organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1471

Alternariol 9-O-methyl ether

aSchool of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052 NSW, Australia, and bMark Wainwright Analytical Centre, University of New South Wales, Sydney, 2052 NSW, Australia
*Correspondence e-mail: b.neilan@unsw.edu.au

(Received 3 April 2012; accepted 5 April 2012; online 21 April 2012)

The title compound (AME; systematic name: 3,7-dihy­droxy-9-meth­oxy-1-methyl-6H-benzo[c]chromen-6-one), C15H12O5, was isolated from an endophytic fungi Alternaria sp., from Catharanthus roseus (common name: Madagascar periwinkle). There is an intramolecular O—H⋯O hydrogen bond in the essentially planar mol­ecule (r.m.s. deviation 0.02 Å). In the crystal, the molecule forms an O—H⋯O hydrogen bond with its centrosymmetric counterpart with four bridging inter­actions (two O—H⋯O and two C—H⋯O). The almost planar sheets of the dimeric units thus formed are stacked along b axis via C—H⋯π and ππ contacts [with C⋯C short contacts between aromatic moieties of 3.324 (3), 3.296 (3) and 3.374 (3) Å].

Related literature

Species of the fungal genus Alternaria are known producers of mycotoxins and have previously been described as plant endophytes. For the isolation of Alternariol (AOH) and Alternariol 9-O-methyl ether (AME) see: An et al. (1989[An, Y., Zhao, T., Miao, J., Liu, G., Zheng, Y., Xu, Y. & Van Etten, L. R. (1989). J. Agric. Food Chem. 37, 1341-1343.]); Wen (2009[Wen, G. (2009). World J. Microbiol. Biotechnol. 25, 1677-1683.]); Ashour et al. (2011[Ashour, M., Yehia, M. H. & Proksch, P. (2011). J. Nat. Prod. India, 4, 108-114.]). For 1H, 13C and two-dimensional experimental data analysis see: Koch et al. (2005[Koch, K., Podlech, J., Pfeiffer, E. & Metzler, M. (2005). J. Org. Chem. 70, 3275-3276.]); Siegel et al. (2010[Siegel, D., Troyanov, S., Noack, J., Emmerling, F. & Nehls, I. (2010). Acta Cryst. E66, o1366.]). For the biological activity see: Aly et al. (2008[Aly, H. A., Edrasa-Ebel, R., Indrani, D. I., Wray, V., Muller, G. E. W., Totzke, F., Zirrgiebel, U., Schachtele, C., Kubbutat, G. H. M., Lin, W. H., Proksch, P. & Ebel, R. (2008). J. Nat. Prod. 71, 972-980.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12O5

  • Mr = 272.25

  • Triclinic, [P \overline 1]

  • a = 7.1819 (7) Å

  • b = 8.9393 (8) Å

  • c = 10.2511 (10) Å

  • α = 105.296 (5)°

  • β = 105.174 (4)°

  • γ = 101.430 (4)°

  • V = 586.90 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 160 K

  • 0.29 × 0.13 × 0.06 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.993

  • 7824 measured reflections

  • 2062 independent reflections

  • 1718 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 1.05

  • 2062 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O4i 0.82 2.47 2.9371 (19) 117
C9—H9⋯O1ii 0.93 2.64 3.4645 (16) 148
C4—H4A⋯O2iii 0.93 2.32 3.2511 (16) 174
O4—H4⋯O3 0.82 1.84 2.5692 (13) 148
O1—H1⋯O3iii 0.82 2.14 2.9619 (13) 176
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x, y+1, z+1; (iii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was isolated from an endophytic Alternaria sp. from the host plant Catharanthus roseus. Alternariol 9-O-methyl ether is a mycotoxin often isolated from Alternaria sp.. It has been reported to exhibit mild antimicrobial activity (An et al., 1989; Wen 2009; Ashour et al., 2011), cytotoxicity and protein kinase inhibitory activity (Aly et al., 2008). 1H, 13C and two-dimensional NMR spectral data was reported previously (Koch et al., 2005; Siegel et al., 2010). Although mycotoxins have been studied extensively, the single-crystal structure of alternariol 9-O-methy ether is reported here for the first time.

An ORTEP view of the title compound (Fig. 1) shows an intramolecular O4—H4···O3 hydrogen bond. The two centrosymmetric partners make a total of four interactions - the two hydrogen bonds O1—H1···O3(iii) and C4—H4A···O2(iii) , ((iii) -x + 2, -y, -z + 1) are duplicated across the inversion centre. The hydrogen H4 also makes a short contact with O4 of another centrosymmetrically related molecule (O4—H4···O4(i), (i) -x + 2, -y + 1, -z + 2). The bridged centrosymmetric dimers translated along c axis make C9—H9···O1(ii), (ii) x, y + 1, z + 1 and O4—H4···O4(i) contacts (Table. 1 and Fig. 2). These almost planar sheets thus formed in ac plane are stacked along b axis; these make C—H···π contacts with the edge of the ring in one direction (C14—H14B···C9(iv) = 2.88 Å and C15—H15C···C1(iv) = 2.85 Å, (iv) 1 - x, 1 - y, 1 - z) and ππ contacts in the opposite direction with considerable overlap of aromatic moieties with values of short contact between C3···C8(v) = 3.324 (3) Å, C1···C6(v) = 3.296 (3) Å and C5···C12(v) = 3.374 (3) Å with (v) 1 - x, -y, 1 - z (Fig. 3).

Related literature top

Species of the fungal genus Alternaria are known producers of mycotoxins and have previously been described as plant endophytes. For the isolation of Alternariol (AOH) and Alternariol 9-O-methyl ether (AME) see: An et al. (1989); Wen (2009); Ashour et al. (2011). For 1H, 13C and two-dimensional experimental data analysis see: Koch et al. (2005); Siegel et al. (2010). For the biological activity see: Aly et al. (2008).

Experimental top

Alternaria sp. was isolated from Catharanthus roseus and cultured in malt extract media for production of secondary metabolites. The crude ethyl acetate extract was fractionated on silica gel with a stepwise gradient of hexane to ethyl acetate and to methanol to yield 12 fractions. Fractions 6 and 7, which were eluted with 2:1 and 1:1 hexane, ethyl acetate showed fine needle like crystals on slow evaporation. These fine needles were recrystallized using dichloromethane to yield plate like crystals for crystallographic analysis. The positive and negative ESI-MS analysis of the title compound exhibited molecular ion peak at m/z 273, attributing to [M+H]+ and at m/z 271, attributing to [M—H]- , respectively, infereing its molecular weight to be 272 g/mol which is in agreement with the previously reported values (Ashour et al., 2011).

Refinement top

H atoms were positioned geometrically with C—H = 0.93 — 0.96 Å and O—H = 0.82 Å. Uiso(H) values were set at 1.2Ueq (aromatic) or 1.5Ueq of the parent atom (methyl group).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound showing an intra molecular O—H···O hydrogen bond.. (Thermal ellipsoids are drawn at 40% probability level).
[Figure 2] Fig. 2. Molecular association forming planar sheets in ac plane via network of O—H···O and C—H···O contacts. Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) x, y + 1, z + 1; (iii) -x + 2, -y, -z + 1.
[Figure 3] Fig. 3. : Packing of molecules along b axis making C—H···π and ππ interactions. Symmetry codes: (iv) 1 - x, 1 - y, 1 - z; (v) 1 - x, -y, 1 - z.
3,7-dihydroxy-9-methoxy-1-methyl-6H-benzo[c]chromen-6-one top
Crystal data top
C15H12O5Z = 2
Mr = 272.25F(000) = 284
Triclinic, P1Dx = 1.541 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1819 (7) ÅCell parameters from 4112 reflections
b = 8.9393 (8) Åθ = 2.7–29.6°
c = 10.2511 (10) ŵ = 0.12 mm1
α = 105.296 (5)°T = 160 K
β = 105.174 (4)°Plates, colourless
γ = 101.430 (4)°0.29 × 0.13 × 0.06 mm
V = 586.90 (10) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2062 independent reflections
Radiation source: fine-focus sealed tube1718 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ scans, and ω scans with κ offsetsθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.967, Tmax = 0.993k = 1010
7824 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.1544P]
where P = (Fo2 + 2Fc2)/3
2062 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H12O5γ = 101.430 (4)°
Mr = 272.25V = 586.90 (10) Å3
Triclinic, P1Z = 2
a = 7.1819 (7) ÅMo Kα radiation
b = 8.9393 (8) ŵ = 0.12 mm1
c = 10.2511 (10) ÅT = 160 K
α = 105.296 (5)°0.29 × 0.13 × 0.06 mm
β = 105.174 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2062 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1718 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.993Rint = 0.020
7824 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
2062 reflectionsΔρmin = 0.20 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65936 (15)0.18780 (12)0.08182 (10)0.0292 (3)
H10.75940.21380.11630.044*
O20.84646 (14)0.13308 (12)0.56397 (9)0.0245 (3)
O30.96545 (14)0.26527 (12)0.79381 (10)0.0267 (3)
O40.78595 (15)0.45323 (13)0.91399 (10)0.0329 (3)
H40.87350.40770.90830.049*
O50.17885 (16)0.48775 (13)0.61731 (11)0.0331 (3)
C10.4041 (2)0.07774 (16)0.25561 (14)0.0202 (3)
C20.4514 (2)0.03110 (16)0.15399 (14)0.0225 (3)
H20.36420.07220.05980.027*
C30.6240 (2)0.08085 (16)0.18775 (14)0.0219 (3)
C40.7533 (2)0.02073 (16)0.32735 (14)0.0223 (3)
H4A0.87010.05170.35290.027*
C50.7053 (2)0.08647 (16)0.42815 (14)0.0201 (3)
C60.8305 (2)0.23648 (16)0.67963 (14)0.0208 (3)
C70.66319 (19)0.30221 (15)0.66141 (14)0.0200 (3)
C80.6471 (2)0.41025 (16)0.78306 (14)0.0232 (3)
C90.4878 (2)0.47638 (16)0.77364 (14)0.0244 (3)
H90.47870.54830.85420.029*
C100.3421 (2)0.43228 (16)0.64067 (15)0.0241 (3)
C110.3534 (2)0.32476 (17)0.51851 (14)0.0249 (3)
H110.25220.29800.43110.030*
C120.5112 (2)0.25710 (15)0.52416 (14)0.0197 (3)
C130.5353 (2)0.14195 (16)0.40140 (14)0.0197 (3)
C140.2119 (2)0.11934 (18)0.20211 (14)0.0267 (3)
H14A0.14820.06080.10140.040*
H14B0.24160.23350.21800.040*
H14C0.12320.09030.25280.040*
C150.1611 (2)0.60559 (18)0.73528 (16)0.0309 (4)
H15A0.16020.56180.81120.046*
H15B0.03800.63300.70450.046*
H15C0.27330.70100.76930.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0335 (6)0.0342 (6)0.0220 (5)0.0176 (5)0.0108 (4)0.0050 (4)
O20.0216 (5)0.0295 (5)0.0189 (5)0.0119 (4)0.0028 (4)0.0029 (4)
O30.0210 (5)0.0307 (6)0.0217 (5)0.0091 (4)0.0008 (4)0.0033 (4)
O40.0267 (6)0.0418 (6)0.0203 (5)0.0153 (5)0.0002 (4)0.0020 (4)
O50.0346 (6)0.0396 (6)0.0266 (5)0.0252 (5)0.0080 (4)0.0050 (5)
C10.0205 (7)0.0210 (7)0.0199 (7)0.0052 (5)0.0071 (5)0.0084 (5)
C20.0224 (7)0.0254 (7)0.0178 (7)0.0049 (6)0.0046 (5)0.0075 (6)
C30.0261 (7)0.0211 (7)0.0211 (7)0.0070 (6)0.0121 (6)0.0071 (6)
C40.0204 (7)0.0251 (7)0.0245 (7)0.0100 (6)0.0086 (6)0.0095 (6)
C50.0188 (7)0.0223 (7)0.0180 (7)0.0049 (5)0.0045 (5)0.0069 (5)
C60.0188 (7)0.0203 (7)0.0204 (7)0.0032 (5)0.0055 (6)0.0046 (6)
C70.0185 (7)0.0194 (7)0.0212 (7)0.0041 (5)0.0060 (6)0.0067 (6)
C80.0216 (7)0.0227 (7)0.0203 (7)0.0033 (6)0.0039 (6)0.0044 (6)
C90.0278 (8)0.0215 (7)0.0228 (7)0.0090 (6)0.0098 (6)0.0031 (6)
C100.0239 (7)0.0238 (7)0.0278 (7)0.0112 (6)0.0090 (6)0.0102 (6)
C110.0259 (7)0.0282 (8)0.0188 (7)0.0123 (6)0.0037 (6)0.0055 (6)
C120.0198 (7)0.0187 (7)0.0205 (7)0.0045 (5)0.0064 (5)0.0075 (6)
C130.0197 (7)0.0200 (7)0.0202 (7)0.0054 (5)0.0069 (5)0.0080 (6)
C140.0243 (8)0.0326 (8)0.0191 (7)0.0106 (6)0.0037 (6)0.0040 (6)
C150.0335 (8)0.0301 (8)0.0333 (8)0.0185 (7)0.0152 (7)0.0065 (7)
Geometric parameters (Å, º) top
O1—C31.3602 (16)C5—C131.3958 (19)
O1—H10.8200C6—C71.4299 (19)
O2—C61.3446 (16)C7—C81.4090 (18)
O2—C51.3884 (15)C7—C121.4338 (18)
O3—C61.2344 (16)C8—C91.382 (2)
O4—C81.3486 (16)C9—C101.3835 (19)
O4—H40.8200C9—H90.9300
O5—C101.3508 (17)C10—C111.3955 (19)
O5—C151.4317 (16)C11—C121.3819 (19)
C1—C21.3889 (19)C11—H110.9300
C1—C131.4305 (18)C12—C131.4743 (18)
C1—C141.5031 (19)C14—H14A0.9600
C2—C31.3890 (19)C14—H14B0.9600
C2—H20.9300C14—H14C0.9600
C3—C41.3784 (18)C15—H15A0.9600
C4—C51.3785 (19)C15—H15B0.9600
C4—H4A0.9300C15—H15C0.9600
C3—O1—H1109.5C8—C9—C10117.96 (12)
C6—O2—C5122.41 (10)C8—C9—H9121.0
C8—O4—H4109.5C10—C9—H9121.0
C10—O5—C15118.10 (11)O5—C10—C9123.74 (12)
C2—C1—C13119.78 (12)O5—C10—C11114.42 (12)
C2—C1—C14116.06 (11)C9—C10—C11121.84 (12)
C13—C1—C14124.16 (12)C12—C11—C10121.63 (12)
C1—C2—C3122.49 (12)C12—C11—H11119.2
C1—C2—H2118.8C10—C11—H11119.2
C3—C2—H2118.8C11—C12—C7116.99 (12)
O1—C3—C4122.22 (12)C11—C12—C13125.49 (12)
O1—C3—C2118.81 (12)C7—C12—C13117.51 (12)
C4—C3—C2118.97 (12)C5—C13—C1114.81 (12)
C3—C4—C5118.40 (12)C5—C13—C12117.24 (12)
C3—C4—H4A120.8C1—C13—C12127.96 (12)
C5—C4—H4A120.8C1—C14—H14A109.5
C4—C5—O2111.77 (11)C1—C14—H14B109.5
C4—C5—C13125.54 (12)H14A—C14—H14B109.5
O2—C5—C13122.68 (12)C1—C14—H14C109.5
O3—C6—O2115.38 (12)H14A—C14—H14C109.5
O3—C6—C7125.97 (12)H14B—C14—H14C109.5
O2—C6—C7118.65 (11)O5—C15—H15A109.5
C8—C7—C6118.38 (11)O5—C15—H15B109.5
C8—C7—C12120.11 (12)H15A—C15—H15B109.5
C6—C7—C12121.49 (12)O5—C15—H15C109.5
O4—C8—C9116.98 (12)H15A—C15—H15C109.5
O4—C8—C7121.56 (12)H15B—C15—H15C109.5
C9—C8—C7121.46 (12)
C13—C1—C2—C30.4 (2)C15—O5—C10—C11176.59 (12)
C14—C1—C2—C3179.96 (13)C8—C9—C10—O5179.73 (13)
C1—C2—C3—O1179.96 (12)C8—C9—C10—C110.1 (2)
C1—C2—C3—C40.3 (2)O5—C10—C11—C12179.96 (12)
O1—C3—C4—C5179.60 (12)C9—C10—C11—C120.2 (2)
C2—C3—C4—C50.2 (2)C10—C11—C12—C70.1 (2)
C3—C4—C5—O2178.48 (11)C10—C11—C12—C13179.58 (12)
C3—C4—C5—C130.5 (2)C8—C7—C12—C110.4 (2)
C6—O2—C5—C4179.66 (12)C6—C7—C12—C11178.63 (12)
C6—O2—C5—C130.6 (2)C8—C7—C12—C13179.21 (12)
C5—O2—C6—O3179.01 (11)C6—C7—C12—C130.93 (19)
C5—O2—C6—C70.80 (19)C4—C5—C13—C10.4 (2)
O3—C6—C7—C80.1 (2)O2—C5—C13—C1178.50 (11)
O2—C6—C7—C8179.88 (12)C4—C5—C13—C12179.87 (12)
O3—C6—C7—C12178.21 (13)O2—C5—C13—C121.2 (2)
O2—C6—C7—C121.6 (2)C2—C1—C13—C50.05 (19)
C6—C7—C8—O40.7 (2)C14—C1—C13—C5179.61 (12)
C12—C7—C8—O4179.02 (12)C2—C1—C13—C12179.65 (12)
C6—C7—C8—C9179.00 (13)C14—C1—C13—C120.1 (2)
C12—C7—C8—C90.7 (2)C11—C12—C13—C5179.96 (13)
O4—C8—C9—C10179.16 (12)C7—C12—C13—C50.44 (19)
C7—C8—C9—C100.5 (2)C11—C12—C13—C10.3 (2)
C15—O5—C10—C93.5 (2)C7—C12—C13—C1179.25 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O4i0.822.472.9371 (19)117
C9—H9···O1ii0.932.643.4645 (16)148
C4—H4A···O2iii0.932.323.2511 (16)174
O4—H4···O30.821.842.5692 (13)148
O1—H1···O3iii0.822.142.9619 (13)176
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y+1, z+1; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H12O5
Mr272.25
Crystal system, space groupTriclinic, P1
Temperature (K)160
a, b, c (Å)7.1819 (7), 8.9393 (8), 10.2511 (10)
α, β, γ (°)105.296 (5), 105.174 (4), 101.430 (4)
V3)586.90 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.29 × 0.13 × 0.06
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.967, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
7824, 2062, 1718
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.05
No. of reflections2062
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O4i0.822.472.9371 (19)117.0
C9—H9···O1ii0.932.643.4645 (16)147.5
C4—H4A···O2iii0.932.323.2511 (16)174.3
O4—H4···O30.821.842.5692 (13)147.5
O1—H1···O3iii0.822.142.9619 (13)175.7
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y+1, z+1; (iii) x+2, y, z+1.
 

Acknowledgements

This work was supported by the Australian Endeavour Fellowship Scheme (SD) and the Australian Research Council (BAN).

References

First citationAly, H. A., Edrasa-Ebel, R., Indrani, D. I., Wray, V., Muller, G. E. W., Totzke, F., Zirrgiebel, U., Schachtele, C., Kubbutat, G. H. M., Lin, W. H., Proksch, P. & Ebel, R. (2008). J. Nat. Prod. 71, 972–980.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAn, Y., Zhao, T., Miao, J., Liu, G., Zheng, Y., Xu, Y. & Van Etten, L. R. (1989). J. Agric. Food Chem. 37, 1341–1343.  CrossRef CAS Web of Science Google Scholar
First citationAshour, M., Yehia, M. H. & Proksch, P. (2011). J. Nat. Prod. India, 4, 108–114.  CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoch, K., Podlech, J., Pfeiffer, E. & Metzler, M. (2005). J. Org. Chem. 70, 3275–3276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiegel, D., Troyanov, S., Noack, J., Emmerling, F. & Nehls, I. (2010). Acta Cryst. E66, o1366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWen, G. (2009). World J. Microbiol. Biotechnol. 25, 1677–1683.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1471
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds