organic compounds
Alternariol 9-O-methyl ether
aSchool of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052 NSW, Australia, and bMark Wainwright Analytical Centre, University of New South Wales, Sydney, 2052 NSW, Australia
*Correspondence e-mail: b.neilan@unsw.edu.au
The title compound (AME; H-benzo[c]chromen-6-one), C15H12O5, was isolated from an endophytic fungi Alternaria sp., from Catharanthus roseus (common name: Madagascar periwinkle). There is an intramolecular O—H⋯O hydrogen bond in the essentially planar molecule (r.m.s. deviation 0.02 Å). In the crystal, the molecule forms an O—H⋯O hydrogen bond with its centrosymmetric counterpart with four bridging interactions (two O—H⋯O and two C—H⋯O). The almost planar sheets of the dimeric units thus formed are stacked along b axis via C—H⋯π and π–π contacts [with C⋯C short contacts between aromatic moieties of 3.324 (3), 3.296 (3) and 3.374 (3) Å].
3,7-dihydroxy-9-methoxy-1-methyl-6Related literature
Species of the fungal genus Alternaria are known producers of mycotoxins and have previously been described as plant endophytes. For the isolation of Alternariol (AOH) and Alternariol 9-O-methyl ether (AME) see: An et al. (1989); Wen (2009); Ashour et al. (2011). For 1H, 13C and two-dimensional experimental data analysis see: Koch et al. (2005); Siegel et al. (2010). For the biological activity see: Aly et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812015000/hg5207sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812015000/hg5207Isup2.hkl
Alternaria sp. was isolated from Catharanthus roseus and cultured in malt extract media for production of
The crude ethyl acetate extract was fractionated on silica gel with a stepwise gradient of hexane to ethyl acetate and to methanol to yield 12 fractions. Fractions 6 and 7, which were eluted with 2:1 and 1:1 hexane, ethyl acetate showed fine needle like crystals on slow evaporation. These fine needles were recrystallized using dichloromethane to yield plate like crystals for crystallographic analysis. The positive and negative ESI-MS analysis of the title compound exhibited molecular ion peak at m/z 273, attributing to [M+H]+ and at m/z 271, attributing to [M—H]- , respectively, infereing its molecular weight to be 272 g/mol which is in agreement with the previously reported values (Ashour et al., 2011).H atoms were positioned geometrically with C—H = 0.93 — 0.96 Å and O—H = 0.82 Å. Uiso(H) values were set at 1.2Ueq (aromatic) or 1.5Ueq of the parent atom (methyl group).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C15H12O5 | Z = 2 |
Mr = 272.25 | F(000) = 284 |
Triclinic, P1 | Dx = 1.541 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1819 (7) Å | Cell parameters from 4112 reflections |
b = 8.9393 (8) Å | θ = 2.7–29.6° |
c = 10.2511 (10) Å | µ = 0.12 mm−1 |
α = 105.296 (5)° | T = 160 K |
β = 105.174 (4)° | Plates, colourless |
γ = 101.430 (4)° | 0.29 × 0.13 × 0.06 mm |
V = 586.90 (10) Å3 |
Bruker Kappa APEXII CCD diffractometer | 2062 independent reflections |
Radiation source: fine-focus sealed tube | 1718 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ϕ scans, and ω scans with κ offsets | θmax = 25.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −8→8 |
Tmin = 0.967, Tmax = 0.993 | k = −10→10 |
7824 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0511P)2 + 0.1544P] where P = (Fo2 + 2Fc2)/3 |
2062 reflections | (Δ/σ)max < 0.001 |
184 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C15H12O5 | γ = 101.430 (4)° |
Mr = 272.25 | V = 586.90 (10) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.1819 (7) Å | Mo Kα radiation |
b = 8.9393 (8) Å | µ = 0.12 mm−1 |
c = 10.2511 (10) Å | T = 160 K |
α = 105.296 (5)° | 0.29 × 0.13 × 0.06 mm |
β = 105.174 (4)° |
Bruker Kappa APEXII CCD diffractometer | 2062 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1718 reflections with I > 2σ(I) |
Tmin = 0.967, Tmax = 0.993 | Rint = 0.020 |
7824 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.25 e Å−3 |
2062 reflections | Δρmin = −0.20 e Å−3 |
184 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.65936 (15) | −0.18780 (12) | 0.08182 (10) | 0.0292 (3) | |
H1 | 0.7594 | −0.2138 | 0.1163 | 0.044* | |
O2 | 0.84646 (14) | 0.13308 (12) | 0.56397 (9) | 0.0245 (3) | |
O3 | 0.96545 (14) | 0.26527 (12) | 0.79381 (10) | 0.0267 (3) | |
O4 | 0.78595 (15) | 0.45323 (13) | 0.91399 (10) | 0.0329 (3) | |
H4 | 0.8735 | 0.4077 | 0.9083 | 0.049* | |
O5 | 0.17885 (16) | 0.48775 (13) | 0.61731 (11) | 0.0331 (3) | |
C1 | 0.4041 (2) | 0.07774 (16) | 0.25561 (14) | 0.0202 (3) | |
C2 | 0.4514 (2) | −0.03110 (16) | 0.15399 (14) | 0.0225 (3) | |
H2 | 0.3642 | −0.0722 | 0.0598 | 0.027* | |
C3 | 0.6240 (2) | −0.08085 (16) | 0.18775 (14) | 0.0219 (3) | |
C4 | 0.7533 (2) | −0.02073 (16) | 0.32735 (14) | 0.0223 (3) | |
H4A | 0.8701 | −0.0517 | 0.3529 | 0.027* | |
C5 | 0.7053 (2) | 0.08647 (16) | 0.42815 (14) | 0.0201 (3) | |
C6 | 0.8305 (2) | 0.23648 (16) | 0.67963 (14) | 0.0208 (3) | |
C7 | 0.66319 (19) | 0.30221 (15) | 0.66141 (14) | 0.0200 (3) | |
C8 | 0.6471 (2) | 0.41025 (16) | 0.78306 (14) | 0.0232 (3) | |
C9 | 0.4878 (2) | 0.47638 (16) | 0.77364 (14) | 0.0244 (3) | |
H9 | 0.4787 | 0.5483 | 0.8542 | 0.029* | |
C10 | 0.3421 (2) | 0.43228 (16) | 0.64067 (15) | 0.0241 (3) | |
C11 | 0.3534 (2) | 0.32476 (17) | 0.51851 (14) | 0.0249 (3) | |
H11 | 0.2522 | 0.2980 | 0.4311 | 0.030* | |
C12 | 0.5112 (2) | 0.25710 (15) | 0.52416 (14) | 0.0197 (3) | |
C13 | 0.5353 (2) | 0.14195 (16) | 0.40140 (14) | 0.0197 (3) | |
C14 | 0.2119 (2) | 0.11934 (18) | 0.20211 (14) | 0.0267 (3) | |
H14A | 0.1482 | 0.0608 | 0.1014 | 0.040* | |
H14B | 0.2416 | 0.2335 | 0.2180 | 0.040* | |
H14C | 0.1232 | 0.0903 | 0.2528 | 0.040* | |
C15 | 0.1611 (2) | 0.60559 (18) | 0.73528 (16) | 0.0309 (4) | |
H15A | 0.1602 | 0.5618 | 0.8112 | 0.046* | |
H15B | 0.0380 | 0.6330 | 0.7045 | 0.046* | |
H15C | 0.2733 | 0.7010 | 0.7693 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0335 (6) | 0.0342 (6) | 0.0220 (5) | 0.0176 (5) | 0.0108 (4) | 0.0050 (4) |
O2 | 0.0216 (5) | 0.0295 (5) | 0.0189 (5) | 0.0119 (4) | 0.0028 (4) | 0.0029 (4) |
O3 | 0.0210 (5) | 0.0307 (6) | 0.0217 (5) | 0.0091 (4) | 0.0008 (4) | 0.0033 (4) |
O4 | 0.0267 (6) | 0.0418 (6) | 0.0203 (5) | 0.0153 (5) | 0.0002 (4) | −0.0020 (4) |
O5 | 0.0346 (6) | 0.0396 (6) | 0.0266 (5) | 0.0252 (5) | 0.0080 (4) | 0.0050 (5) |
C1 | 0.0205 (7) | 0.0210 (7) | 0.0199 (7) | 0.0052 (5) | 0.0071 (5) | 0.0084 (5) |
C2 | 0.0224 (7) | 0.0254 (7) | 0.0178 (7) | 0.0049 (6) | 0.0046 (5) | 0.0075 (6) |
C3 | 0.0261 (7) | 0.0211 (7) | 0.0211 (7) | 0.0070 (6) | 0.0121 (6) | 0.0071 (6) |
C4 | 0.0204 (7) | 0.0251 (7) | 0.0245 (7) | 0.0100 (6) | 0.0086 (6) | 0.0095 (6) |
C5 | 0.0188 (7) | 0.0223 (7) | 0.0180 (7) | 0.0049 (5) | 0.0045 (5) | 0.0069 (5) |
C6 | 0.0188 (7) | 0.0203 (7) | 0.0204 (7) | 0.0032 (5) | 0.0055 (6) | 0.0046 (6) |
C7 | 0.0185 (7) | 0.0194 (7) | 0.0212 (7) | 0.0041 (5) | 0.0060 (6) | 0.0067 (6) |
C8 | 0.0216 (7) | 0.0227 (7) | 0.0203 (7) | 0.0033 (6) | 0.0039 (6) | 0.0044 (6) |
C9 | 0.0278 (8) | 0.0215 (7) | 0.0228 (7) | 0.0090 (6) | 0.0098 (6) | 0.0031 (6) |
C10 | 0.0239 (7) | 0.0238 (7) | 0.0278 (7) | 0.0112 (6) | 0.0090 (6) | 0.0102 (6) |
C11 | 0.0259 (7) | 0.0282 (8) | 0.0188 (7) | 0.0123 (6) | 0.0037 (6) | 0.0055 (6) |
C12 | 0.0198 (7) | 0.0187 (7) | 0.0205 (7) | 0.0045 (5) | 0.0064 (5) | 0.0075 (6) |
C13 | 0.0197 (7) | 0.0200 (7) | 0.0202 (7) | 0.0054 (5) | 0.0069 (5) | 0.0080 (6) |
C14 | 0.0243 (8) | 0.0326 (8) | 0.0191 (7) | 0.0106 (6) | 0.0037 (6) | 0.0040 (6) |
C15 | 0.0335 (8) | 0.0301 (8) | 0.0333 (8) | 0.0185 (7) | 0.0152 (7) | 0.0065 (7) |
O1—C3 | 1.3602 (16) | C5—C13 | 1.3958 (19) |
O1—H1 | 0.8200 | C6—C7 | 1.4299 (19) |
O2—C6 | 1.3446 (16) | C7—C8 | 1.4090 (18) |
O2—C5 | 1.3884 (15) | C7—C12 | 1.4338 (18) |
O3—C6 | 1.2344 (16) | C8—C9 | 1.382 (2) |
O4—C8 | 1.3486 (16) | C9—C10 | 1.3835 (19) |
O4—H4 | 0.8200 | C9—H9 | 0.9300 |
O5—C10 | 1.3508 (17) | C10—C11 | 1.3955 (19) |
O5—C15 | 1.4317 (16) | C11—C12 | 1.3819 (19) |
C1—C2 | 1.3889 (19) | C11—H11 | 0.9300 |
C1—C13 | 1.4305 (18) | C12—C13 | 1.4743 (18) |
C1—C14 | 1.5031 (19) | C14—H14A | 0.9600 |
C2—C3 | 1.3890 (19) | C14—H14B | 0.9600 |
C2—H2 | 0.9300 | C14—H14C | 0.9600 |
C3—C4 | 1.3784 (18) | C15—H15A | 0.9600 |
C4—C5 | 1.3785 (19) | C15—H15B | 0.9600 |
C4—H4A | 0.9300 | C15—H15C | 0.9600 |
C3—O1—H1 | 109.5 | C8—C9—C10 | 117.96 (12) |
C6—O2—C5 | 122.41 (10) | C8—C9—H9 | 121.0 |
C8—O4—H4 | 109.5 | C10—C9—H9 | 121.0 |
C10—O5—C15 | 118.10 (11) | O5—C10—C9 | 123.74 (12) |
C2—C1—C13 | 119.78 (12) | O5—C10—C11 | 114.42 (12) |
C2—C1—C14 | 116.06 (11) | C9—C10—C11 | 121.84 (12) |
C13—C1—C14 | 124.16 (12) | C12—C11—C10 | 121.63 (12) |
C1—C2—C3 | 122.49 (12) | C12—C11—H11 | 119.2 |
C1—C2—H2 | 118.8 | C10—C11—H11 | 119.2 |
C3—C2—H2 | 118.8 | C11—C12—C7 | 116.99 (12) |
O1—C3—C4 | 122.22 (12) | C11—C12—C13 | 125.49 (12) |
O1—C3—C2 | 118.81 (12) | C7—C12—C13 | 117.51 (12) |
C4—C3—C2 | 118.97 (12) | C5—C13—C1 | 114.81 (12) |
C3—C4—C5 | 118.40 (12) | C5—C13—C12 | 117.24 (12) |
C3—C4—H4A | 120.8 | C1—C13—C12 | 127.96 (12) |
C5—C4—H4A | 120.8 | C1—C14—H14A | 109.5 |
C4—C5—O2 | 111.77 (11) | C1—C14—H14B | 109.5 |
C4—C5—C13 | 125.54 (12) | H14A—C14—H14B | 109.5 |
O2—C5—C13 | 122.68 (12) | C1—C14—H14C | 109.5 |
O3—C6—O2 | 115.38 (12) | H14A—C14—H14C | 109.5 |
O3—C6—C7 | 125.97 (12) | H14B—C14—H14C | 109.5 |
O2—C6—C7 | 118.65 (11) | O5—C15—H15A | 109.5 |
C8—C7—C6 | 118.38 (11) | O5—C15—H15B | 109.5 |
C8—C7—C12 | 120.11 (12) | H15A—C15—H15B | 109.5 |
C6—C7—C12 | 121.49 (12) | O5—C15—H15C | 109.5 |
O4—C8—C9 | 116.98 (12) | H15A—C15—H15C | 109.5 |
O4—C8—C7 | 121.56 (12) | H15B—C15—H15C | 109.5 |
C9—C8—C7 | 121.46 (12) | ||
C13—C1—C2—C3 | −0.4 (2) | C15—O5—C10—C11 | −176.59 (12) |
C14—C1—C2—C3 | −179.96 (13) | C8—C9—C10—O5 | 179.73 (13) |
C1—C2—C3—O1 | −179.96 (12) | C8—C9—C10—C11 | −0.1 (2) |
C1—C2—C3—C4 | 0.3 (2) | O5—C10—C11—C12 | 179.96 (12) |
O1—C3—C4—C5 | −179.60 (12) | C9—C10—C11—C12 | −0.2 (2) |
C2—C3—C4—C5 | 0.2 (2) | C10—C11—C12—C7 | 0.1 (2) |
C3—C4—C5—O2 | 178.48 (11) | C10—C11—C12—C13 | 179.58 (12) |
C3—C4—C5—C13 | −0.5 (2) | C8—C7—C12—C11 | 0.4 (2) |
C6—O2—C5—C4 | −179.66 (12) | C6—C7—C12—C11 | 178.63 (12) |
C6—O2—C5—C13 | −0.6 (2) | C8—C7—C12—C13 | −179.21 (12) |
C5—O2—C6—O3 | 179.01 (11) | C6—C7—C12—C13 | −0.93 (19) |
C5—O2—C6—C7 | −0.80 (19) | C4—C5—C13—C1 | 0.4 (2) |
O3—C6—C7—C8 | 0.1 (2) | O2—C5—C13—C1 | −178.50 (11) |
O2—C6—C7—C8 | 179.88 (12) | C4—C5—C13—C12 | −179.87 (12) |
O3—C6—C7—C12 | −178.21 (13) | O2—C5—C13—C12 | 1.2 (2) |
O2—C6—C7—C12 | 1.6 (2) | C2—C1—C13—C5 | 0.05 (19) |
C6—C7—C8—O4 | 0.7 (2) | C14—C1—C13—C5 | 179.61 (12) |
C12—C7—C8—O4 | 179.02 (12) | C2—C1—C13—C12 | −179.65 (12) |
C6—C7—C8—C9 | −179.00 (13) | C14—C1—C13—C12 | −0.1 (2) |
C12—C7—C8—C9 | −0.7 (2) | C11—C12—C13—C5 | −179.96 (13) |
O4—C8—C9—C10 | −179.16 (12) | C7—C12—C13—C5 | −0.44 (19) |
C7—C8—C9—C10 | 0.5 (2) | C11—C12—C13—C1 | −0.3 (2) |
C15—O5—C10—C9 | 3.5 (2) | C7—C12—C13—C1 | 179.25 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O4i | 0.82 | 2.47 | 2.9371 (19) | 117 |
C9—H9···O1ii | 0.93 | 2.64 | 3.4645 (16) | 148 |
C4—H4A···O2iii | 0.93 | 2.32 | 3.2511 (16) | 174 |
O4—H4···O3 | 0.82 | 1.84 | 2.5692 (13) | 148 |
O1—H1···O3iii | 0.82 | 2.14 | 2.9619 (13) | 176 |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) x, y+1, z+1; (iii) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C15H12O5 |
Mr | 272.25 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 160 |
a, b, c (Å) | 7.1819 (7), 8.9393 (8), 10.2511 (10) |
α, β, γ (°) | 105.296 (5), 105.174 (4), 101.430 (4) |
V (Å3) | 586.90 (10) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.29 × 0.13 × 0.06 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.967, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7824, 2062, 1718 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.096, 1.05 |
No. of reflections | 2062 |
No. of parameters | 184 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.20 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O4i | 0.82 | 2.47 | 2.9371 (19) | 117.0 |
C9—H9···O1ii | 0.93 | 2.64 | 3.4645 (16) | 147.5 |
C4—H4A···O2iii | 0.93 | 2.32 | 3.2511 (16) | 174.3 |
O4—H4···O3 | 0.82 | 1.84 | 2.5692 (13) | 147.5 |
O1—H1···O3iii | 0.82 | 2.14 | 2.9619 (13) | 175.7 |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) x, y+1, z+1; (iii) −x+2, −y, −z+1. |
Acknowledgements
This work was supported by the Australian Endeavour Fellowship Scheme (SD) and the Australian Research Council (BAN).
References
Aly, H. A., Edrasa-Ebel, R., Indrani, D. I., Wray, V., Muller, G. E. W., Totzke, F., Zirrgiebel, U., Schachtele, C., Kubbutat, G. H. M., Lin, W. H., Proksch, P. & Ebel, R. (2008). J. Nat. Prod. 71, 972–980. Web of Science CrossRef PubMed CAS Google Scholar
An, Y., Zhao, T., Miao, J., Liu, G., Zheng, Y., Xu, Y. & Van Etten, L. R. (1989). J. Agric. Food Chem. 37, 1341–1343. CrossRef CAS Web of Science Google Scholar
Ashour, M., Yehia, M. H. & Proksch, P. (2011). J. Nat. Prod. India, 4, 108–114. CAS Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Koch, K., Podlech, J., Pfeiffer, E. & Metzler, M. (2005). J. Org. Chem. 70, 3275–3276. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siegel, D., Troyanov, S., Noack, J., Emmerling, F. & Nehls, I. (2010). Acta Cryst. E66, o1366. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wen, G. (2009). World J. Microbiol. Biotechnol. 25, 1677–1683. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound was isolated from an endophytic Alternaria sp. from the host plant Catharanthus roseus. Alternariol 9-O-methyl ether is a mycotoxin often isolated from Alternaria sp.. It has been reported to exhibit mild antimicrobial activity (An et al., 1989; Wen 2009; Ashour et al., 2011), cytotoxicity and protein kinase inhibitory activity (Aly et al., 2008). 1H, 13C and two-dimensional NMR spectral data was reported previously (Koch et al., 2005; Siegel et al., 2010). Although mycotoxins have been studied extensively, the single-crystal structure of alternariol 9-O-methy ether is reported here for the first time.
An ORTEP view of the title compound (Fig. 1) shows an intramolecular O4—H4···O3 hydrogen bond. The two centrosymmetric partners make a total of four interactions - the two hydrogen bonds O1—H1···O3(iii) and C4—H4A···O2(iii) , ((iii) -x + 2, -y, -z + 1) are duplicated across the inversion centre. The hydrogen H4 also makes a short contact with O4 of another centrosymmetrically related molecule (O4—H4···O4(i), (i) -x + 2, -y + 1, -z + 2). The bridged centrosymmetric dimers translated along c axis make C9—H9···O1(ii), (ii) x, y + 1, z + 1 and O4—H4···O4(i) contacts (Table. 1 and Fig. 2). These almost planar sheets thus formed in ac plane are stacked along b axis; these make C—H···π contacts with the edge of the ring in one direction (C14—H14B···C9(iv) = 2.88 Å and C15—H15C···C1(iv) = 2.85 Å, (iv) 1 - x, 1 - y, 1 - z) and π–π contacts in the opposite direction with considerable overlap of aromatic moieties with values of short contact between C3···C8(v) = 3.324 (3) Å, C1···C6(v) = 3.296 (3) Å and C5···C12(v) = 3.374 (3) Å with (v) 1 - x, -y, 1 - z (Fig. 3).