organic compounds
5-Chloro-4′-ethyl-3H-spiro[1,3-benzothiazole-2,1′-cyclohexane]
aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Beyazıt, Istanbul, Turkey, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr
In the title compound, C14H18ClNS, the 2,3-dihydro-1,3-thiazole ring adopts an envelope with the S,N-bound C atom at the flap and the cyclohexane ring adopts a chair conformation. In the crystal, N—H⋯S hydrogen bonds with C(5) motifs connect the molecules into chains parallel to the c axis.
Related literature
For the pharmacological activity of benzothiazole derivatives, see: Coudert et al. (1988); Karalı et al. (2010); Palmer et al. (1971). For standard bond lengths, see: Allen et al. (1987). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). For ring-puckering analysis, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S1600536812016479/hg5210sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812016479/hg5210Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812016479/hg5210Isup3.cml
A mixture of 2-amino-4-chlorothiophenol (0.01 mol) and 4-ethylcyclohexanone (0.01 mol) in absolute ethanol (50 ml) was refluxed on a water bath for 8 h. The solvent was evaporated in a crystallizing dish at room temperature and the residue was recrystallized from ethanol. [Yield: 45.5%, m.p.: 381–383 K]. IR (KBr) ν = 3310 (N—H), 2960, 2916, 2893 (C—H), 1585, 1562, 1469, 1448 (C=C) cm-1; 1H-NMR (DMSO-d6, 500 MHz) d = 0.85–0.87 (3H, m, 4'-CH2—CH3-cyc.), 1.00–1.16 (2H, m, CH/CH2-cyc.), 1.17–1.34 (3H, m, 4'-CH2—CH3 and CH/CH2-cyc.), 1.57–1.73 (4H, m, CH/CH2-cyc.), 2.07–2.13 (2H, m, CH/CH2-cyc.), 6.41, 6.47–6.50 (2H, d, J=2.0 Hz and m, H4 and H6-bt.), 6.90 (1H, d, J=8.3 Hz, H7-bt.), 6.74, 6.94 (1H, 2 s, NH) p.p.m. (Peaks at d 6.74 and 6.94 disappeared on D2O exchange) (cyc.=cyclohexane, bt.=benzothiazole). Analysis calculated for C14H18ClNS: C 62.79, H 6.77, N 5.23%. Found: C 62.63, H 6.79, N 5.24%.
C-bound H atoms were placed geometrically with the C—H distance of 0.93, 0.96, 0.97 and 0.98 Å, for the aromatic, methyl, methylene and methine H atoms, respectively and refined by using the riding model [Uiso(H) = xUeq(C), x = 1.5 for methyl H and 1.2 for all other carbon-bound H atoms. The nitrogen-bound H atom were located in a difference Fourier map and refined freely with the constraint N—H = 0.86 (2) Å.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C14H18ClNS | F(000) = 568 |
Mr = 267.81 | Dx = 1.292 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 859 reflections |
a = 8.989 (3) Å | θ = 3.5–20° |
b = 11.163 (4) Å | µ = 0.41 mm−1 |
c = 13.722 (4) Å | T = 296 K |
V = 1376.9 (8) Å3 | Prism, light yellow |
Z = 4 | 0.35 × 0.28 × 0.25 mm |
Bruker Kappa APEXII CCD diffractometer | 3203 independent reflections |
Radiation source: fine-focus sealed tube | 2724 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ω scans | θmax = 27.9°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −11→8 |
Tmin = 0.872, Tmax = 0.903 | k = −14→10 |
7077 measured reflections | l = −18→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0397P)2 + 0.2606P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3203 reflections | Δρmax = 0.32 e Å−3 |
159 parameters | Δρmin = −0.35 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1320 Freidel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.02 (8) |
C14H18ClNS | V = 1376.9 (8) Å3 |
Mr = 267.81 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.989 (3) Å | µ = 0.41 mm−1 |
b = 11.163 (4) Å | T = 296 K |
c = 13.722 (4) Å | 0.35 × 0.28 × 0.25 mm |
Bruker Kappa APEXII CCD diffractometer | 3203 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2724 reflections with I > 2σ(I) |
Tmin = 0.872, Tmax = 0.903 | Rint = 0.020 |
7077 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.092 | Δρmax = 0.32 e Å−3 |
S = 1.03 | Δρmin = −0.35 e Å−3 |
3203 reflections | Absolute structure: Flack (1983), 1320 Freidel pairs |
159 parameters | Absolute structure parameter: 0.02 (8) |
1 restraint |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.49813 (9) | 0.45066 (8) | −0.35059 (4) | 0.0819 (3) | |
S1 | 0.37029 (6) | 0.40096 (5) | 0.09263 (4) | 0.0481 (2) | |
N1 | 0.5350 (2) | 0.25670 (18) | −0.01023 (14) | 0.0529 (6) | |
C1 | 0.3980 (2) | 0.43112 (18) | −0.03208 (14) | 0.0430 (7) | |
C2 | 0.3365 (2) | 0.5213 (2) | −0.08691 (16) | 0.0540 (7) | |
C3 | 0.3676 (3) | 0.5274 (2) | −0.18623 (17) | 0.0597 (8) | |
C4 | 0.4593 (3) | 0.4430 (2) | −0.22640 (16) | 0.0547 (8) | |
C5 | 0.5230 (3) | 0.3517 (2) | −0.17270 (16) | 0.0527 (7) | |
C6 | 0.4912 (2) | 0.34542 (18) | −0.07400 (14) | 0.0437 (6) | |
C7 | 0.5242 (2) | 0.29047 (17) | 0.09277 (15) | 0.0437 (6) | |
C8 | 0.4828 (3) | 0.18328 (18) | 0.15561 (16) | 0.0534 (7) | |
C9 | 0.4758 (3) | 0.21449 (19) | 0.26303 (16) | 0.0541 (7) | |
C10 | 0.6208 (3) | 0.26917 (19) | 0.30042 (15) | 0.0470 (6) | |
C11 | 0.6605 (2) | 0.3776 (2) | 0.23844 (15) | 0.0506 (7) | |
C12 | 0.6673 (2) | 0.3484 (2) | 0.12979 (15) | 0.0495 (7) | |
C13 | 0.6130 (3) | 0.2992 (2) | 0.40837 (16) | 0.0602 (8) | |
C14 | 0.7593 (3) | 0.3396 (3) | 0.4523 (2) | 0.0791 (10) | |
H1N | 0.611 (2) | 0.214 (2) | −0.0203 (19) | 0.078 (9)* | |
H2 | 0.27450 | 0.57770 | −0.05800 | 0.0650* | |
H3 | 0.32680 | 0.58780 | −0.22450 | 0.0720* | |
H5 | 0.58560 | 0.29600 | −0.20200 | 0.0630* | |
H8A | 0.38670 | 0.15290 | 0.13500 | 0.0640* | |
H8B | 0.55560 | 0.12030 | 0.14590 | 0.0640* | |
H9A | 0.45400 | 0.14260 | 0.30000 | 0.0650* | |
H9B | 0.39520 | 0.27080 | 0.27370 | 0.0650* | |
H10 | 0.69960 | 0.20940 | 0.29160 | 0.0560* | |
H11A | 0.75630 | 0.40850 | 0.25920 | 0.0610* | |
H11B | 0.58700 | 0.43990 | 0.24900 | 0.0610* | |
H12A | 0.68540 | 0.42150 | 0.09350 | 0.0590* | |
H12B | 0.75000 | 0.29450 | 0.11790 | 0.0590* | |
H13A | 0.53990 | 0.36200 | 0.41780 | 0.0720* | |
H13B | 0.57860 | 0.22900 | 0.44340 | 0.0720* | |
H14A | 0.83630 | 0.28400 | 0.43480 | 0.1190* | |
H14B | 0.75030 | 0.34280 | 0.52190 | 0.1190* | |
H14C | 0.78410 | 0.41770 | 0.42790 | 0.1190* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0729 (4) | 0.1232 (6) | 0.0495 (3) | −0.0171 (5) | 0.0012 (3) | 0.0056 (3) |
S1 | 0.0423 (3) | 0.0527 (3) | 0.0492 (3) | 0.0097 (3) | 0.0031 (2) | −0.0056 (2) |
N1 | 0.0541 (12) | 0.0517 (11) | 0.0528 (10) | 0.0153 (10) | 0.0027 (9) | −0.0101 (8) |
C1 | 0.0378 (11) | 0.0448 (12) | 0.0464 (11) | −0.0016 (9) | −0.0028 (8) | −0.0087 (8) |
C2 | 0.0495 (12) | 0.0538 (13) | 0.0586 (13) | 0.0064 (10) | −0.0104 (11) | −0.0055 (11) |
C3 | 0.0562 (13) | 0.0646 (15) | 0.0582 (13) | −0.0029 (13) | −0.0128 (12) | 0.0067 (11) |
C4 | 0.0476 (13) | 0.0704 (15) | 0.0462 (11) | −0.0142 (12) | −0.0063 (9) | −0.0003 (11) |
C5 | 0.0423 (11) | 0.0642 (14) | 0.0517 (12) | −0.0016 (11) | 0.0036 (10) | −0.0130 (11) |
C6 | 0.0356 (10) | 0.0465 (11) | 0.0489 (11) | −0.0031 (9) | −0.0018 (9) | −0.0076 (9) |
C7 | 0.0421 (11) | 0.0398 (10) | 0.0492 (11) | 0.0056 (9) | 0.0007 (10) | −0.0034 (9) |
C8 | 0.0575 (13) | 0.0375 (11) | 0.0653 (14) | −0.0031 (10) | −0.0026 (12) | −0.0005 (9) |
C9 | 0.0580 (14) | 0.0426 (11) | 0.0618 (13) | −0.0060 (11) | 0.0061 (11) | 0.0093 (10) |
C10 | 0.0444 (11) | 0.0463 (11) | 0.0502 (11) | 0.0066 (10) | 0.0034 (10) | 0.0035 (9) |
C11 | 0.0450 (12) | 0.0530 (13) | 0.0537 (12) | −0.0103 (10) | −0.0018 (9) | 0.0023 (10) |
C12 | 0.0386 (11) | 0.0559 (13) | 0.0540 (12) | −0.0016 (10) | 0.0030 (9) | 0.0083 (10) |
C13 | 0.0590 (14) | 0.0690 (15) | 0.0525 (13) | 0.0078 (13) | 0.0031 (12) | 0.0082 (12) |
C14 | 0.0742 (18) | 0.104 (2) | 0.0591 (15) | 0.0009 (18) | −0.0082 (14) | −0.0086 (16) |
Cl1—C4 | 1.742 (2) | C13—C14 | 1.515 (4) |
S1—C1 | 1.762 (2) | C2—H2 | 0.9300 |
S1—C7 | 1.854 (2) | C3—H3 | 0.9300 |
N1—C6 | 1.379 (3) | C5—H5 | 0.9300 |
N1—C7 | 1.466 (3) | C8—H8A | 0.9700 |
N1—H1N | 0.84 (2) | C8—H8B | 0.9700 |
C1—C6 | 1.396 (3) | C9—H9A | 0.9700 |
C1—C2 | 1.373 (3) | C9—H9B | 0.9700 |
C2—C3 | 1.393 (3) | C10—H10 | 0.9800 |
C3—C4 | 1.368 (3) | C11—H11A | 0.9700 |
C4—C5 | 1.382 (3) | C11—H11B | 0.9700 |
C5—C6 | 1.386 (3) | C12—H12A | 0.9700 |
C7—C8 | 1.521 (3) | C12—H12B | 0.9700 |
C7—C12 | 1.527 (3) | C13—H13A | 0.9700 |
C8—C9 | 1.516 (3) | C13—H13B | 0.9700 |
C9—C10 | 1.528 (4) | C14—H14A | 0.9600 |
C10—C11 | 1.522 (3) | C14—H14B | 0.9600 |
C10—C13 | 1.520 (3) | C14—H14C | 0.9600 |
C11—C12 | 1.527 (3) | ||
C1—S1—C7 | 91.30 (9) | C6—C5—H5 | 121.00 |
C6—N1—C7 | 114.09 (17) | C7—C8—H8A | 109.00 |
C6—N1—H1N | 122.2 (17) | C7—C8—H8B | 109.00 |
C7—N1—H1N | 110.9 (18) | C9—C8—H8A | 109.00 |
S1—C1—C2 | 127.99 (16) | C9—C8—H8B | 109.00 |
S1—C1—C6 | 110.75 (14) | H8A—C8—H8B | 108.00 |
C2—C1—C6 | 121.23 (18) | C8—C9—H9A | 109.00 |
C1—C2—C3 | 119.4 (2) | C8—C9—H9B | 109.00 |
C2—C3—C4 | 118.8 (2) | C10—C9—H9A | 109.00 |
Cl1—C4—C5 | 118.36 (18) | C10—C9—H9B | 109.00 |
C3—C4—C5 | 122.9 (2) | H9A—C9—H9B | 108.00 |
Cl1—C4—C3 | 118.77 (18) | C9—C10—H10 | 108.00 |
C4—C5—C6 | 118.2 (2) | C11—C10—H10 | 108.00 |
N1—C6—C5 | 126.69 (19) | C13—C10—H10 | 108.00 |
N1—C6—C1 | 113.71 (17) | C10—C11—H11A | 109.00 |
C1—C6—C5 | 119.46 (19) | C10—C11—H11B | 109.00 |
S1—C7—C12 | 110.33 (14) | C12—C11—H11A | 109.00 |
N1—C7—C8 | 111.13 (16) | C12—C11—H11B | 109.00 |
S1—C7—C8 | 109.97 (14) | H11A—C11—H11B | 108.00 |
C8—C7—C12 | 110.53 (17) | C7—C12—H12A | 109.00 |
N1—C7—C12 | 111.96 (16) | C7—C12—H12B | 109.00 |
S1—C7—N1 | 102.68 (13) | C11—C12—H12A | 109.00 |
C7—C8—C9 | 112.37 (17) | C11—C12—H12B | 109.00 |
C8—C9—C10 | 112.5 (2) | H12A—C12—H12B | 108.00 |
C9—C10—C13 | 112.1 (2) | C10—C13—H13A | 109.00 |
C11—C10—C13 | 112.33 (18) | C10—C13—H13B | 109.00 |
C9—C10—C11 | 109.28 (18) | C14—C13—H13A | 109.00 |
C10—C11—C12 | 112.66 (18) | C14—C13—H13B | 109.00 |
C7—C12—C11 | 112.43 (16) | H13A—C13—H13B | 108.00 |
C10—C13—C14 | 114.4 (2) | C13—C14—H14A | 109.00 |
C1—C2—H2 | 120.00 | C13—C14—H14B | 110.00 |
C3—C2—H2 | 120.00 | C13—C14—H14C | 109.00 |
C2—C3—H3 | 121.00 | H14A—C14—H14B | 110.00 |
C4—C3—H3 | 121.00 | H14A—C14—H14C | 109.00 |
C4—C5—H5 | 121.00 | H14B—C14—H14C | 109.00 |
C7—S1—C1—C2 | −169.63 (19) | Cl1—C4—C5—C6 | −179.63 (18) |
C7—S1—C1—C6 | 12.78 (15) | C3—C4—C5—C6 | 0.5 (4) |
C1—S1—C7—N1 | −22.42 (13) | C4—C5—C6—N1 | 175.0 (2) |
C1—S1—C7—C8 | −140.76 (15) | C4—C5—C6—C1 | −0.6 (3) |
C1—S1—C7—C12 | 97.06 (15) | S1—C7—C8—C9 | −68.9 (2) |
C6—N1—C7—S1 | 28.68 (19) | N1—C7—C8—C9 | 178.09 (19) |
C6—N1—C7—C8 | 146.21 (18) | C12—C7—C8—C9 | 53.2 (3) |
C6—N1—C7—C12 | −89.7 (2) | S1—C7—C12—C11 | 69.5 (2) |
C7—N1—C6—C1 | −21.5 (2) | N1—C7—C12—C11 | −176.80 (17) |
C7—N1—C6—C5 | 162.7 (2) | C8—C7—C12—C11 | −52.3 (2) |
S1—C1—C2—C3 | −177.34 (17) | C7—C8—C9—C10 | −56.0 (3) |
C6—C1—C2—C3 | 0.0 (3) | C8—C9—C10—C11 | 55.3 (2) |
S1—C1—C6—N1 | 2.0 (2) | C8—C9—C10—C13 | −179.54 (18) |
S1—C1—C6—C5 | 178.12 (17) | C9—C10—C11—C12 | −54.5 (2) |
C2—C1—C6—N1 | −175.77 (18) | C13—C10—C11—C12 | −179.53 (19) |
C2—C1—C6—C5 | 0.3 (3) | C9—C10—C13—C14 | 172.9 (2) |
C1—C2—C3—C4 | −0.1 (3) | C11—C10—C13—C14 | −63.6 (3) |
C2—C3—C4—C5 | −0.1 (4) | C10—C11—C12—C7 | 54.5 (2) |
C2—C3—C4—Cl1 | 179.98 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···S1i | 0.84 (2) | 2.84 (2) | 3.669 (2) | 168 (2) |
Symmetry code: (i) x+1/2, −y+1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | C14H18ClNS |
Mr | 267.81 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 296 |
a, b, c (Å) | 8.989 (3), 11.163 (4), 13.722 (4) |
V (Å3) | 1376.9 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.41 |
Crystal size (mm) | 0.35 × 0.28 × 0.25 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.872, 0.903 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7077, 3203, 2724 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.092, 1.03 |
No. of reflections | 3203 |
No. of parameters | 159 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.35 |
Absolute structure | Flack (1983), 1320 Freidel pairs |
Absolute structure parameter | 0.02 (8) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···S1i | 0.84 (2) | 2.84 (2) | 3.669 (2) | 168 (2) |
Symmetry code: (i) x+1/2, −y+1/2, −z. |
Acknowledgements
The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Coudert, P., Couquelet, J., Sudre, O. & Bastide, J. (1988). J. Pharm. Belg. 43, 258–262. CAS PubMed Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Karalı, N., Güzel, Ö., Özsoy, N., Özbey, S. & Salman, A. (2010). Eur. J. Med. Chem. 45, 1068–1077. Web of Science PubMed Google Scholar
Palmer, P. J., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 248–251. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Efforts to design, synthesize and screen new molecules that mimic the actions of currently available chemotherapeutics have resulted in numerous promising candidates incorporating the benzothiazole moiety. Benzothiazolines and spirobenzothiazolines, the cyclic products obtained by the condensation of aldehydes and ketones with 2-aminothiophenoles were previously reported to exhibit antitubercular (Palmer et al., 1971), analgesic (Coudert et al., 1988) and antioxidant (Karalı et al., 2010) properties. In this context, the title compound was prepared by the condensation of 4-ethylcyclohexanone with 2-amino-4-chlorothiophenol in an attempt to obtain a new molecule with antioxidant action and to establish its definite structure via analytical, spectroscopic and crystallographic data.
In the title compound (I), (Fig. 1), the S1/N1/C1/C6/C7 2,3-dihydro-1,3-thiazole ring adopts an envelope conformation with the C7 atom at the flap [puckering parameters (Cremer & Pople, 1975): Q(2) = 0.2817 (18) Å, ϕ(2) = 144.3 (4) °]. The C7—C12 cyclohexane ring adopts a chair conformation [puckering parameters: QT = 0.552 (2) Å, θ = 180.0 (2) ° and ϕ = 337 (7)°]. The bond lengths of (I) are within the expected values (Allen et al., 1987).
In the crystal, molecules are linked by intermolecular N1—H1N···S1 hydrogen bonds (Table 1 and Figs. 2 & 3), forming C(5) motifs (Bernstein et al., 1995) as chains parallel to the c axis.