organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1402

Benzyl 3-(2-methyl­phen­yl)di­thio­carbazate

aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 10 April 2012; accepted 11 April 2012; online 18 April 2012)

In the title compound, C15H16N2S2, the central C2N2S2 unit is essentially planar (r.m.s. deviation = 0.047 Å) and forms dihedral angles of 68.26 (4) and 65.99 (4)° with the phenyl and benzene rings, respectively, indicating a twisted mol­ecule. Supra­molecular chains with a step topology and propagating along [100] feature in the crystal packing, mediated through N—H⋯S hydrogen bonds. The chains are consolidated into a three-dimensional architecture by C—H⋯π inter­actions.

Related literature

For background to the coordination chemistry and bio-activity of hydrazinecarbodithio­ates, see: Khoo et al. (2005[Khoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441-o2443.]); Chan et al. (2008[Chan, M.-E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141-1149.]); Ravoof et al. (2010[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871-876.]). For related structures, see: Paulus et al. (2011[Paulus, G., Crouse, K. A., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1370-o1371.]); Manan et al. (2012[Manan, M. A. F. A., Tahir, M. I. M., Crouse, K. A., How, F. N.-F. & Watkin, D. J. (2012). J. Chem. Crystallogr. 42, 173-179.]). For the synthesis, see: Tarafder et al. (2002[Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691-2698.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2S2

  • Mr = 288.42

  • Monoclinic, P 21 /n

  • a = 5.7000 (1) Å

  • b = 11.0136 (2) Å

  • c = 22.7545 (4) Å

  • β = 95.198 (2)°

  • V = 1422.60 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.27 mm−1

  • T = 100 K

  • 0.22 × 0.14 × 0.08 mm

Data collection
  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.63, Tmax = 0.77

  • 15011 measured reflections

  • 2725 independent reflections

  • 2560 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.03

  • 2725 reflections

  • 179 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯S2i 0.88 (1) 2.50 (1) 3.3625 (14) 169 (2)
N2—H2n⋯S2ii 0.88 (1) 2.79 (2) 3.5919 (13) 152 (1)
C11—H11⋯Cg1iii 0.95 2.98 3.8594 (18) 155
C5—H5⋯Cg2iv 0.95 2.84 3.7005 (18) 151
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z; (iii) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x-1, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The study of hydrazinecarbodithioate derivatives, their coordination chemistry and bio-activities has been carried out in our laboratory for a number of years (Khoo et al. 2005; Chan et al. 2008; Ravoof et al., 2010; Paulus et al., 2011; Manan et al., 2012). In our efforts to expand the scope of these investigations, the title compound (I) was synthesized and characterized crystallographically.

In (I), Fig. 1, the central moiety is essentially planar with a r.m.s. deviation of the fitted atoms (S1,S2,N1,N2,C1 and C8) of 0.047 Å with the maximum deviations being 0.0709 (8) and -0.0711 (11) Å for the N2 and N1 atoms, respectively. The phenyl and o-tolyl rings lie out of this plane forming dihedral angles of 68.26 (4) and 65.99 (4)°, respectively. The o-tolyl ring is orientated to one side of the central plane as seen in the C8—N1—N2—C9 torsion angle of 111.24 (16)°, whereas the plane through the central atoms almost bisects the phenyl ring with the C8—S1—C1—C2 torsion angle being 176.89 (11)°.

The most prominent feature of the crystal packing is the formation of supramolecular chains along [100]. These are mediated through N—H···S hydrogen bonds involving the thione-S2 atom, Table 1. Thus, centrosymmetrically related molecules are connected into dimeric aggregates via eight-membered {···HNCS}2 synthons. These are connected to translationally related dimeric aggregates via weaker N—H···S hydrogen bonds leading to 10-membered {···HNNH···S}2 synthons. The chain has a step topology and comprises alternating {···HNCS}2 and {···HNNH···S}2 synthons, Fig. 2. The chains are consolidated into a three-dimensional architecture by C—H···π interactions, Fig. 3 and Table 1.

Related literature top

For background to the coordination chemistry and bio-activity of hydrazinecarbodithioates, see: Khoo et al. (2005); Chan et al. (2008); Ravoof et al. (2010). For related structures, see: Paulus et al. (2011); Manan et al. (2012). For the synthesis, see: Tarafder et al. (2002).

Experimental top

The compound was prepared by adapting the synthetic procedure for S-benzyldithiocarbazate (Tarafder et al., 2002). o-Tolylhydrazine hydrochloride (0.1 mol) in absolute ethanol (70 ml) was added to a solution of potassium hydroxide (0.1 mol) in absolute ethanol (40 ml). The mixture was cooled in an ice-salt bath and carbon disulfide (0.1 mol) was added drop-wise with constant stirring over one hour, during which a yellow-orange solution was formed. The temperature of reaction was kept below 278 K. Benzyl chloride (0.1 mol) was added drop-wise to the above solution with vigorous stirring while continuing to maintain the temperature below 278 K. The pale product was filtered off, dried briefly in a vacuum desiccator over anhydrous silica gel, recrystallized from absolute ethanol and kept in a freezer overnight. Dark-yellow crystals were grown from its ethanol solution. Yield 89%. M.pt: 392 K. Anal. Found (Calc.): C, 62.03 (62.46); H, 5.34 (5.59); N: 10.26 (9.71)%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2 to 1.5Uequiv(C). The amino H-atoms were refined with a distance restraint of N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I) mediated by N—H···S hydrogen bonding, shown as blue dashed lines.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents for (I). The N—H···S hydrogen bonding and C—H···π interactions are shown as blue and purple dashed lines, respectively.
Benzyl 3-(2-methylphenyl)dithiocarbazate top
Crystal data top
C15H16N2S2F(000) = 608
Mr = 288.42Dx = 1.347 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 8863 reflections
a = 5.7000 (1) Åθ = 4–71°
b = 11.0136 (2) ŵ = 3.27 mm1
c = 22.7545 (4) ÅT = 100 K
β = 95.198 (2)°Prism, dark-yellow
V = 1422.60 (4) Å30.22 × 0.14 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
2725 independent reflections
Radiation source: fine-focus sealed tube2560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.1952 pixels mm-1θmax = 71.5°, θmin = 3.9°
ω/2θ scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1313
Tmin = 0.63, Tmax = 0.77l = 2725
15011 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.6201P]
where P = (Fo2 + 2Fc2)/3
2725 reflections(Δ/σ)max = 0.001
179 parametersΔρmax = 0.44 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H16N2S2V = 1422.60 (4) Å3
Mr = 288.42Z = 4
Monoclinic, P21/nCu Kα radiation
a = 5.7000 (1) ŵ = 3.27 mm1
b = 11.0136 (2) ÅT = 100 K
c = 22.7545 (4) Å0.22 × 0.14 × 0.08 mm
β = 95.198 (2)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
2725 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2560 reflections with I > 2σ(I)
Tmin = 0.63, Tmax = 0.77Rint = 0.022
15011 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.44 e Å3
2725 reflectionsΔρmin = 0.23 e Å3
179 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.96691 (6)0.83305 (3)0.582743 (16)0.02154 (13)
S20.73047 (7)0.64766 (4)0.498745 (16)0.02497 (14)
N11.1403 (2)0.62113 (12)0.56054 (6)0.0234 (3)
H1n1.153 (3)0.5503 (11)0.5436 (8)0.028*
N21.3086 (2)0.65256 (12)0.60680 (6)0.0226 (3)
H2n1.446 (2)0.6572 (17)0.5924 (8)0.027*
C10.6928 (3)0.90389 (14)0.55250 (7)0.0247 (3)
H1A0.69440.91530.50940.030*
H1B0.55710.85160.55970.030*
C20.6713 (3)1.02493 (14)0.58237 (6)0.0216 (3)
C30.8217 (3)1.12038 (16)0.57225 (7)0.0277 (4)
H30.94441.10860.54720.033*
C40.7947 (3)1.23226 (16)0.59816 (8)0.0314 (4)
H40.89891.29670.59080.038*
C50.6166 (3)1.25144 (15)0.63490 (7)0.0285 (4)
H50.59781.32880.65240.034*
C60.4669 (3)1.15700 (15)0.64578 (8)0.0279 (4)
H60.34451.16930.67090.033*
C70.4950 (3)1.04384 (15)0.62004 (7)0.0252 (3)
H70.39310.97890.62820.030*
C80.9545 (3)0.69201 (14)0.54650 (6)0.0206 (3)
C91.3110 (3)0.57463 (14)0.65724 (7)0.0211 (3)
C101.4934 (3)0.59097 (14)0.70252 (7)0.0231 (3)
C111.4978 (3)0.51509 (15)0.75165 (7)0.0272 (3)
H111.62050.52430.78250.033*
C121.3278 (3)0.42639 (16)0.75675 (7)0.0294 (4)
H121.33610.37450.79020.035*
C131.1459 (3)0.41438 (16)0.71253 (7)0.0288 (4)
H131.02670.35530.71610.035*
C141.1371 (3)0.48843 (15)0.66296 (7)0.0250 (3)
H141.01140.48000.63280.030*
C151.6766 (3)0.68749 (16)0.69763 (7)0.0288 (4)
H15A1.77730.69250.73480.043*
H15B1.59910.76590.68940.043*
H15C1.77300.66700.66550.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0220 (2)0.0224 (2)0.0195 (2)0.00052 (13)0.00217 (14)0.00249 (13)
S20.0232 (2)0.0274 (2)0.0232 (2)0.00015 (14)0.00370 (15)0.00584 (14)
N10.0266 (7)0.0216 (6)0.0210 (6)0.0004 (5)0.0032 (5)0.0029 (5)
N20.0217 (7)0.0245 (7)0.0207 (7)0.0005 (5)0.0028 (5)0.0004 (5)
C10.0217 (8)0.0261 (8)0.0253 (8)0.0019 (6)0.0035 (6)0.0019 (6)
C20.0209 (7)0.0242 (8)0.0188 (7)0.0017 (6)0.0030 (5)0.0008 (6)
C30.0288 (8)0.0312 (8)0.0241 (8)0.0025 (7)0.0065 (6)0.0002 (6)
C40.0372 (10)0.0252 (8)0.0323 (9)0.0060 (7)0.0055 (7)0.0007 (7)
C50.0320 (9)0.0256 (8)0.0268 (8)0.0048 (6)0.0037 (6)0.0036 (6)
C60.0214 (8)0.0359 (9)0.0263 (8)0.0047 (6)0.0019 (6)0.0026 (7)
C70.0207 (7)0.0287 (8)0.0260 (8)0.0021 (6)0.0003 (6)0.0016 (6)
C80.0230 (7)0.0233 (7)0.0157 (7)0.0025 (6)0.0026 (5)0.0008 (6)
C90.0217 (7)0.0214 (7)0.0203 (7)0.0037 (6)0.0030 (6)0.0018 (6)
C100.0218 (8)0.0269 (8)0.0208 (7)0.0033 (6)0.0024 (6)0.0049 (6)
C110.0255 (8)0.0366 (9)0.0192 (7)0.0045 (7)0.0000 (6)0.0025 (6)
C120.0343 (9)0.0339 (9)0.0205 (8)0.0048 (7)0.0062 (6)0.0034 (6)
C130.0283 (8)0.0298 (8)0.0289 (8)0.0017 (7)0.0067 (6)0.0010 (7)
C140.0234 (8)0.0263 (8)0.0247 (8)0.0004 (6)0.0004 (6)0.0019 (6)
C150.0249 (8)0.0355 (9)0.0254 (8)0.0024 (7)0.0016 (6)0.0024 (7)
Geometric parameters (Å, º) top
S1—C81.7571 (15)C5—H50.9500
S1—C11.8247 (16)C6—C71.392 (2)
S2—C81.6729 (15)C6—H60.9500
N1—C81.331 (2)C7—H70.9500
N1—N21.4020 (17)C9—C141.387 (2)
N1—H1n0.877 (9)C9—C101.407 (2)
N2—C91.432 (2)C10—C111.394 (2)
N2—H2n0.878 (9)C10—C151.501 (2)
C1—C21.506 (2)C11—C121.388 (2)
C1—H1A0.9900C11—H110.9500
C1—H1B0.9900C12—C131.384 (2)
C2—C31.389 (2)C12—H120.9500
C2—C71.394 (2)C13—C141.389 (2)
C3—C41.381 (2)C13—H130.9500
C3—H30.9500C14—H140.9500
C4—C51.389 (3)C15—H15A0.9800
C4—H40.9500C15—H15B0.9800
C5—C61.382 (2)C15—H15C0.9800
C8—S1—C1101.79 (7)C2—C7—H7119.7
C8—N1—N2120.74 (13)C6—C7—H7119.7
C8—N1—H1n120.8 (13)N1—C8—S2121.91 (12)
N2—N1—H1n118.2 (13)N1—C8—S1114.11 (11)
N1—N2—C9114.19 (12)S2—C8—S1123.98 (9)
N1—N2—H2n108.0 (13)C14—C9—C10120.37 (14)
C9—N2—H2n112.9 (13)C14—C9—N2122.02 (14)
C2—C1—S1108.06 (10)C10—C9—N2117.57 (14)
C2—C1—H1A110.1C11—C10—C9117.97 (15)
S1—C1—H1A110.1C11—C10—C15121.44 (14)
C2—C1—H1B110.1C9—C10—C15120.59 (14)
S1—C1—H1B110.1C12—C11—C10121.78 (15)
H1A—C1—H1B108.4C12—C11—H11119.1
C3—C2—C7118.62 (15)C10—C11—H11119.1
C3—C2—C1121.22 (14)C13—C12—C11119.28 (15)
C7—C2—C1120.15 (14)C13—C12—H12120.4
C4—C3—C2120.69 (15)C11—C12—H12120.4
C4—C3—H3119.7C12—C13—C14120.25 (16)
C2—C3—H3119.7C12—C13—H13119.9
C3—C4—C5120.58 (16)C14—C13—H13119.9
C3—C4—H4119.7C9—C14—C13120.29 (15)
C5—C4—H4119.7C9—C14—H14119.9
C6—C5—C4119.37 (15)C13—C14—H14119.9
C6—C5—H5120.3C10—C15—H15A109.5
C4—C5—H5120.3C10—C15—H15B109.5
C5—C6—C7120.12 (16)H15A—C15—H15B109.5
C5—C6—H6119.9C10—C15—H15C109.5
C7—C6—H6119.9H15A—C15—H15C109.5
C2—C7—C6120.61 (15)H15B—C15—H15C109.5
C8—N1—N2—C9111.24 (16)C1—S1—C8—S21.24 (12)
C8—S1—C1—C2176.89 (11)N1—N2—C9—C149.7 (2)
S1—C1—C2—C368.74 (16)N1—N2—C9—C10172.43 (13)
S1—C1—C2—C7112.65 (14)C14—C9—C10—C112.4 (2)
C7—C2—C3—C41.1 (2)N2—C9—C10—C11179.66 (14)
C1—C2—C3—C4177.55 (15)C14—C9—C10—C15177.54 (14)
C2—C3—C4—C50.0 (3)N2—C9—C10—C150.4 (2)
C3—C4—C5—C60.5 (3)C9—C10—C11—C120.6 (2)
C4—C5—C6—C70.0 (2)C15—C10—C11—C12179.38 (15)
C3—C2—C7—C61.6 (2)C10—C11—C12—C131.4 (2)
C1—C2—C7—C6177.07 (14)C11—C12—C13—C141.5 (2)
C5—C6—C7—C21.0 (2)C10—C9—C14—C132.3 (2)
N2—N1—C8—S2170.63 (11)N2—C9—C14—C13179.88 (14)
N2—N1—C8—S18.92 (19)C12—C13—C14—C90.3 (2)
C1—S1—C8—N1179.22 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1n···S2i0.88 (1)2.50 (1)3.3625 (14)169 (2)
N2—H2n···S2ii0.88 (1)2.79 (2)3.5919 (13)152 (1)
C11—H11···Cg1iii0.952.983.8594 (18)155
C5—H5···Cg2iv0.952.843.7005 (18)151
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+5/2, y1/2, z+3/2; (iv) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H16N2S2
Mr288.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)5.7000 (1), 11.0136 (2), 22.7545 (4)
β (°) 95.198 (2)
V3)1422.60 (4)
Z4
Radiation typeCu Kα
µ (mm1)3.27
Crystal size (mm)0.22 × 0.14 × 0.08
Data collection
DiffractometerOxford Diffraction Xcaliber Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.63, 0.77
No. of measured, independent and
observed [I > 2σ(I)] reflections
15011, 2725, 2560
Rint0.022
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.03
No. of reflections2725
No. of parameters179
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.23

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1n···S2i0.876 (14)2.498 (14)3.3625 (14)169.3 (15)
N2—H2n···S2ii0.877 (13)2.794 (16)3.5919 (13)151.9 (14)
C11—H11···Cg1iii0.952.983.8594 (18)155
C5—H5···Cg2iv0.952.843.7005 (18)151
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+5/2, y1/2, z+3/2; (iv) x1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: kacrouse@gmail.com.

Acknowledgements

Support for the project came from Universiti Putra Malaysia under their Research University Grant Scheme (grant No. 9174000) and from the Malaysian Ministry of Science, Technology and Innovation (grant No. 09–02-04–0752-EA001). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChan, M.-E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141–1149.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKhoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441–o2443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManan, M. A. F. A., Tahir, M. I. M., Crouse, K. A., How, F. N.-F. & Watkin, D. J. (2012). J. Chem. Crystallogr. 42, 173–179.  Web of Science CSD CrossRef Google Scholar
First citationPaulus, G., Crouse, K. A., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1370–o1371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691–2698.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1402
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds