organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1466

5-Chloro-4′-ethyl-3H-spiro­[1,3-benzo­thia­zole-2,1′-cyclo­hexa­ne]

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Beyazıt, Istanbul, Turkey, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 14 April 2012; accepted 16 April 2012; online 21 April 2012)

In the title compound, C14H18ClNS, the 2,3-dihydro-1,3-thia­zole ring adopts an envelope with the S,N-bound C atom at the flap and the cyclo­hexane ring adopts a chair conformation. In the crystal, N—H⋯S hydrogen bonds with C(5) motifs connect the mol­ecules into chains parallel to the c axis.

Related literature

For the pharmacological activity of benzothia­zole derivatives, see: Coudert et al. (1988[Coudert, P., Couquelet, J., Sudre, O. & Bastide, J. (1988). J. Pharm. Belg. 43, 258-262.]); Karalı et al. (2010[Karalı, N., Güzel, Ö., Özsoy, N., Özbey, S. & Salman, A. (2010). Eur. J. Med. Chem. 45, 1068-1077.]); Palmer et al. (1971[Palmer, P. J., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 248-251.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring-puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18ClNS

  • Mr = 267.81

  • Orthorhombic, P 21 21 21

  • a = 8.989 (3) Å

  • b = 11.163 (4) Å

  • c = 13.722 (4) Å

  • V = 1376.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 296 K

  • 0.35 × 0.28 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.872, Tmax = 0.903

  • 7077 measured reflections

  • 3203 independent reflections

  • 2724 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.092

  • S = 1.03

  • 3203 reflections

  • 159 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1320 Freidel pairs

  • Flack parameter: 0.02 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S1i 0.84 (2) 2.84 (2) 3.669 (2) 168 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Efforts to design, synthesize and screen new molecules that mimic the actions of currently available chemotherapeutics have resulted in numerous promising candidates incorporating the benzothiazole moiety. Benzothiazolines and spirobenzothiazolines, the cyclic products obtained by the condensation of aldehydes and ketones with 2-aminothiophenoles were previously reported to exhibit antitubercular (Palmer et al., 1971), analgesic (Coudert et al., 1988) and antioxidant (Karalı et al., 2010) properties. In this context, the title compound was prepared by the condensation of 4-ethylcyclohexanone with 2-amino-4-chlorothiophenol in an attempt to obtain a new molecule with antioxidant action and to establish its definite structure via analytical, spectroscopic and crystallographic data.

In the title compound (I), (Fig. 1), the S1/N1/C1/C6/C7 2,3-dihydro-1,3-thiazole ring adopts an envelope conformation with the C7 atom at the flap [puckering parameters (Cremer & Pople, 1975): Q(2) = 0.2817 (18) Å, ϕ(2) = 144.3 (4) °]. The C7—C12 cyclohexane ring adopts a chair conformation [puckering parameters: QT = 0.552 (2) Å, θ = 180.0 (2) ° and ϕ = 337 (7)°]. The bond lengths of (I) are within the expected values (Allen et al., 1987).

In the crystal, molecules are linked by intermolecular N1—H1N···S1 hydrogen bonds (Table 1 and Figs. 2 & 3), forming C(5) motifs (Bernstein et al., 1995) as chains parallel to the c axis.

Related literature top

For the pharmacological activity of benzothiazole derivatives, see: Coudert et al. (1988); Karalı et al. (2010); Palmer et al. (1971). For standard bond lengths, see: Allen et al. (1987). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). For ring-puckering analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of 2-amino-4-chlorothiophenol (0.01 mol) and 4-ethylcyclohexanone (0.01 mol) in absolute ethanol (50 ml) was refluxed on a water bath for 8 h. The solvent was evaporated in a crystallizing dish at room temperature and the residue was recrystallized from ethanol. [Yield: 45.5%, m.p.: 381–383 K]. IR (KBr) ν = 3310 (N—H), 2960, 2916, 2893 (C—H), 1585, 1562, 1469, 1448 (C=C) cm-1; 1H-NMR (DMSO-d6, 500 MHz) d = 0.85–0.87 (3H, m, 4'-CH2—CH3-cyc.), 1.00–1.16 (2H, m, CH/CH2-cyc.), 1.17–1.34 (3H, m, 4'-CH2—CH3 and CH/CH2-cyc.), 1.57–1.73 (4H, m, CH/CH2-cyc.), 2.07–2.13 (2H, m, CH/CH2-cyc.), 6.41, 6.47–6.50 (2H, d, J=2.0 Hz and m, H4 and H6-bt.), 6.90 (1H, d, J=8.3 Hz, H7-bt.), 6.74, 6.94 (1H, 2 s, NH) p.p.m. (Peaks at d 6.74 and 6.94 disappeared on D2O exchange) (cyc.=cyclohexane, bt.=benzothiazole). Analysis calculated for C14H18ClNS: C 62.79, H 6.77, N 5.23%. Found: C 62.63, H 6.79, N 5.24%.

Refinement top

C-bound H atoms were placed geometrically with the C—H distance of 0.93, 0.96, 0.97 and 0.98 Å, for the aromatic, methyl, methylene and methine H atoms, respectively and refined by using the riding model [Uiso(H) = xUeq(C), x = 1.5 for methyl H and 1.2 for all other carbon-bound H atoms. The nitrogen-bound H atom were located in a difference Fourier map and refined freely with the constraint N—H = 0.86 (2) Å.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding of the title molecule in the unit cell, viewing down a axis. H atoms not involved in hydrogen bonds have been omitted for clarity.
[Figure 3] Fig. 3. The packing and hydrogen bonding of the title molecule in the unit cell, viewing down c axis. H atoms not involved in hydrogen bonds have been omitted for clarity.
5-Chloro-4'-ethyl-3H-spiro[1,3-benzothiazole-2,1'-cyclohexane] top
Crystal data top
C14H18ClNSF(000) = 568
Mr = 267.81Dx = 1.292 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 859 reflections
a = 8.989 (3) Åθ = 3.5–20°
b = 11.163 (4) ŵ = 0.41 mm1
c = 13.722 (4) ÅT = 296 K
V = 1376.9 (8) Å3Prism, light yellow
Z = 40.35 × 0.28 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3203 independent reflections
Radiation source: fine-focus sealed tube2724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 118
Tmin = 0.872, Tmax = 0.903k = 1410
7077 measured reflectionsl = 1814
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.2606P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3203 reflectionsΔρmax = 0.32 e Å3
159 parametersΔρmin = 0.35 e Å3
1 restraintAbsolute structure: Flack (1983), 1320 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (8)
Crystal data top
C14H18ClNSV = 1376.9 (8) Å3
Mr = 267.81Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.989 (3) ŵ = 0.41 mm1
b = 11.163 (4) ÅT = 296 K
c = 13.722 (4) Å0.35 × 0.28 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3203 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2724 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.903Rint = 0.020
7077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092Δρmax = 0.32 e Å3
S = 1.03Δρmin = 0.35 e Å3
3203 reflectionsAbsolute structure: Flack (1983), 1320 Freidel pairs
159 parametersAbsolute structure parameter: 0.02 (8)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49813 (9)0.45066 (8)0.35059 (4)0.0819 (3)
S10.37029 (6)0.40096 (5)0.09263 (4)0.0481 (2)
N10.5350 (2)0.25670 (18)0.01023 (14)0.0529 (6)
C10.3980 (2)0.43112 (18)0.03208 (14)0.0430 (7)
C20.3365 (2)0.5213 (2)0.08691 (16)0.0540 (7)
C30.3676 (3)0.5274 (2)0.18623 (17)0.0597 (8)
C40.4593 (3)0.4430 (2)0.22640 (16)0.0547 (8)
C50.5230 (3)0.3517 (2)0.17270 (16)0.0527 (7)
C60.4912 (2)0.34542 (18)0.07400 (14)0.0437 (6)
C70.5242 (2)0.29047 (17)0.09277 (15)0.0437 (6)
C80.4828 (3)0.18328 (18)0.15561 (16)0.0534 (7)
C90.4758 (3)0.21449 (19)0.26303 (16)0.0541 (7)
C100.6208 (3)0.26917 (19)0.30042 (15)0.0470 (6)
C110.6605 (2)0.3776 (2)0.23844 (15)0.0506 (7)
C120.6673 (2)0.3484 (2)0.12979 (15)0.0495 (7)
C130.6130 (3)0.2992 (2)0.40837 (16)0.0602 (8)
C140.7593 (3)0.3396 (3)0.4523 (2)0.0791 (10)
H1N0.611 (2)0.214 (2)0.0203 (19)0.078 (9)*
H20.274500.577700.058000.0650*
H30.326800.587800.224500.0720*
H50.585600.296000.202000.0630*
H8A0.386700.152900.135000.0640*
H8B0.555600.120300.145900.0640*
H9A0.454000.142600.300000.0650*
H9B0.395200.270800.273700.0650*
H100.699600.209400.291600.0560*
H11A0.756300.408500.259200.0610*
H11B0.587000.439900.249000.0610*
H12A0.685400.421500.093500.0590*
H12B0.750000.294500.117900.0590*
H13A0.539900.362000.417800.0720*
H13B0.578600.229000.443400.0720*
H14A0.836300.284000.434800.1190*
H14B0.750300.342800.521900.1190*
H14C0.784100.417700.427900.1190*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0729 (4)0.1232 (6)0.0495 (3)0.0171 (5)0.0012 (3)0.0056 (3)
S10.0423 (3)0.0527 (3)0.0492 (3)0.0097 (3)0.0031 (2)0.0056 (2)
N10.0541 (12)0.0517 (11)0.0528 (10)0.0153 (10)0.0027 (9)0.0101 (8)
C10.0378 (11)0.0448 (12)0.0464 (11)0.0016 (9)0.0028 (8)0.0087 (8)
C20.0495 (12)0.0538 (13)0.0586 (13)0.0064 (10)0.0104 (11)0.0055 (11)
C30.0562 (13)0.0646 (15)0.0582 (13)0.0029 (13)0.0128 (12)0.0067 (11)
C40.0476 (13)0.0704 (15)0.0462 (11)0.0142 (12)0.0063 (9)0.0003 (11)
C50.0423 (11)0.0642 (14)0.0517 (12)0.0016 (11)0.0036 (10)0.0130 (11)
C60.0356 (10)0.0465 (11)0.0489 (11)0.0031 (9)0.0018 (9)0.0076 (9)
C70.0421 (11)0.0398 (10)0.0492 (11)0.0056 (9)0.0007 (10)0.0034 (9)
C80.0575 (13)0.0375 (11)0.0653 (14)0.0031 (10)0.0026 (12)0.0005 (9)
C90.0580 (14)0.0426 (11)0.0618 (13)0.0060 (11)0.0061 (11)0.0093 (10)
C100.0444 (11)0.0463 (11)0.0502 (11)0.0066 (10)0.0034 (10)0.0035 (9)
C110.0450 (12)0.0530 (13)0.0537 (12)0.0103 (10)0.0018 (9)0.0023 (10)
C120.0386 (11)0.0559 (13)0.0540 (12)0.0016 (10)0.0030 (9)0.0083 (10)
C130.0590 (14)0.0690 (15)0.0525 (13)0.0078 (13)0.0031 (12)0.0082 (12)
C140.0742 (18)0.104 (2)0.0591 (15)0.0009 (18)0.0082 (14)0.0086 (16)
Geometric parameters (Å, º) top
Cl1—C41.742 (2)C13—C141.515 (4)
S1—C11.762 (2)C2—H20.9300
S1—C71.854 (2)C3—H30.9300
N1—C61.379 (3)C5—H50.9300
N1—C71.466 (3)C8—H8A0.9700
N1—H1N0.84 (2)C8—H8B0.9700
C1—C61.396 (3)C9—H9A0.9700
C1—C21.373 (3)C9—H9B0.9700
C2—C31.393 (3)C10—H100.9800
C3—C41.368 (3)C11—H11A0.9700
C4—C51.382 (3)C11—H11B0.9700
C5—C61.386 (3)C12—H12A0.9700
C7—C81.521 (3)C12—H12B0.9700
C7—C121.527 (3)C13—H13A0.9700
C8—C91.516 (3)C13—H13B0.9700
C9—C101.528 (4)C14—H14A0.9600
C10—C111.522 (3)C14—H14B0.9600
C10—C131.520 (3)C14—H14C0.9600
C11—C121.527 (3)
C1—S1—C791.30 (9)C6—C5—H5121.00
C6—N1—C7114.09 (17)C7—C8—H8A109.00
C6—N1—H1N122.2 (17)C7—C8—H8B109.00
C7—N1—H1N110.9 (18)C9—C8—H8A109.00
S1—C1—C2127.99 (16)C9—C8—H8B109.00
S1—C1—C6110.75 (14)H8A—C8—H8B108.00
C2—C1—C6121.23 (18)C8—C9—H9A109.00
C1—C2—C3119.4 (2)C8—C9—H9B109.00
C2—C3—C4118.8 (2)C10—C9—H9A109.00
Cl1—C4—C5118.36 (18)C10—C9—H9B109.00
C3—C4—C5122.9 (2)H9A—C9—H9B108.00
Cl1—C4—C3118.77 (18)C9—C10—H10108.00
C4—C5—C6118.2 (2)C11—C10—H10108.00
N1—C6—C5126.69 (19)C13—C10—H10108.00
N1—C6—C1113.71 (17)C10—C11—H11A109.00
C1—C6—C5119.46 (19)C10—C11—H11B109.00
S1—C7—C12110.33 (14)C12—C11—H11A109.00
N1—C7—C8111.13 (16)C12—C11—H11B109.00
S1—C7—C8109.97 (14)H11A—C11—H11B108.00
C8—C7—C12110.53 (17)C7—C12—H12A109.00
N1—C7—C12111.96 (16)C7—C12—H12B109.00
S1—C7—N1102.68 (13)C11—C12—H12A109.00
C7—C8—C9112.37 (17)C11—C12—H12B109.00
C8—C9—C10112.5 (2)H12A—C12—H12B108.00
C9—C10—C13112.1 (2)C10—C13—H13A109.00
C11—C10—C13112.33 (18)C10—C13—H13B109.00
C9—C10—C11109.28 (18)C14—C13—H13A109.00
C10—C11—C12112.66 (18)C14—C13—H13B109.00
C7—C12—C11112.43 (16)H13A—C13—H13B108.00
C10—C13—C14114.4 (2)C13—C14—H14A109.00
C1—C2—H2120.00C13—C14—H14B110.00
C3—C2—H2120.00C13—C14—H14C109.00
C2—C3—H3121.00H14A—C14—H14B110.00
C4—C3—H3121.00H14A—C14—H14C109.00
C4—C5—H5121.00H14B—C14—H14C109.00
C7—S1—C1—C2169.63 (19)Cl1—C4—C5—C6179.63 (18)
C7—S1—C1—C612.78 (15)C3—C4—C5—C60.5 (4)
C1—S1—C7—N122.42 (13)C4—C5—C6—N1175.0 (2)
C1—S1—C7—C8140.76 (15)C4—C5—C6—C10.6 (3)
C1—S1—C7—C1297.06 (15)S1—C7—C8—C968.9 (2)
C6—N1—C7—S128.68 (19)N1—C7—C8—C9178.09 (19)
C6—N1—C7—C8146.21 (18)C12—C7—C8—C953.2 (3)
C6—N1—C7—C1289.7 (2)S1—C7—C12—C1169.5 (2)
C7—N1—C6—C121.5 (2)N1—C7—C12—C11176.80 (17)
C7—N1—C6—C5162.7 (2)C8—C7—C12—C1152.3 (2)
S1—C1—C2—C3177.34 (17)C7—C8—C9—C1056.0 (3)
C6—C1—C2—C30.0 (3)C8—C9—C10—C1155.3 (2)
S1—C1—C6—N12.0 (2)C8—C9—C10—C13179.54 (18)
S1—C1—C6—C5178.12 (17)C9—C10—C11—C1254.5 (2)
C2—C1—C6—N1175.77 (18)C13—C10—C11—C12179.53 (19)
C2—C1—C6—C50.3 (3)C9—C10—C13—C14172.9 (2)
C1—C2—C3—C40.1 (3)C11—C10—C13—C1463.6 (3)
C2—C3—C4—C50.1 (4)C10—C11—C12—C754.5 (2)
C2—C3—C4—Cl1179.98 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.84 (2)2.84 (2)3.669 (2)168 (2)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H18ClNS
Mr267.81
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.989 (3), 11.163 (4), 13.722 (4)
V3)1376.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.35 × 0.28 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.872, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
7077, 3203, 2724
Rint0.020
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 1.03
No. of reflections3203
No. of parameters159
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.35
Absolute structureFlack (1983), 1320 Freidel pairs
Absolute structure parameter0.02 (8)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.84 (2)2.84 (2)3.669 (2)168 (2)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoudert, P., Couquelet, J., Sudre, O. & Bastide, J. (1988). J. Pharm. Belg. 43, 258–262.  CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKaralı, N., Güzel, Ö., Özsoy, N., Özbey, S. & Salman, A. (2010). Eur. J. Med. Chem. 45, 1068–1077.  Web of Science PubMed Google Scholar
First citationPalmer, P. J., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 248–251.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1466
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds