthesized using a tandem annulation reaction between 4-benzoyl-1H-pyrrole-2-carbaldehyde and (E)-ethyl 4-bromo­but-2-enoate under mild conditions. The dihedral angle between the benzene ring and the indolizine ring system is 41.73 (4)°.

Related literature

For background to indolizines, see:Ge et al. (2009a[Ge, Y. Q., Jia, J., Li, Y., Yin, L. & Wang, J. W. (2009a). Heterocycles, 78, 197-206.], 2011[Ge, Y. Q., Hao, B. Q., Duan, G. Y. & Wang, J. W. (2011). J. Lumin. 131, 1070-1076.]). For bond lengths and angles in related structures, see: Ge et al. (2009b[Ge, Y. Q., Jia, J., Yang, H., Zhao, G. L., Zhan, F. X. & Wang, J. W. (2009b). Heterocycles, 78, 725-736.]). For the synthesis of imidazo[1,2-a]pyridines via a tandem reaction, see: Jia et al. (2010[Jia, J., Ge, Y. Q., Tao, X. T. & Wang, J. W. (2010). Heterocycles, 81, 185-194.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17NO3

  • Mr = 307.34

  • Monoclinic, P 21 /n

  • a = 8.177 (5) Å

  • b = 17.243 (5) Å

  • c = 11.191 (5) Å

  • β = 102.070 (5)°

  • V = 1543.0 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.18 × 0.15 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.983, Tmax = 0.990

  • 8583 measured reflections

  • 3150 independent reflections

  • 2434 reflections with I > 2σ(I)

  • Rint = 0.124

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.166

  • S = 1.04

  • 3150 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indolizines have attracted considerable attention from medicinal and organic chemists because of the interesting similarities and diversions in structure to indole (Ge et al.; 2009a, 2011). Synthetic indolizines play important roles as calcium entry blockers, potential central nervous system depressants, 5-HT3 receptor antagonist, histamine H3 receptor antagonists, cardiovascular agents, and PLA2 inhibitors. They have also drawn much attention owing to their possible usage as dyes and chemosensors. The title indolizine (I) (Fig. 1) was synthesized in order to study its biological properties. (I) was screened for anticancer activities and found to be inactive. We report here the crystal structure of the title compound. In the title compound, C19H17NO3, all bond lengths and angles show normal values (Ge et al., 2009b). The dihedral angle between the benzene and indolizine rings is 41.73 (4)°.

Related literature top

For background to indolizines, see:Ge et al. (2009a, 2011). For bond lengths and angles in related structures, see: Ge et al. (2009b). For the synthesis of imidazo[1,2-a]pyridines via a tandem reaction, see: Jia et al. (2010).

Experimental top

To a 50 ml round-bottomed flask were added 4-benzoyl-1H-pyrrole-2-carbaldehyde (1.00 mmol), (E)-ethyl 4-bromobut-2-enoate (2.00 mmol), potassium carbonate (0.28 g, 2.05 mmol) and dry DMF (10 ml). The mixture was stirred at room temperature for 8 h. The solvent was removed under reduced pressure and an product was isolated by column chromatography on silica gel (yield 76%). Crystals of (I) suitable for X-ray diffraction were obtained by allowing a refluxed solution of the product in ethyl acetate to cool slowly to room temperature (without temperature control) and allowing the solvent to evaporate for 10 d.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for CH2 groups),0.96 Å (for CH3 groups) and 0.93 Å (for aromatic protons), their isotropic displacement parameters were set to 1.2 times (1.5 times for CH3 groups) the equivalent displacement parameter of their parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.
Ethyl 2-benzoyl-6-methylindolizine-7-carboxylate top
Crystal data top
C19H17NO3F(000) = 648
Mr = 307.34Dx = 1.323 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 4026 reflections
a = 8.177 (5) Åθ = 2.4–28.4°
b = 17.243 (5) ŵ = 0.09 mm1
c = 11.191 (5) ÅT = 293 K
β = 102.070 (5)°Block, yellow
V = 1543.0 (13) Å30.18 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3150 independent reflections
Radiation source: fine-focus sealed tube2434 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.124
phi and ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.983, Tmax = 0.990k = 1721
8583 measured reflectionsl = 139
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.0781P)2 + 0.2178P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3150 reflectionsΔρmax = 0.30 e Å3
211 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (4)
Crystal data top
C19H17NO3V = 1543.0 (13) Å3
Mr = 307.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.177 (5) ŵ = 0.09 mm1
b = 17.243 (5) ÅT = 293 K
c = 11.191 (5) Å0.18 × 0.15 × 0.14 mm
β = 102.070 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3150 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2434 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.990Rint = 0.124
8583 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
3150 reflectionsΔρmin = 0.22 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5745 (2)0.16484 (10)1.05807 (18)0.0509 (5)
H10.61220.18590.99220.061*
C20.4798 (3)0.09802 (12)1.0431 (2)0.0657 (6)
H20.45360.07430.96680.079*
C30.4235 (3)0.06598 (12)1.1396 (2)0.0694 (7)
H30.35720.02171.12820.083*
C40.4657 (3)0.09960 (13)1.2523 (2)0.0649 (6)
H40.42980.07731.31800.078*
C50.5610 (2)0.16633 (11)1.26986 (19)0.0522 (5)
H50.59010.18841.34720.063*
C60.61349 (19)0.20050 (9)1.17163 (16)0.0419 (4)
C70.7090 (2)0.27484 (10)1.19416 (16)0.0430 (4)
C80.6858 (2)0.33474 (9)1.09863 (16)0.0411 (4)
C90.5640 (2)0.33689 (9)0.99243 (17)0.0430 (4)
H90.48310.29920.96630.052*
C100.7812 (2)0.40322 (9)1.10421 (16)0.0432 (4)
H100.87120.41691.16620.052*
C110.71730 (19)0.44609 (9)1.00163 (15)0.0397 (4)
C120.7536 (2)0.51834 (9)0.95286 (17)0.0426 (4)
H120.83940.54880.99670.051*
C130.4925 (2)0.43088 (10)0.82315 (17)0.0459 (4)
H130.40360.40150.78110.055*
C140.5288 (2)0.49875 (10)0.77489 (16)0.0454 (4)
C150.6659 (2)0.54404 (9)0.84358 (16)0.0432 (4)
C160.4222 (3)0.52534 (12)0.6562 (2)0.0625 (6)
H16A0.33350.48880.62980.094*
H16B0.48940.52900.59550.094*
H16C0.37560.57530.66720.094*
C170.7185 (2)0.61723 (11)0.79141 (19)0.0533 (5)
C180.8515 (2)0.73858 (11)0.8309 (2)0.0616 (6)
H18A0.75970.76740.78160.074*
H18B0.93150.72640.78070.074*
C190.9329 (3)0.78540 (12)0.9384 (3)0.0786 (7)
H19A0.85220.79800.98650.118*
H19B0.97650.83230.91100.118*
H19C1.02250.75610.98700.118*
N10.58336 (16)0.40372 (7)0.93311 (12)0.0394 (4)
O10.80406 (17)0.28578 (8)1.29271 (13)0.0604 (4)
O20.7043 (3)0.62853 (11)0.68326 (16)0.0966 (7)
O30.78952 (16)0.66744 (7)0.87619 (13)0.0533 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0701 (11)0.0331 (8)0.0482 (11)0.0025 (8)0.0096 (8)0.0030 (8)
C20.0881 (14)0.0369 (9)0.0660 (14)0.0047 (9)0.0019 (11)0.0014 (9)
C30.0727 (13)0.0413 (10)0.0886 (18)0.0103 (9)0.0041 (12)0.0131 (11)
C40.0664 (12)0.0542 (11)0.0764 (15)0.0043 (9)0.0202 (11)0.0244 (11)
C50.0586 (10)0.0493 (10)0.0496 (11)0.0033 (8)0.0135 (8)0.0081 (9)
C60.0465 (8)0.0341 (8)0.0451 (10)0.0052 (6)0.0094 (7)0.0063 (7)
C70.0478 (8)0.0384 (8)0.0428 (10)0.0027 (7)0.0097 (7)0.0009 (7)
C80.0484 (8)0.0303 (8)0.0447 (10)0.0021 (6)0.0097 (7)0.0028 (7)
C90.0485 (9)0.0307 (8)0.0493 (10)0.0017 (6)0.0094 (7)0.0007 (7)
C100.0511 (9)0.0346 (8)0.0419 (10)0.0017 (7)0.0049 (7)0.0040 (7)
C110.0457 (8)0.0308 (8)0.0424 (9)0.0003 (6)0.0088 (7)0.0056 (7)
C120.0506 (9)0.0307 (8)0.0469 (10)0.0021 (7)0.0115 (7)0.0046 (7)
C130.0497 (9)0.0399 (9)0.0450 (10)0.0019 (7)0.0026 (7)0.0038 (8)
C140.0544 (9)0.0392 (9)0.0429 (10)0.0078 (7)0.0105 (7)0.0032 (7)
C150.0534 (9)0.0329 (8)0.0460 (10)0.0048 (7)0.0163 (7)0.0016 (7)
C160.0757 (13)0.0548 (11)0.0511 (12)0.0037 (10)0.0005 (10)0.0053 (10)
C170.0625 (11)0.0446 (10)0.0538 (12)0.0022 (8)0.0146 (9)0.0094 (9)
C180.0614 (11)0.0425 (10)0.0830 (16)0.0018 (8)0.0202 (10)0.0214 (10)
C190.0987 (16)0.0453 (11)0.0980 (19)0.0186 (12)0.0344 (14)0.0007 (12)
N10.0462 (7)0.0303 (7)0.0412 (8)0.0017 (5)0.0077 (6)0.0027 (6)
O10.0713 (8)0.0561 (8)0.0481 (8)0.0085 (6)0.0003 (6)0.0048 (6)
O20.1448 (16)0.0845 (13)0.0577 (11)0.0378 (12)0.0149 (10)0.0161 (10)
O30.0681 (8)0.0339 (6)0.0612 (9)0.0057 (5)0.0208 (6)0.0044 (6)
Geometric parameters (Å, º) top
C1—C21.379 (3)C11—C121.416 (2)
C1—C61.388 (3)C12—C151.356 (2)
C1—H10.9300C12—H120.9300
C2—C31.375 (3)C13—C141.348 (3)
C2—H20.9300C13—N11.380 (2)
C3—C41.365 (4)C13—H130.9300
C3—H30.9300C14—C151.448 (2)
C4—C51.381 (3)C14—C161.500 (3)
C4—H40.9300C15—C171.491 (2)
C5—C61.392 (3)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.495 (2)C16—H16C0.9600
C7—O11.224 (2)C17—O21.207 (3)
C7—C81.470 (2)C17—O31.326 (2)
C8—C91.382 (2)C18—O31.458 (2)
C8—C101.409 (2)C18—C191.485 (3)
C9—N11.356 (2)C18—H18A0.9700
C9—H90.9300C18—H18B0.9700
C10—C111.373 (2)C19—H19A0.9600
C10—H100.9300C19—H19B0.9600
C11—N11.404 (2)C19—H19C0.9600
C2—C1—C6119.8 (2)C11—C12—H12119.3
C2—C1—H1120.1C14—C13—N1121.98 (15)
C6—C1—H1120.1C14—C13—H13119.0
C3—C2—C1120.8 (2)N1—C13—H13119.0
C3—C2—H2119.6C13—C14—C15117.81 (16)
C1—C2—H2119.6C13—C14—C16118.96 (16)
C4—C3—C2119.6 (2)C15—C14—C16123.17 (16)
C4—C3—H3120.2C12—C15—C14120.47 (16)
C2—C3—H3120.2C12—C15—C17119.22 (16)
C3—C4—C5120.8 (2)C14—C15—C17120.21 (16)
C3—C4—H4119.6C14—C16—H16A109.5
C5—C4—H4119.6C14—C16—H16B109.5
C4—C5—C6119.9 (2)H16A—C16—H16B109.5
C4—C5—H5120.1C14—C16—H16C109.5
C6—C5—H5120.1H16A—C16—H16C109.5
C1—C6—C5119.08 (17)H16B—C16—H16C109.5
C1—C6—C7123.12 (16)O2—C17—O3123.24 (18)
C5—C6—C7117.79 (16)O2—C17—C15123.64 (19)
O1—C7—C8120.54 (16)O3—C17—C15113.05 (17)
O1—C7—C6119.69 (16)O3—C18—C19107.76 (18)
C8—C7—C6119.76 (14)O3—C18—H18A110.2
C9—C8—C10107.95 (15)C19—C18—H18A110.2
C9—C8—C7127.19 (15)O3—C18—H18B110.2
C10—C8—C7124.77 (15)C19—C18—H18B110.2
N1—C9—C8107.87 (14)H18A—C18—H18B108.5
N1—C9—H9126.1C18—C19—H19A109.5
C8—C9—H9126.1C18—C19—H19B109.5
C11—C10—C8107.68 (14)H19A—C19—H19B109.5
C11—C10—H10126.2C18—C19—H19C109.5
C8—C10—H10126.2H19A—C19—H19C109.5
C10—C11—N1107.06 (14)H19B—C19—H19C109.5
C10—C11—C12136.21 (15)C9—N1—C13128.99 (14)
N1—C11—C12116.74 (14)C9—N1—C11109.44 (14)
C15—C12—C11121.40 (15)C13—N1—C11121.57 (14)
C15—C12—H12119.3C17—O3—C18115.64 (17)

Experimental details

Crystal data
Chemical formulaC19H17NO3
Mr307.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.177 (5), 17.243 (5), 11.191 (5)
β (°) 102.070 (5)
V3)1543.0 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.15 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.983, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
8583, 3150, 2434
Rint0.124
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.166, 1.04
No. of reflections3150
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author thank Dr Qing Feng Wang, Taishan University, for the data collection.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGe, Y. Q., Hao, B. Q., Duan, G. Y. & Wang, J. W. (2011). J. Lumin. 131, 1070–1076.  Web of Science CrossRef CAS Google Scholar
First citationGe, Y. Q., Jia, J., Li, Y., Yin, L. & Wang, J. W. (2009a). Heterocycles, 78, 197–206.  CAS Google Scholar
First citationGe, Y. Q., Jia, J., Yang, H., Zhao, G. L., Zhan, F. X. & Wang, J. W. (2009b). Heterocycles, 78, 725–736.  CAS Google Scholar
First citationJia, J., Ge, Y. Q., Tao, X. T. & Wang, J. W. (2010). Heterocycles, 81, 185–194.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1457
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds