metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[2-(3,5-di­methyl-1H-pyrazol-1-yl-κN2)quinoline-κN]zinc

aFaculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link BE 1410, Negara Brunei Darussalam, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 3 April 2012; accepted 3 April 2012; online 13 April 2012)

The ZnII atom in the title compound, [ZnCl2(C14H13N3)], is coordinated by a Cl2N2 donor set defined by quinoline and pyrazole N atoms of the chelating ligand and two Cl atoms. Distortions from the ideal tetra­hedral geometry relate to the restricted bite angle of the chelating ligand [N—Zn—N = 78.54 (12)°]. In the crystal, mol­ecules are connected into a three-dimensional structure by C—H⋯Cl inter­actions, involving both Cl atoms, and ππ inter­actions that occur between the pyrazole ring and each of the pyridine and benzene rings of the quinoline residue [inter­centroid distances = 3.655 (2) and 3.676 (2) Å].

Related literature

For background to luminescent coordination complexes, see: Bai et al. (2012[Bai, S.-Q., Young, A. M., Hu, J. J., Young, D. J., Zhang, X., Zong, Y., Xu, J., Zuo, J.-L. & Hor, T. S. A. (2012). CrystEngComm, 14, 961-971.]); Chou et al., (2011[Chou, P.-T., Chi, Y., Chung, M.-W. & Lin, C.-C. (2011). Coord. Chem. Rev. 255, 2653-2665.]); Hu et al. (2011[Hu, J. J., Bai, S. Q., Yeh, H. H., Young, D. J., Chi, Y. & Hor, T. S. A. (2011). Dalton Trans. 40, 4402-4406.]); Wang (2001[Wang, S. (2001). Coord. Chem. Rev. 215, 79-98.]). For the synthesis, see: Savel'eva et al. (2009[Savel'eva, Z. A., Popov, S. A., Klevtsova, R. F., Glinskaya, L. A., Uskov, E. M., Tkachev, A. V. & Larionov, S. V. (2009). Russ. Chem. Bull. Int. Ed. 58, 1837-1840.]); Scott et al. (1952[Scott, F. L., Crowley, K. M. & Reilly, J. (1952). J. Am. Chem. Soc. 74, 3444-3445.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C14H13N3)]

  • Mr = 359.54

  • Monoclinic, P 21 /c

  • a = 14.3353 (10) Å

  • b = 8.7683 (5) Å

  • c = 11.9839 (8) Å

  • β = 102.181 (7)°

  • V = 1472.42 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.597, Tmax = 1.000

  • 6070 measured reflections

  • 3370 independent reflections

  • 2438 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.124

  • S = 1.02

  • 3370 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected bond lengths (Å)

Zn—N1 2.021 (3)
Zn—N3 2.072 (3)
Zn—Cl1 2.2099 (11)
Zn—Cl2 2.2076 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Cl1i 0.98 2.81 3.680 (4) 148
C12—H12A⋯Cl2ii 0.95 2.82 3.579 (4) 138
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Luminescent coordination complexes are used as emitting materials in light-emitting devices (Chou et al., 2011) and it is known that many ZnII nitrogen donor complexes are brightly luminescent in the blue region of the spectrum (Wang, 2001). The title compound (I) was prepared as part of our on-going quest for luminescent organometallic and coordination complexes with improved quantum efficiencies and colour purity (Bai et al., 2012; Hu et al., 2011;).

The ZnII atom in (I), Fig. 1, is chelated by quinolinyl- and pyrazolyl-N atoms and two chloride atoms, Table 1. The resulting Cl2N2 donor set defines a tetrahedron with a significant distortion apparent owing to the restricted bite angle of the chelating ligand, i.e. N1—Zn—N3 78.54 (12)°; the remaining angles lie in the range 111.52 (9)°, for N1—Zn—Cl1, to 115.73 (9)°, for N1—Zn—Cl2. The five-membered chelate ring is essentially planar with a r.m.s. deviation = 0.035 Å with maximum deviations of 0.034 (3) and -0.029 (3) Å for the N2 and N1 atoms, respectively. A small twist is apparent in the bidentate ligand with the dihedral angle between the quinolinyl and pyrazolyl rings being 6.84 (17)°. The overall coordination geometry found for (I) matches that seen in the species carrying an additional methyl group in the 4-position of the quinolinyl residue (Savel'eva et al., 2009).

In the crystal packing, Fig. 2, molecules are connected into a three-dimensional architecture by C—H···Cl interactions, Table 1, involving both chloride atoms, and ππ interactions between the pyrazoyl ring and each of the pyridyl and benzene rings of the quinolinyl residue [inter-centroid distances = 3.655 (2) and 3.676 (2) Å, respectively; angles of inclination = 3.2 (2) and 3.5 (2)°, respectively; for symmetry operation: x, 1/2 - y, -1/2 + z].

Related literature top

For background to luminescent coordination complexes, see: Bai et al. (2012); Chou et al., (2011); Hu et al. (2011); Wang (2001). For the synthesis, see: Savel'eva et al. (2009); Scott et al. (1952).

Experimental top

The title compound was prepared by modification of literature procedures (Savel'eva et al., 2009; Scott et al. 1952). 3,5-Dimethyl-1-(2'-quinolyl)pyrazole (0.080 g) in a mixture of EtOH (4 ml) and CH2Cl2 (2 ml) was added to a solution of ZnCl2 (0.061 g) in EtOH (8 ml). A white precipitate formed and was collected by filtration after 1 h, washed with EtOH and air-dried. The crude product was recrystallized from its CH2Cl2/hexane solution. Yield 0.054 g (42%). M. pt: 607–608 K. IR ν/cm-1: 1619, 1596, 1579, 1559, 1511, 1479, 1439, 1386, 1380, 1346, 1319, 1142, 1090, 994, 983, 825, 783, 760.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The maximum and minimum residual electron density peaks of 1.04 and 0.66 e Å-3, respectively, were located 1.00 Å and 0.95 Å from the Zn atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the unit-cell contents of (I) in projection down the b axis. The C—H···Cl and ππ interactions are shown as orange and purple dashed lines, respectively.
Dichlorido[2-(3,5-dimethyl-1H-pyrazol-1-yl-κN2)quinoline- κN]zinc top
Crystal data top
[ZnCl2(C14H13N3)]F(000) = 728
Mr = 359.54Dx = 1.622 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1666 reflections
a = 14.3353 (10) Åθ = 2.5–27.5°
b = 8.7683 (5) ŵ = 2.02 mm1
c = 11.9839 (8) ÅT = 100 K
β = 102.181 (7)°Plate, colourless
V = 1472.42 (17) Å30.25 × 0.20 × 0.02 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3370 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2438 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.047
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.7°
ω scanh = 1718
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 118
Tmin = 0.597, Tmax = 1.000l = 915
6070 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.2907P]
where P = (Fo2 + 2Fc2)/3
3370 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[ZnCl2(C14H13N3)]V = 1472.42 (17) Å3
Mr = 359.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3353 (10) ŵ = 2.02 mm1
b = 8.7683 (5) ÅT = 100 K
c = 11.9839 (8) Å0.25 × 0.20 × 0.02 mm
β = 102.181 (7)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3370 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2438 reflections with I > 2σ(I)
Tmin = 0.597, Tmax = 1.000Rint = 0.047
6070 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.02Δρmax = 1.04 e Å3
3370 reflectionsΔρmin = 0.66 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.26453 (3)0.53715 (5)0.58123 (4)0.02140 (16)
Cl10.37804 (7)0.65835 (11)0.70222 (9)0.0296 (3)
Cl20.14937 (7)0.67975 (11)0.48204 (9)0.0300 (3)
N10.3193 (2)0.3781 (3)0.4912 (3)0.0185 (7)
N30.2198 (2)0.3372 (3)0.6458 (3)0.0179 (7)
C10.4079 (3)0.5145 (4)0.3689 (4)0.0255 (9)
H1A0.47580.50710.36710.038*
H1B0.39790.60150.41630.038*
H1C0.37060.52890.29110.038*
C20.3767 (3)0.3710 (4)0.4180 (3)0.0194 (8)
C30.4000 (3)0.2193 (4)0.4009 (3)0.0200 (8)
H30.44000.18410.35240.024*
C40.3546 (2)0.1306 (4)0.4674 (3)0.0186 (8)
C50.3603 (3)0.0381 (4)0.4822 (4)0.0249 (9)
H5A0.37980.06260.56360.037*
H5B0.40730.07930.44150.037*
H5C0.29770.08330.45130.037*
C60.2458 (2)0.2097 (4)0.6031 (3)0.0174 (8)
C70.2184 (3)0.0628 (4)0.6327 (3)0.0189 (8)
H7A0.23730.02650.59840.023*
C80.1632 (3)0.0549 (4)0.7129 (3)0.0207 (8)
H8A0.14420.04210.73580.025*
C90.1340 (2)0.1877 (4)0.7623 (3)0.0186 (8)
C100.0765 (2)0.1852 (4)0.8457 (3)0.0216 (8)
H10A0.05630.09050.87100.026*
C110.0505 (3)0.3181 (5)0.8891 (3)0.0243 (9)
H11A0.01190.31610.94460.029*
C120.0805 (3)0.4586 (4)0.8521 (3)0.0229 (9)
H12A0.06170.55060.88300.027*
C130.1360 (3)0.4656 (4)0.7729 (3)0.0222 (8)
H13A0.15650.56140.74990.027*
C140.1628 (2)0.3301 (4)0.7257 (3)0.0187 (8)
N20.3048 (2)0.2299 (3)0.5218 (3)0.0173 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0306 (3)0.0144 (2)0.0210 (3)0.00055 (19)0.00946 (19)0.00027 (19)
Cl10.0423 (6)0.0242 (5)0.0237 (6)0.0104 (4)0.0104 (4)0.0047 (4)
Cl20.0364 (6)0.0193 (5)0.0355 (6)0.0071 (4)0.0102 (5)0.0038 (4)
N10.0250 (16)0.0152 (16)0.0151 (16)0.0005 (13)0.0042 (13)0.0004 (13)
N30.0248 (16)0.0180 (16)0.0116 (16)0.0026 (13)0.0054 (13)0.0017 (13)
C10.031 (2)0.024 (2)0.021 (2)0.0040 (18)0.0050 (17)0.0009 (17)
C20.0212 (18)0.023 (2)0.0139 (19)0.0034 (16)0.0029 (15)0.0013 (16)
C30.0205 (18)0.024 (2)0.0145 (19)0.0024 (16)0.0024 (14)0.0005 (16)
C40.0213 (18)0.0184 (19)0.0154 (19)0.0020 (16)0.0025 (15)0.0039 (16)
C50.033 (2)0.017 (2)0.028 (2)0.0027 (17)0.0137 (18)0.0029 (17)
C60.0211 (19)0.0185 (19)0.0113 (19)0.0014 (16)0.0004 (14)0.0012 (15)
C70.0243 (19)0.0157 (18)0.0168 (19)0.0003 (16)0.0047 (15)0.0017 (15)
C80.027 (2)0.0168 (19)0.019 (2)0.0016 (16)0.0064 (16)0.0047 (16)
C90.0199 (18)0.0198 (19)0.0149 (19)0.0009 (16)0.0011 (14)0.0004 (16)
C100.024 (2)0.023 (2)0.018 (2)0.0061 (16)0.0044 (16)0.0004 (17)
C110.024 (2)0.033 (2)0.018 (2)0.0044 (18)0.0078 (16)0.0030 (18)
C120.0244 (19)0.025 (2)0.019 (2)0.0049 (17)0.0024 (16)0.0033 (17)
C130.0230 (19)0.023 (2)0.020 (2)0.0048 (17)0.0036 (16)0.0005 (17)
C140.0191 (18)0.0210 (19)0.0153 (19)0.0005 (16)0.0020 (15)0.0021 (16)
N20.0230 (16)0.0139 (15)0.0152 (16)0.0003 (13)0.0039 (13)0.0007 (13)
Geometric parameters (Å, º) top
Zn—N12.021 (3)C5—H5B0.9800
Zn—N32.072 (3)C5—H5C0.9800
Zn—Cl12.2099 (11)C6—C71.414 (5)
Zn—Cl22.2076 (11)C6—N21.429 (5)
N1—C21.325 (5)C7—C81.370 (5)
N1—N21.378 (4)C7—H7A0.9500
N3—C61.316 (5)C8—C91.409 (5)
N3—C141.385 (5)C8—H8A0.9500
C1—C21.497 (5)C9—C141.414 (5)
C1—H1A0.9800C9—C101.423 (5)
C1—H1B0.9800C10—C111.361 (5)
C1—H1C0.9800C10—H10A0.9500
C2—C31.397 (5)C11—C121.407 (5)
C3—C41.373 (5)C11—H11A0.9500
C3—H30.9500C12—C131.362 (5)
C4—N21.375 (4)C12—H12A0.9500
C4—C51.490 (5)C13—C141.403 (5)
C5—H5A0.9800C13—H13A0.9500
N1—Zn—N378.54 (12)H5B—C5—H5C109.5
N1—Zn—Cl2115.73 (9)N3—C6—C7124.0 (3)
N3—Zn—Cl2115.15 (9)N3—C6—N2114.6 (3)
N1—Zn—Cl1111.52 (9)C7—C6—N2121.3 (3)
N3—Zn—Cl1113.89 (9)C8—C7—C6117.0 (3)
Cl2—Zn—Cl1116.38 (4)C8—C7—H7A121.5
C2—N1—N2106.4 (3)C6—C7—H7A121.5
C2—N1—Zn138.7 (3)C7—C8—C9121.3 (3)
N2—N1—Zn114.3 (2)C7—C8—H8A119.3
C6—N3—C14119.2 (3)C9—C8—H8A119.3
C6—N3—Zn116.0 (2)C8—C9—C14117.9 (3)
C14—N3—Zn124.8 (2)C8—C9—C10123.3 (3)
C2—C1—H1A109.5C14—C9—C10118.8 (3)
C2—C1—H1B109.5C11—C10—C9120.1 (4)
H1A—C1—H1B109.5C11—C10—H10A119.9
C2—C1—H1C109.5C9—C10—H10A119.9
H1A—C1—H1C109.5C10—C11—C12120.2 (4)
H1B—C1—H1C109.5C10—C11—H11A119.9
N1—C2—C3110.0 (3)C12—C11—H11A119.9
N1—C2—C1120.0 (3)C13—C12—C11121.4 (4)
C3—C2—C1129.9 (3)C13—C12—H12A119.3
C4—C3—C2107.3 (3)C11—C12—H12A119.3
C4—C3—H3126.3C12—C13—C14119.5 (4)
C2—C3—H3126.3C12—C13—H13A120.3
C3—C4—N2105.9 (3)C14—C13—H13A120.3
C3—C4—C5127.7 (3)N3—C14—C13119.5 (3)
N2—C4—C5126.4 (3)N3—C14—C9120.5 (3)
C4—C5—H5A109.5C13—C14—C9120.0 (3)
C4—C5—H5B109.5C4—N2—N1110.4 (3)
H5A—C5—H5B109.5C4—N2—C6133.3 (3)
C4—C5—H5C109.5N1—N2—C6116.3 (3)
H5A—C5—H5C109.5
N3—Zn—N1—C2172.9 (4)C7—C8—C9—C10179.8 (4)
Cl2—Zn—N1—C274.6 (4)C8—C9—C10—C11179.6 (3)
Cl1—Zn—N1—C261.5 (4)C14—C9—C10—C110.2 (5)
N3—Zn—N1—N23.5 (2)C9—C10—C11—C120.2 (5)
Cl2—Zn—N1—N2116.1 (2)C10—C11—C12—C130.2 (6)
Cl1—Zn—N1—N2107.8 (2)C11—C12—C13—C141.0 (6)
N1—Zn—N3—C60.5 (2)C6—N3—C14—C13179.0 (3)
Cl2—Zn—N3—C6113.7 (2)Zn—N3—C14—C133.6 (5)
Cl1—Zn—N3—C6108.2 (2)C6—N3—C14—C90.9 (5)
N1—Zn—N3—C14177.0 (3)Zn—N3—C14—C9178.3 (2)
Cl2—Zn—N3—C1463.8 (3)C12—C13—C14—N3179.5 (3)
Cl1—Zn—N3—C1474.3 (3)C12—C13—C14—C91.5 (5)
N2—N1—C2—C30.2 (4)C8—C9—C14—N31.5 (5)
Zn—N1—C2—C3169.6 (3)C10—C9—C14—N3179.1 (3)
N2—N1—C2—C1179.2 (3)C8—C9—C14—C13179.6 (3)
Zn—N1—C2—C19.3 (6)C10—C9—C14—C131.1 (5)
N1—C2—C3—C40.1 (4)C3—C4—N2—N10.6 (4)
C1—C2—C3—C4178.7 (4)C5—C4—N2—N1177.2 (3)
C2—C3—C4—N20.5 (4)C3—C4—N2—C6178.4 (4)
C2—C3—C4—C5177.3 (4)C5—C4—N2—C60.6 (6)
C14—N3—C6—C70.7 (5)C2—N1—N2—C40.5 (4)
Zn—N3—C6—C7176.9 (3)Zn—N1—N2—C4172.2 (2)
C14—N3—C6—N2179.8 (3)C2—N1—N2—C6178.7 (3)
Zn—N3—C6—N22.6 (4)Zn—N1—N2—C66.0 (4)
N3—C6—C7—C81.7 (5)N3—C6—N2—C4172.0 (3)
N2—C6—C7—C8178.9 (3)C7—C6—N2—C48.5 (6)
C6—C7—C8—C91.0 (6)N3—C6—N2—N15.7 (4)
C7—C8—C9—C140.5 (5)C7—C6—N2—N1173.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl1i0.982.813.680 (4)148
C12—H12A···Cl2ii0.952.823.579 (4)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C14H13N3)]
Mr359.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.3353 (10), 8.7683 (5), 11.9839 (8)
β (°) 102.181 (7)
V3)1472.42 (17)
Z4
Radiation typeMo Kα
µ (mm1)2.02
Crystal size (mm)0.25 × 0.20 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.597, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6070, 3370, 2438
Rint0.047
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.124, 1.02
No. of reflections3370
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 0.66

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Zn—N12.021 (3)Zn—Cl12.2099 (11)
Zn—N32.072 (3)Zn—Cl22.2076 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl1i0.982.813.680 (4)148
C12—H12A···Cl2ii0.952.823.579 (4)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: david.young@ubd.edu.bn.

Acknowledgements

We gratefully acknowledge funding from the Brunei Research Council, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBai, S.-Q., Young, A. M., Hu, J. J., Young, D. J., Zhang, X., Zong, Y., Xu, J., Zuo, J.-L. & Hor, T. S. A. (2012). CrystEngComm, 14, 961–971.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChou, P.-T., Chi, Y., Chung, M.-W. & Lin, C.-C. (2011). Coord. Chem. Rev. 255, 2653–2665.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHu, J. J., Bai, S. Q., Yeh, H. H., Young, D. J., Chi, Y. & Hor, T. S. A. (2011). Dalton Trans. 40, 4402–4406.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSavel'eva, Z. A., Popov, S. A., Klevtsova, R. F., Glinskaya, L. A., Uskov, E. M., Tkachev, A. V. & Larionov, S. V. (2009). Russ. Chem. Bull. Int. Ed. 58, 1837–1840.  CAS Google Scholar
First citationScott, F. L., Crowley, K. M. & Reilly, J. (1952). J. Am. Chem. Soc. 74, 3444–3445.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S. (2001). Coord. Chem. Rev. 215, 79–98.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds