metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m551-m552

Potassium [1-(tert-but­­oxy­carbon­yl)-1H-indol-3-yl]tri­fluoro­borate hemihydrate

aLudwig-Maximilians-Universität, Department of Chemistry, Butenandtstrasse 5–13, 81377 München, Germany
*Correspondence e-mail: pemay@cup.uni-muenchen.de

(Received 13 March 2012; accepted 2 April 2012; online 6 April 2012)

The asymmetric unit of the title salt, K+·C13H14BF3NO2·0.5H2O, consists of two derivatized indolyltrifluoridoborate anions, two potassium cations and one water mol­ecule. Within the indolyltrifluoro­borate anions, the least-square planes consisting of the carboxyl group and the adjacent quarternary C atom of the tert-butyl groups deviate significantly from coplanarity with the indolyl planes [20.44 (11) and 21.02 (10)°]. The potassium ions are coordinated by six atoms (one K+ ion by two O and four F atoms, and the second K+ ion by one O and five F atoms), however, one of the potassium ions undergoes an additional weak potassium–π inter­action (K⋯centroid = 3.722 Å). The packing is stabilized by sequential O—H⋯O hydrogen bonds along [100] between water mol­ecules and also by O—H⋯F hydrogen bonds.

Related literature

For background to organotrifluoro­borates and the synthesis, see: Mothes et al. (2008[Mothes, C., Lavielle, S. & Karoyan, P. (2008). J. Org. Chem. 73, 6706-6710.]); Molander et al. (2009[Molander, G. A., Canturk, B. & Kennedy, L. E. (2009). J. Org. Chem. 74, 973-980.]); Kassis et al. (2009[Kassis, P., Beneteau, V., Merour, J.-Y. & Routier, S. (2009). Synthesis, pp. 2447-2453.]); Reiter et al. (2010[Reiter, M., Torssell, S., Lee, S. & MacMillan, D. W. C. (2010). Chem. Sci. 1, 37-42.]); Darses & Genet (2008[Darses, S. & Genet, J.-P. (2008). Chem. Rev. 108, 288-325.]). For related structures, see: Baran et al. (2005[Baran, P. S., Guerrero, C. A., Ambhaikar, N. B. & Hafensteiner, B. D. (2005). Angew. Chem. Intl. Ed. 44, 606-609.]); Davies et al. (2005[Davies, J. R., Kane, P. D., Moody, C. J. & Slawin, A. M. Z. (2005). J. Org. Chem. 70, 5840-5851.], 2007[Davies, S. G., Garner, A. C., Ouzman, J. V. A., Roberts, P. M., Smith, A. D., Snow, E. J., Thomson, J. E., Tamayo, J. A. & Vickers, R. J. (2007). Org. Biomol. Chem. 5, 2138-2147.]); Lu & Lin (2011[Lu, T.-J. & Lin, C.-K. (2011). J. Org. Chem. 76, 1621-1633.]).

[Scheme 1]

Experimental

Crystal data
  • K+·C13H14BF3NO2·0.5H2O

  • Mr = 332.17

  • Orthorhombic, P 21 21 21

  • a = 5.8428 (1) Å

  • b = 16.3177 (2) Å

  • c = 32.1286 (5) Å

  • V = 3063.17 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 173 K

  • 0.27 × 0.19 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 24771 measured reflections

  • 7001 independent reflections

  • 6369 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.075

  • S = 1.03

  • 7001 reflections

  • 400 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2995 Friedel pairs

  • Flack parameter: 0.00 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯F3i 0.81 (1) 2.14 (1) 2.903 (2) 156 (3)
O5—H51⋯F1i 0.81 (1) 2.62 (2) 3.188 (2) 128 (2)
O5—H52⋯O5ii 0.81 (1) 2.41 (1) 3.1968 (16) 164 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]; (ii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z].

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Organotrifluoroborates and, in particular, indolyltrifluoroborates [Molander et al. (2009), Kassis et al. (2009), Reiter et al. (2010)] are synthetically useful nucleophiles for Suzuki-Miyaura cross-coupling and other CC bond-forming reactions [Darses & Genet (2008)].

The asymmetric unit contains two formula units of the title compound (Fig. 1). The B–C bond distances in the two indolyltrifluoroborate anions are found to be 1.596 (3) Å and 1.600 (3) Å. These bond distances are close to the mean distance of 1.619 Å determined from 33 crystal structures of organotrifluoroborates (CSD version 5.33, Nov 2011). In the title compound, the 1-tert-butoxycarbonyl group is not coplanar with the indolyl ring, but deviates with plane-plane angles of 20.44 (11)° and 21.02 (10)°, in which the plane of a tert-butoxycarbonyl group is defined by its C and O atoms with the exception of the methyl groups. This structural feature is observed in several of the dozen of crystal structures of 3-substituted 1-(tert-Butoxycarbonyl)-1H-indolyl derivatives [Baran et al. (2005), Davies et al. (2005), Davies et al. (2007) and Lu & Lin (2011)].

The coordination sphere of K1 consists of two oxygen atoms and four fluorine atoms in bond distances ranging between 2.58 Å and 2.99 Å. Additionally the five-membered ring of an adjacent indolyl moiety is bound by a weak potassium-π interaction (distance K1–Cg(N2, C14—C17) = 3.722 Å). The other potassium ion is coordinated by five fluorine atoms and one oxygen atom in bond distances ranging from 2.62 Å to 2.77 Å. The water molecule is coordinated solely to K1 and forms sequential hydrogen bonds of the type O–H···O along [100]. The other proton of the water molecule acts as donor in hydrogen bonds of the type O–H···F. Layers parallel to ab are formed by the combination of hydrogen bonds and coordination of the potassium ions (Fig. 2). Weak C–H···π interactions between methyl-hydrogen atoms and the six-membered rings of the indolyl moieties are established with C···Cg distances of 3.836 (3) Å and 3.715 (2) Å. The packing of the title compound is shown in Fig. 3.

Related literature top

For background to organotrifluoroborates and the synthesis, see: Mothes et al. (2008); Molander et al. (2009); Kassis et al. (2009); Reiter et al. (2010); Darses & Genet (2008). For related structures, see: Baran et al. (2005); Davies et al. (2005,2007); Lu & Lin (2011).

Experimental top

In a 100 ml Schlenck flask under argon, 1.00 g (2.92 mmol,1 eq.) of tert-butyl-3-iodo-1H-indole-1-carboxylate [Mothes et al. (2008)] was dissolved in 20 ml of freshly distilled THF and cooled to -78 °C. With a syringe, 1.37 ml of nBuLi (2.13 M in hexane, 2.92 mmol,1 eq.) was added dropwise, and the solution was stirred for 30 min at this temperature whilst turning orange pale. Neat triisopropyl borate (3.36 mmol, 0.55 ml, 1.15 eq.) was then slowly dropped to the mixture, and after removing the cooling bath the temperature reached 0 °C in 30 min. An aqueous solution of KHF2 (17.5 mmol, 1.35 g, 6 eq. dissolved in 5 ml of H2O) was added slowly to the limpid solution under vigorous stirring and after 15 minutes the solvents were removed in vacuo. The waxy solid was dissolved in 50 ml of hot acetone and filtrated. The filtrate was concentrated to 10 ml before adding 10 ml of diethylether. After one night in the fridge, colorless crystalline plates of the title compound were obtained (650 mg, 70%).

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.98 Å for aliphatic, 0.95 Å for aromatic H) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C, aromatic), Uiso(H) = 1.5Ueq(C, aliphatic)]. The methyl groups were allowed to rotate along the C–O bonds to best fit the experimental electron density. The hydrogen atoms of the water molecule were fixed to O–H distances of 0.82 (1) Å [Uiso(H) = 1.2Ueq(O)].

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structures of the asymmetric unit (contains two formula units of the title compound), with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. View on a layer formed by potassium ions and their coordinating O and F atoms. All other atoms have been omitted for clarity. Dashed lines indicate hydrogen bonds, fat solid lines K–O and K–F bonds.
[Figure 3] Fig. 3. The packing of the title compound viewed along [100]. Hydrogen atoms have been omitted for clarity. Fragments located outside the unit cell have been completed.
Potassium [1-(tert-butoxycarbonyl)-1H-indol-3-yl]trifluoroborate hemihydrate top
Crystal data top
K+·C13H14BF3NO2·0.5H2OF(000) = 1368
Mr = 332.17Dx = 1.441 (1) Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 12366 reflections
a = 5.8428 (1) Åθ = 3.1–27.5°
b = 16.3177 (2) ŵ = 0.38 mm1
c = 32.1286 (5) ÅT = 173 K
V = 3063.17 (8) Å3Block, colourless
Z = 80.27 × 0.19 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
6369 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.027
MONTEL, graded multilayered X-ray optics monochromatorθmax = 27.5°, θmin = 3.1°
CCD; rotation images scansh = 77
24771 measured reflectionsk = 2121
7001 independent reflectionsl = 4141
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0299P)2 + 1.0137P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7001 reflectionsΔρmax = 0.30 e Å3
400 parametersΔρmin = 0.24 e Å3
2 restraintsAbsolute structure: Flack (1983), 2995 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
K+·C13H14BF3NO2·0.5H2OV = 3063.17 (8) Å3
Mr = 332.17Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 5.8428 (1) ŵ = 0.38 mm1
b = 16.3177 (2) ÅT = 173 K
c = 32.1286 (5) Å0.27 × 0.19 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
6369 reflections with I > 2σ(I)
24771 measured reflectionsRint = 0.027
7001 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.30 e Å3
S = 1.03Δρmin = 0.24 e Å3
7001 reflectionsAbsolute structure: Flack (1983), 2995 Friedel pairs
400 parametersAbsolute structure parameter: 0.00 (3)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.23271 (7)0.07549 (2)0.010496 (14)0.03663 (10)
K20.44437 (8)0.16361 (2)0.030974 (13)0.03596 (10)
F10.1583 (2)0.09666 (9)0.02545 (4)0.0531 (3)
F20.4208 (3)0.00302 (7)0.02809 (4)0.0579 (4)
F30.4763 (2)0.11459 (8)0.06318 (4)0.0515 (3)
F41.2008 (3)0.08962 (7)0.00590 (4)0.0599 (4)
F50.9079 (2)0.17683 (7)0.01961 (4)0.0475 (3)
F61.2432 (2)0.19073 (7)0.05353 (4)0.0441 (3)
O10.2775 (2)0.13553 (7)0.17310 (4)0.0355 (3)
O20.3463 (3)0.14600 (10)0.10405 (4)0.0501 (4)
O30.6469 (2)0.13910 (7)0.13800 (4)0.0331 (3)
O40.4899 (3)0.10246 (8)0.07628 (4)0.0427 (3)
O50.0801 (3)0.23252 (10)0.01815 (6)0.0562 (4)
H510.097 (5)0.2697 (12)0.0347 (7)0.067*
H520.052 (2)0.2317 (18)0.0103 (9)0.067*
N10.0878 (3)0.05375 (9)0.12880 (5)0.0323 (3)
N20.7777 (3)0.02748 (9)0.10475 (4)0.0294 (3)
C10.0068 (3)0.03130 (11)0.08919 (6)0.0332 (4)
H10.07490.04840.06380.040*
C20.1791 (3)0.01743 (10)0.09157 (6)0.0289 (4)
C30.2240 (3)0.02728 (10)0.13595 (5)0.0285 (4)
C40.0545 (3)0.01594 (10)0.15856 (5)0.0290 (4)
C50.0473 (4)0.01580 (11)0.20163 (6)0.0362 (4)
H50.07080.04330.21640.043*
C60.2203 (4)0.02636 (12)0.22244 (6)0.0404 (5)
H60.21960.02790.25200.049*
C70.3937 (4)0.06622 (12)0.20090 (6)0.0412 (5)
H70.51180.09300.21600.049*
C80.3975 (3)0.06758 (11)0.15802 (6)0.0339 (4)
H80.51620.09550.14360.041*
C90.2502 (4)0.11582 (11)0.13339 (6)0.0343 (4)
C100.4090 (4)0.21055 (11)0.18483 (6)0.0359 (4)
C110.6548 (4)0.20440 (15)0.17096 (10)0.0607 (7)
H11A0.71800.15150.17960.091*
H11B0.74380.24880.18360.091*
H11C0.66250.20900.14060.091*
C120.2916 (4)0.28447 (12)0.16649 (8)0.0499 (6)
H12A0.30550.28310.13610.075*
H12B0.36360.33440.17720.075*
H12C0.12940.28390.17420.075*
C130.3855 (7)0.20916 (19)0.23156 (8)0.0838 (11)
H13A0.22290.20930.23910.126*
H13B0.45990.25770.24340.126*
H13C0.45830.15960.24260.126*
C140.8113 (3)0.02142 (11)0.06941 (6)0.0318 (4)
H140.71530.02040.04560.038*
C150.9966 (3)0.07020 (10)0.07336 (5)0.0275 (4)
C161.0897 (3)0.05186 (9)0.11437 (5)0.0258 (3)
C170.9503 (3)0.00726 (10)0.13362 (5)0.0265 (3)
C180.9858 (3)0.03336 (11)0.17426 (6)0.0341 (4)
H180.88710.07190.18730.041*
C191.1730 (4)0.00034 (13)0.19486 (6)0.0416 (5)
H191.20240.01660.22270.050*
C201.3184 (4)0.05562 (12)0.17607 (7)0.0412 (5)
H201.44650.07600.19110.049*
C211.2797 (3)0.08230 (11)0.13564 (6)0.0334 (4)
H211.38020.12040.12280.040*
C220.6229 (3)0.09235 (11)0.10457 (6)0.0318 (4)
C230.5320 (3)0.22094 (11)0.14000 (6)0.0335 (4)
C240.2743 (4)0.21102 (13)0.14087 (9)0.0508 (6)
H24A0.20260.26420.14660.076*
H24B0.23200.17200.16270.076*
H24C0.22140.19050.11390.076*
C250.6211 (4)0.25395 (13)0.18113 (7)0.0471 (5)
H25A0.78850.25700.18020.071*
H25B0.57410.21730.20380.071*
H25C0.55810.30880.18600.071*
C260.6157 (4)0.27308 (13)0.10437 (7)0.0478 (5)
H26A0.78330.27200.10360.072*
H26B0.56310.32960.10820.072*
H26C0.55500.25150.07810.072*
B10.3097 (3)0.05677 (11)0.05280 (6)0.0262 (4)
B21.0867 (4)0.13229 (12)0.03848 (6)0.0298 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0355 (2)0.03093 (19)0.0434 (2)0.00376 (18)0.00348 (19)0.00575 (17)
K20.0414 (2)0.02571 (18)0.0408 (2)0.00664 (17)0.00910 (19)0.00547 (16)
F10.0414 (7)0.0679 (8)0.0500 (7)0.0022 (6)0.0071 (6)0.0286 (6)
F20.0777 (9)0.0317 (6)0.0642 (8)0.0021 (7)0.0338 (8)0.0013 (5)
F30.0583 (8)0.0541 (7)0.0420 (7)0.0296 (7)0.0088 (6)0.0065 (5)
F40.0919 (11)0.0359 (6)0.0519 (7)0.0013 (7)0.0370 (8)0.0022 (5)
F50.0419 (7)0.0433 (6)0.0574 (8)0.0076 (6)0.0157 (6)0.0225 (5)
F60.0435 (7)0.0332 (6)0.0558 (7)0.0152 (6)0.0148 (6)0.0137 (5)
O10.0416 (8)0.0321 (6)0.0327 (7)0.0097 (6)0.0022 (6)0.0023 (5)
O20.0538 (10)0.0598 (10)0.0367 (8)0.0258 (8)0.0127 (7)0.0080 (7)
O30.0378 (7)0.0276 (6)0.0340 (7)0.0098 (5)0.0004 (6)0.0035 (5)
O40.0422 (8)0.0414 (8)0.0446 (8)0.0145 (7)0.0127 (7)0.0065 (6)
O50.0654 (11)0.0346 (8)0.0688 (12)0.0079 (8)0.0163 (10)0.0192 (7)
N10.0332 (9)0.0338 (8)0.0298 (8)0.0077 (7)0.0014 (7)0.0021 (6)
N20.0310 (8)0.0291 (7)0.0280 (7)0.0059 (6)0.0025 (6)0.0019 (6)
C10.0350 (10)0.0363 (9)0.0283 (9)0.0063 (8)0.0040 (7)0.0039 (7)
C20.0301 (9)0.0234 (8)0.0333 (9)0.0002 (7)0.0028 (7)0.0010 (7)
C30.0303 (9)0.0227 (8)0.0325 (9)0.0042 (7)0.0031 (7)0.0001 (6)
C40.0293 (9)0.0264 (8)0.0314 (9)0.0032 (8)0.0017 (8)0.0022 (7)
C50.0416 (11)0.0345 (9)0.0324 (9)0.0009 (9)0.0057 (9)0.0041 (7)
C60.0509 (13)0.0414 (10)0.0290 (9)0.0011 (10)0.0012 (9)0.0050 (8)
C70.0468 (12)0.0350 (10)0.0418 (11)0.0037 (9)0.0098 (10)0.0040 (8)
C80.0343 (10)0.0276 (9)0.0399 (10)0.0001 (8)0.0030 (8)0.0008 (7)
C90.0343 (10)0.0336 (9)0.0350 (9)0.0044 (9)0.0017 (9)0.0044 (7)
C100.0375 (11)0.0302 (9)0.0400 (10)0.0056 (8)0.0069 (9)0.0050 (8)
C110.0311 (11)0.0428 (12)0.108 (2)0.0024 (10)0.0107 (13)0.0169 (13)
C120.0343 (12)0.0331 (10)0.0822 (17)0.0015 (9)0.0019 (11)0.0036 (10)
C130.135 (3)0.0742 (19)0.0425 (14)0.054 (2)0.0084 (17)0.0072 (13)
C140.0348 (10)0.0327 (9)0.0279 (9)0.0042 (8)0.0026 (7)0.0050 (7)
C150.0310 (9)0.0241 (8)0.0274 (8)0.0007 (7)0.0005 (7)0.0006 (6)
C160.0274 (9)0.0205 (7)0.0296 (9)0.0013 (7)0.0011 (7)0.0028 (6)
C170.0276 (8)0.0230 (8)0.0290 (8)0.0011 (7)0.0007 (7)0.0024 (6)
C180.0435 (11)0.0300 (9)0.0290 (9)0.0046 (8)0.0016 (8)0.0018 (7)
C190.0533 (13)0.0384 (10)0.0331 (10)0.0045 (10)0.0127 (9)0.0047 (8)
C200.0435 (11)0.0372 (10)0.0429 (11)0.0076 (9)0.0174 (9)0.0015 (8)
C210.0319 (10)0.0286 (8)0.0396 (10)0.0046 (8)0.0031 (8)0.0010 (7)
C220.0317 (10)0.0298 (9)0.0338 (9)0.0054 (7)0.0013 (8)0.0011 (7)
C230.0301 (10)0.0268 (8)0.0435 (10)0.0073 (8)0.0057 (8)0.0037 (7)
C240.0318 (11)0.0388 (11)0.0818 (17)0.0052 (9)0.0098 (11)0.0083 (11)
C250.0520 (14)0.0404 (11)0.0488 (13)0.0093 (10)0.0064 (11)0.0128 (9)
C260.0493 (14)0.0346 (10)0.0595 (14)0.0018 (10)0.0088 (11)0.0058 (10)
B10.0258 (10)0.0216 (9)0.0313 (10)0.0000 (7)0.0003 (8)0.0012 (7)
B20.0339 (11)0.0230 (9)0.0325 (10)0.0025 (8)0.0013 (9)0.0011 (7)
Geometric parameters (Å, º) top
K1—F12.5832 (13)C3—C41.416 (3)
K1—O42.6303 (14)C4—C51.384 (2)
K1—F2i2.6977 (13)C5—C61.394 (3)
K1—F4ii2.7048 (12)C5—H50.9500
K1—O52.7243 (16)C6—C71.389 (3)
K1—F3i2.9833 (14)C6—H60.9500
K1—B1i3.373 (2)C7—C81.378 (3)
K1—C15ii3.4111 (17)C7—H70.9500
K1—C14ii3.485 (2)C8—H80.9500
K1—H523.05 (3)C10—C111.507 (3)
K2—F22.6256 (12)C10—C121.508 (3)
K2—F5ii2.6315 (12)C10—C131.508 (3)
K2—O2ii2.6627 (14)C11—H11A0.9800
K2—F4iii2.6756 (14)C11—H11B0.9800
K2—F6iv2.7158 (12)C11—H11C0.9800
K2—F5iv2.7671 (12)C12—H12A0.9800
K2—F6iii3.3016 (14)C12—H12B0.9800
K2—B2iv3.344 (2)C12—H12C0.9800
F1—B11.406 (2)C13—H13A0.9800
F2—B11.415 (2)C13—H13B0.9800
F2—K1ii2.6977 (13)C13—H13C0.9800
F3—B11.396 (2)C14—C151.350 (2)
F3—K1ii2.9832 (14)C14—K1i3.485 (2)
F4—B21.423 (2)C14—H140.9500
F4—K2v2.6756 (14)C15—C161.457 (2)
F4—K1i2.7047 (12)C15—B21.600 (3)
F5—B21.409 (2)C15—K1i3.4111 (17)
F5—K2i2.6316 (12)C16—C211.395 (2)
F5—K2vi2.7671 (12)C16—C171.406 (2)
F6—B21.407 (2)C17—C181.389 (2)
F6—K2vi2.7157 (12)C18—C191.387 (3)
F6—K2v3.3017 (14)C18—H180.9500
O1—C91.325 (2)C19—C201.386 (3)
O1—C101.494 (2)C19—H190.9500
O2—C91.203 (2)C20—C211.388 (3)
O2—K2i2.6627 (14)C20—H200.9500
O3—C221.325 (2)C21—H210.9500
O3—C231.496 (2)C23—C261.508 (3)
O4—C221.207 (2)C23—C241.515 (3)
O5—H510.812 (10)C23—C251.519 (3)
O5—H520.813 (10)C24—H24A0.9800
N1—C91.396 (2)C24—H24B0.9800
N1—C11.406 (2)C24—H24C0.9800
N1—C41.409 (2)C25—H25A0.9800
N2—C221.393 (2)C25—H25B0.9800
N2—C141.402 (2)C25—H25C0.9800
N2—C171.409 (2)C26—H26A0.9800
C1—C21.348 (3)C26—H26B0.9800
C1—H10.9500C26—H26C0.9800
C2—C31.459 (2)B1—K1ii3.373 (2)
C2—B11.596 (3)B2—K2vi3.344 (2)
C3—C81.401 (3)
F1—K1—O4147.37 (4)K1—O5—H52106 (2)
F1—K1—F2i121.45 (5)H51—O5—H52109 (3)
O4—K1—F2i91.15 (5)C9—N1—C1120.89 (15)
F1—K1—F4ii92.74 (5)C9—N1—C4130.33 (15)
O4—K1—F4ii104.47 (5)C1—N1—C4107.54 (15)
F2i—K1—F4ii63.48 (4)C22—N2—C14121.35 (15)
F1—K1—O567.98 (5)C22—N2—C17130.21 (15)
O4—K1—O587.55 (5)C14—N2—C17107.45 (14)
F2i—K1—O5137.21 (5)C2—C1—N1111.93 (16)
F4ii—K1—O5156.82 (6)C2—C1—H1124.0
F1—K1—F3i96.93 (4)N1—C1—H1124.0
O4—K1—F3i106.04 (4)C1—C2—C3105.39 (16)
F2i—K1—F3i46.31 (3)C1—C2—B1125.33 (16)
F4ii—K1—F3i102.06 (4)C3—C2—B1129.24 (16)
O5—K1—F3i93.27 (5)C8—C3—C4118.68 (16)
F1—K1—B1i116.33 (5)C8—C3—C2132.59 (17)
O4—K1—B1i92.69 (5)C4—C3—C2108.70 (15)
F2i—K1—B1i23.80 (4)C5—C4—N1131.36 (18)
F4ii—K1—B1i86.07 (4)C5—C4—C3122.22 (17)
O5—K1—B1i113.52 (6)N1—C4—C3106.41 (15)
F3i—K1—B1i24.40 (4)C4—C5—C6117.27 (19)
F1—K1—C15ii90.01 (5)C4—C5—H5121.4
O4—K1—C15ii82.64 (5)C6—C5—H5121.4
F2i—K1—C15ii104.16 (4)C7—C6—C5121.43 (18)
F4ii—K1—C15ii46.38 (4)C7—C6—H6119.3
O5—K1—C15ii118.01 (5)C5—C6—H6119.3
F3i—K1—C15ii148.14 (4)C8—C7—C6121.14 (19)
B1i—K1—C15ii127.92 (4)C8—C7—H7119.4
F1—K1—C14ii71.25 (5)C6—C7—H7119.4
O4—K1—C14ii92.47 (5)C7—C8—C3119.15 (19)
F2i—K1—C14ii124.35 (4)C7—C8—H8120.4
F4ii—K1—C14ii61.90 (4)C3—C8—H8120.4
O5—K1—C14ii98.42 (5)O2—C9—O1126.80 (18)
F3i—K1—C14ii158.52 (4)O2—C9—N1122.11 (17)
B1i—K1—C14ii147.81 (4)O1—C9—N1111.08 (16)
C15ii—K1—C14ii22.54 (4)O1—C10—C11111.15 (16)
F1—K1—K2i110.59 (3)O1—C10—C12108.85 (16)
O4—K1—K2i98.19 (3)C11—C10—C12111.8 (2)
F2i—K1—K2i31.13 (3)O1—C10—C13101.06 (17)
F4ii—K1—K2i32.38 (3)C11—C10—C13112.4 (2)
O5—K1—K2i166.44 (5)C12—C10—C13111.1 (2)
F3i—K1—K2i73.36 (2)C10—C11—H11A109.5
B1i—K1—K2i54.20 (3)C10—C11—H11B109.5
C15ii—K1—K2i75.08 (3)H11A—C11—H11B109.5
C14ii—K1—K2i93.62 (3)C10—C11—H11C109.5
F1—K1—H5253.4 (3)H11A—C11—H11C109.5
O4—K1—H52100.0 (4)H11B—C11—H11C109.5
F2i—K1—H52143.8 (5)C10—C12—H12A109.5
F4ii—K1—H52142.8 (3)C10—C12—H12B109.5
O5—K1—H5214.9 (3)H12A—C12—H12B109.5
F3i—K1—H5297.5 (5)C10—C12—H12C109.5
B1i—K1—H52120.5 (5)H12A—C12—H12C109.5
C15ii—K1—H52111.3 (5)H12B—C12—H12C109.5
C14ii—K1—H5289.7 (5)C10—C13—H13A109.5
K2i—K1—H52161.3 (5)C10—C13—H13B109.5
F2—K2—F5ii91.09 (5)H13A—C13—H13B109.5
F2—K2—O2ii86.99 (5)C10—C13—H13C109.5
F5ii—K2—O2ii155.88 (5)H13A—C13—H13C109.5
F2—K2—F4iii64.83 (4)H13B—C13—H13C109.5
F5ii—K2—F4iii111.69 (5)C15—C14—N2111.82 (16)
O2ii—K2—F4iii89.19 (5)C15—C14—K1i75.65 (11)
F2—K2—F6iv149.50 (4)N2—C14—K1i106.29 (11)
F5ii—K2—F6iv77.14 (4)C15—C14—H14124.1
O2ii—K2—F6iv92.55 (4)N2—C14—H14124.1
F4iii—K2—F6iv145.66 (4)K1i—C14—H1488.3
F2—K2—F5iv161.94 (4)C14—C15—C16105.29 (15)
F5ii—K2—F5iv94.90 (3)C14—C15—B2124.85 (16)
O2ii—K2—F5iv94.27 (5)C16—C15—B2129.85 (15)
F4iii—K2—F5iv97.15 (4)C14—C15—K1i81.81 (11)
F6iv—K2—F5iv48.52 (3)C16—C15—K1i103.96 (10)
F2—K2—F6iii97.69 (3)B2—C15—K1i83.88 (10)
F5ii—K2—F6iii85.04 (4)C21—C16—C17119.33 (16)
O2ii—K2—F6iii119.05 (4)C21—C16—C15131.86 (16)
F4iii—K2—F6iii42.94 (3)C17—C16—C15108.80 (15)
F6iv—K2—F6iii108.98 (2)C18—C17—C16122.48 (16)
F5iv—K2—F6iii65.98 (3)C18—C17—N2130.85 (16)
F2—K2—B2iv173.53 (5)C16—C17—N2106.60 (14)
F5ii—K2—B2iv85.44 (4)C19—C18—C17116.58 (18)
O2ii—K2—B2iv93.94 (5)C19—C18—H18121.7
F4iii—K2—B2iv121.56 (5)C17—C18—H18121.7
F6iv—K2—B2iv24.11 (4)C20—C19—C18122.10 (18)
F5iv—K2—B2iv24.41 (4)C20—C19—H19119.0
F6iii—K2—B2iv87.47 (4)C18—C19—H19118.9
F2—K2—B2iii82.84 (4)C19—C20—C21120.94 (18)
F5ii—K2—B2iii103.06 (5)C19—C20—H20119.5
O2ii—K2—B2iii100.55 (5)C21—C20—H20119.5
F4iii—K2—B2iii20.62 (4)C20—C21—C16118.46 (17)
F6iv—K2—B2iii127.00 (4)C20—C21—H21120.8
F5iv—K2—B2iii79.22 (4)C16—C21—H21120.8
F6iii—K2—B2iii23.21 (4)O4—C22—O3126.87 (17)
B2iv—K2—B2iii103.25 (5)O4—C22—N2121.69 (17)
F2—K2—K2vii129.84 (3)O3—C22—N2111.43 (15)
F5ii—K2—K2vii100.51 (3)O3—C23—C26109.01 (15)
O2ii—K2—K2vii99.12 (4)O3—C23—C24110.57 (16)
F4iii—K2—K2vii65.53 (3)C26—C23—C24113.36 (19)
F6iv—K2—K2vii80.36 (3)O3—C23—C25101.55 (15)
F5iv—K2—K2vii32.19 (2)C26—C23—C25110.46 (18)
F6iii—K2—K2vii36.60 (2)C24—C23—C25111.24 (19)
B2iv—K2—K2vii56.35 (4)C23—C24—H24A109.5
B2iii—K2—K2vii47.03 (3)C23—C24—H24B109.5
F2—K2—K2viii124.95 (4)H24A—C24—H24B109.5
F5ii—K2—K2viii34.07 (2)C23—C24—H24C109.5
O2ii—K2—K2viii138.78 (3)H24A—C24—H24C109.5
F4iii—K2—K2viii125.95 (3)H24B—C24—H24C109.5
F6iv—K2—K2viii46.46 (3)C23—C25—H25A109.5
F5iv—K2—K2viii63.69 (3)C23—C25—H25B109.5
F6iii—K2—K2viii84.93 (2)H25A—C25—H25B109.5
B2iv—K2—K2viii51.37 (4)C23—C25—H25C109.5
B2iii—K2—K2viii108.06 (4)H25A—C25—H25C109.5
K2vii—K2—K2viii80.496 (13)H25B—C25—H25C109.5
F2—K2—K1ii32.08 (3)C23—C26—H26A109.5
F5ii—K2—K1ii102.39 (3)C23—C26—H26B109.5
O2ii—K2—K1ii88.57 (3)H26A—C26—H26B109.5
F4iii—K2—K1ii32.77 (3)C23—C26—H26C109.5
F6iv—K2—K1ii178.10 (3)H26A—C26—H26C109.5
F5iv—K2—K1ii129.88 (3)H26B—C26—H26C109.5
F6iii—K2—K1ii69.12 (2)F3—B1—F1105.97 (14)
B2iv—K2—K1ii154.26 (4)F3—B1—F2106.27 (15)
B2iii—K2—K1ii51.23 (3)F1—B1—F2104.90 (16)
K2vii—K2—K1ii97.952 (11)F3—B1—C2114.77 (15)
K2viii—K2—K1ii132.537 (15)F1—B1—C2111.89 (15)
B1—F1—K1140.70 (11)F2—B1—C2112.31 (14)
B1—F2—K2133.82 (11)F3—B1—K1ii61.98 (9)
B1—F2—K1ii105.92 (10)F1—B1—K1ii94.60 (10)
K2—F2—K1ii116.79 (5)F2—B1—K1ii50.28 (8)
B1—F3—K1ii93.63 (10)C2—B1—K1ii152.40 (12)
B2—F4—K2v117.91 (11)F6—B2—F5106.25 (14)
B2—F4—K1i118.65 (10)F6—B2—F4106.25 (16)
K2v—F4—K1i114.86 (5)F5—B2—F4106.46 (16)
B2—F5—K2i143.41 (11)F6—B2—C15113.72 (15)
B2—F5—K2vi101.39 (10)F5—B2—C15112.58 (16)
K2i—F5—K2vi113.74 (4)F4—B2—C15111.08 (14)
B2—F6—K2vi103.84 (10)F6—B2—K2vi52.05 (8)
B2—F6—K2v89.19 (10)F5—B2—K2vi54.21 (8)
K2vi—F6—K2v96.95 (3)F4—B2—K2vi117.36 (11)
C9—O1—C10120.25 (14)C15—B2—K2vi131.55 (12)
C9—O2—K2i161.75 (14)F6—B2—K2v67.61 (10)
C22—O3—C23120.08 (14)F5—B2—K2v103.06 (11)
C22—O4—K1161.78 (13)C15—B2—K2v141.36 (12)
K1—O5—H51136 (2)K2vi—B2—K2v81.60 (4)
O4—K1—F1—B1147.17 (17)C21—C16—C17—N2178.67 (15)
F2i—K1—F1—B135.8 (2)C15—C16—C17—N21.82 (18)
F4ii—K1—F1—B124.58 (19)C22—N2—C17—C1816.4 (3)
O5—K1—F1—B1168.7 (2)C14—N2—C17—C18175.10 (19)
F3i—K1—F1—B177.93 (19)C22—N2—C17—C16166.55 (17)
B1i—K1—F1—B162.39 (19)C14—N2—C17—C161.93 (18)
C15ii—K1—F1—B170.90 (19)C16—C17—C18—C192.4 (3)
C14ii—K1—F1—B183.63 (19)N2—C17—C18—C19178.99 (18)
K2i—K1—F1—B13.15 (19)C17—C18—C19—C200.2 (3)
F5ii—K2—F2—B192.47 (17)C18—C19—C20—C211.2 (3)
O2ii—K2—F2—B163.47 (17)C19—C20—C21—C160.4 (3)
F4iii—K2—F2—B1153.99 (18)C17—C16—C21—C202.9 (3)
F6iv—K2—F2—B126.4 (2)C15—C16—C21—C20176.48 (19)
F5iv—K2—F2—B1158.03 (15)K1—O4—C22—O3162.5 (3)
F6iii—K2—F2—B1177.62 (17)K1—O4—C22—N218.9 (6)
B2iii—K2—F2—B1164.50 (18)C23—O3—C22—O411.1 (3)
K2vii—K2—F2—B1162.85 (15)C23—O3—C22—N2167.62 (15)
K2viii—K2—F2—B188.44 (17)C14—N2—C22—O410.1 (3)
K1ii—K2—F2—B1155.6 (2)C17—N2—C22—O4177.22 (18)
F5ii—K2—F2—K1ii111.94 (6)C14—N2—C22—O3168.73 (16)
O2ii—K2—F2—K1ii92.12 (7)C17—N2—C22—O31.6 (3)
F4iii—K2—F2—K1ii1.60 (6)C22—O3—C23—C2659.2 (2)
F6iv—K2—F2—K1ii177.97 (6)C22—O3—C23—C2466.1 (2)
F5iv—K2—F2—K1ii2.4 (2)C22—O3—C23—C25175.75 (16)
F6iii—K2—F2—K1ii26.80 (7)K1ii—F3—B1—F186.68 (13)
B2iii—K2—F2—K1ii8.92 (6)K1ii—F3—B1—F224.56 (13)
K2vii—K2—F2—K1ii7.26 (9)K1ii—F3—B1—C2149.32 (13)
K2viii—K2—F2—K1ii115.98 (5)K1—F1—B1—F3170.68 (12)
F1—K1—O4—C22137.5 (4)K1—F1—B1—F277.1 (2)
F2i—K1—O4—C2245.0 (4)K1—F1—B1—C244.9 (2)
F4ii—K1—O4—C2217.9 (4)K1—F1—B1—K1ii127.17 (15)
O5—K1—O4—C22177.8 (4)K2—F2—B1—F3128.95 (14)
F3i—K1—O4—C2289.5 (4)K1ii—F2—B1—F328.49 (15)
B1i—K1—O4—C2268.7 (4)K2—F2—B1—F1119.07 (15)
C15ii—K1—O4—C2259.1 (4)K1ii—F2—B1—F183.50 (13)
C14ii—K1—O4—C2279.5 (4)K2—F2—B1—C22.7 (2)
K2i—K1—O4—C2214.5 (4)K1ii—F2—B1—C2154.75 (12)
C9—N1—C1—C2167.77 (17)K2—F2—B1—K1ii157.44 (19)
C4—N1—C1—C20.8 (2)C1—C2—B1—F3170.96 (17)
N1—C1—C2—C30.3 (2)C3—C2—B1—F36.6 (3)
N1—C1—C2—B1177.75 (16)C1—C2—B1—F150.2 (2)
C1—C2—C3—C8176.85 (19)C3—C2—B1—F1127.44 (19)
B1—C2—C3—C85.2 (3)C1—C2—B1—F267.5 (2)
C1—C2—C3—C41.3 (2)C3—C2—B1—F2114.9 (2)
B1—C2—C3—C4176.68 (16)C1—C2—B1—K1ii112.6 (3)
C9—N1—C4—C514.9 (3)C3—C2—B1—K1ii69.8 (3)
C1—N1—C4—C5178.0 (2)K2vi—F6—B2—F50.78 (16)
C9—N1—C4—C3165.54 (18)K2v—F6—B2—F597.73 (13)
C1—N1—C4—C31.53 (19)K2vi—F6—B2—F4112.32 (13)
C8—C3—C4—C53.7 (3)K2v—F6—B2—F415.37 (13)
C2—C3—C4—C5177.83 (17)K2vi—F6—B2—C15125.18 (13)
C8—C3—C4—N1176.70 (15)K2v—F6—B2—C15137.87 (14)
C2—C3—C4—N11.74 (19)K2v—F6—B2—K2vi96.95 (5)
N1—C4—C5—C6178.10 (18)K2vi—F6—B2—K2v96.95 (5)
C3—C4—C5—C62.5 (3)K2i—F5—B2—F6164.53 (12)
C4—C5—C6—C70.4 (3)K2vi—F5—B2—F60.76 (15)
C5—C6—C7—C81.9 (3)K2i—F5—B2—F451.6 (2)
C6—C7—C8—C30.6 (3)K2vi—F5—B2—F4112.20 (12)
C4—C3—C8—C72.1 (3)K2i—F5—B2—C1570.4 (2)
C2—C3—C8—C7179.89 (19)K2vi—F5—B2—C15125.86 (12)
K2i—O2—C9—O1142.3 (4)K2i—F5—B2—K2vi163.8 (2)
K2i—O2—C9—N138.6 (6)K2i—F5—B2—K2v94.39 (17)
C10—O1—C9—O210.7 (3)K2vi—F5—B2—K2v69.38 (8)
C10—O1—C9—N1168.51 (15)K2v—F4—B2—F621.72 (18)
C1—N1—C9—O28.6 (3)K1i—F4—B2—F6124.53 (12)
C4—N1—C9—O2174.2 (2)K2v—F4—B2—F591.24 (15)
C1—N1—C9—O1170.70 (17)K1i—F4—B2—F5122.51 (12)
C4—N1—C9—O15.1 (3)K2v—F4—B2—C15145.88 (12)
C9—O1—C10—C1162.8 (2)K1i—F4—B2—C150.4 (2)
C9—O1—C10—C1260.7 (2)K2v—F4—B2—K2vi33.50 (17)
C9—O1—C10—C13177.7 (2)K1i—F4—B2—K2vi179.74 (6)
C22—N2—C14—C15168.35 (16)K1i—F4—B2—K2v146.25 (17)
C17—N2—C14—C151.4 (2)C14—C15—B2—F6164.37 (17)
C22—N2—C14—K1i87.62 (16)C16—C15—B2—F617.0 (3)
C17—N2—C14—K1i82.10 (13)K1i—C15—B2—F6120.06 (14)
N2—C14—C15—C160.2 (2)C14—C15—B2—F543.5 (2)
K1i—C14—C15—C16102.32 (12)C16—C15—B2—F5137.88 (18)
N2—C14—C15—B2178.71 (16)K1i—C15—B2—F5119.03 (14)
K1i—C14—C15—B276.62 (16)C14—C15—B2—F475.8 (2)
N2—C14—C15—K1i102.09 (14)C16—C15—B2—F4102.8 (2)
C14—C15—C16—C21179.56 (18)K1i—C15—B2—F40.26 (15)
B2—C15—C16—C210.7 (3)C14—C15—B2—K2vi104.92 (19)
K1i—C15—C16—C2194.39 (19)C16—C15—B2—K2vi76.4 (2)
C14—C15—C16—C171.01 (19)K1i—C15—B2—K2vi179.51 (13)
B2—C15—C16—C17179.87 (17)C14—C15—B2—K2v112.3 (2)
K1i—C15—C16—C1786.18 (13)C16—C15—B2—K2v66.3 (3)
C21—C16—C17—C184.0 (3)K1i—C15—B2—K2v36.76 (17)
C15—C16—C17—C18175.51 (16)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x2, y, z; (iv) x3/2, y+1/2, z; (v) x+2, y, z; (vi) x+3/2, y+1/2, z; (vii) x1/2, y+1/2, z; (viii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···F3ix0.81 (1)2.14 (1)2.903 (2)156 (3)
O5—H51···F1ix0.81 (1)2.62 (2)3.188 (2)128 (2)
O5—H52···O5x0.81 (1)2.41 (1)3.1968 (16)164 (3)
Symmetry codes: (ix) x+1/2, y1/2, z; (x) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaK+·C13H14BF3NO2·0.5H2O
Mr332.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)5.8428 (1), 16.3177 (2), 32.1286 (5)
V3)3063.17 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.27 × 0.19 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
24771, 7001, 6369
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.075, 1.03
No. of reflections7001
No. of parameters400
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.24
Absolute structureFlack (1983), 2995 Friedel pairs
Absolute structure parameter0.00 (3)

Computer programs: COLLECT (Hooft, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···F3i0.812 (10)2.142 (14)2.903 (2)156 (3)
O5—H51···F1i0.812 (10)2.62 (2)3.188 (2)128 (2)
O5—H52···O5ii0.813 (10)2.406 (12)3.1968 (16)164 (3)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y1/2, z.
 

Acknowledgements

The authors thank Professor Peter Klüfers for generous allocation of diffractometer time.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaran, P. S., Guerrero, C. A., Ambhaikar, N. B. & Hafensteiner, B. D. (2005). Angew. Chem. Intl. Ed. 44, 606–609.  Web of Science CSD CrossRef CAS Google Scholar
First citationDarses, S. & Genet, J.-P. (2008). Chem. Rev. 108, 288–325.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDavies, S. G., Garner, A. C., Ouzman, J. V. A., Roberts, P. M., Smith, A. D., Snow, E. J., Thomson, J. E., Tamayo, J. A. & Vickers, R. J. (2007). Org. Biomol. Chem. 5, 2138–2147.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDavies, J. R., Kane, P. D., Moody, C. J. & Slawin, A. M. Z. (2005). J. Org. Chem. 70, 5840–5851.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKassis, P., Beneteau, V., Merour, J.-Y. & Routier, S. (2009). Synthesis, pp. 2447–2453.  Google Scholar
First citationLu, T.-J. & Lin, C.-K. (2011). J. Org. Chem. 76, 1621–1633.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMolander, G. A., Canturk, B. & Kennedy, L. E. (2009). J. Org. Chem. 74, 973–980.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMothes, C., Lavielle, S. & Karoyan, P. (2008). J. Org. Chem. 73, 6706–6710.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationReiter, M., Torssell, S., Lee, S. & MacMillan, D. W. C. (2010). Chem. Sci. 1, 37–42.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m551-m552
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds